Серия

КЛАССИЧЕСКИЙ
УНИВЕРСИТЕТСКИЙ УЧЕБНИК

основана в 2002 году по инициативе ректора
МГУ им. М.В. Ломоносова
академика РАН В.А. Садовничего
и посвящена

250-летию
Московского университета
КЛАССИЧЕСКИЙ
УНИВЕРСИТЕТСКИЙ УЧЕБНИК

Редакционный совет серии

Председатель совета
ректор Московского университета
В.А. Садовничий

Члены совета:
Виханский О.С., Голиченков А.К., Гусев М.В.,
Добреньков В.И., Донцов А.И.,
Засурский Я.Н., Зинченко Ю.П. (ответственный секретарь)
Камзолев А.И. (ответственный секретарь),
Карпов С.П., Касимов Н.С., Колесов В.П.,
Лободанов А.П., Лунин В.В., Лупанов О.Б., Мейер М.С.,
Миронов В.В. (заместитель председателя),
Михалев А.В., Моисеев Е.И., Пущаровский Д.Ю.,
Раевская О.В., Ремнева М.А., Розов Н.Х.,
Салецкий А.М. (заместитель председателя),
Сурин А.В., Тер-Минасова С.Г.,
Ткачук В.А., Третьяков Ю.Д., Трухин В.И.,
Трофимов В.Т. (заместитель председателя),
Шоба С.А.
БОТАНИКА
КУРС АЛЬГОЛОГИИ И МИКОЛОГИИ

Под редакцией профессора Ю.Т. Дьякова

Допущено Учебно-методическим объединением по классическому университетскому образованию в качестве учебника для студентов, обучающихся по направлению 020200 «Биология» и биологическим специальностям

Издательство Московского университета
2007
Издано при финансовой поддержке
Федерального агенства по печати и массовым коммуникациям
в рамках Федеральной целевой программы «Культура России»

Печатается по решению Ученого совета Московского университета

Рецензенты:
профессор Д.Г. Звягинцев,
dоктор биологических наук Л.В. Ильяш

ISBN 978-5-211-05336-6

Учебник создан на основе неоднократно переиздававшегося «Курса низших растений». В отличие от предыдущего в настоящее издание не включены разделы, посвященные описанию вирусов и бактерий, но добавлен новый раздел, в котором изложены правила ботанической таксономии и основы ботанической латыни. Системы отдельных групп организмов, традиционно относимых к «низшим растениям» (водоросли, грибы, лишайники, миксомицеты), претерпели значительные изменения, обусловленные использованием для их изучения современных методов биохимии, цитологии и молекулярной биологии, что нашло отражение в данной книге. Большое внимание удалено цитологии, физиологии, экологии и практическиому использованию «низших растений». Набор описываемых видов и схема их описания остались без существенных изменений.

Для студентов университетов и педагогических институтов, будет также полезен студентам и аспирантам сельскохозяйственных, медицинских и ветеринарных вузов, а также всем, кто интересуется грибами, водорослями и лишайниками.
Уважаемый читатель!

Вы открыли одну из замечательных книг, изданных в серии «Классический университетский учебник», посвященной 250-летию Московского университета. Серия включает свыше 150 учебников и учебных пособий, рекомендованных к изданию Учеными советами факультетов, редакционным советом серии и издаваемых к юбилею по решению Ученого совета МГУ.

Московский университет всегда славился своими профессорами и преподавателями, воспитавшими не одно поколение студентов, впоследствии внесших заметный вклад в развитие нашей страны, составивших гордость отечественной и мировой науки, культуры и образования.

Высокий уровень образования, которое дает Московский университет, в первую очередь обеспечивается высоким уровнем написанных выдающимися учеными и педагогами учебников и учебных пособий, в которых сочетаются как глубина, так и доступность излагаемого материала. В этих книгах аккумулируется бесценный опыт методики и методологии преподавания, который становится достоянием не только Московского университета, но и других университетов России и всего мира.

Издание серии «Классический университетский учебник» наглядно демонстрирует тот вклад, который вносит Московский университет в классическое университетское образование в нашей стране, и, несомненно, служит его развитию.

Решение этой благородной задачи было бы невозможным без активной помощи со стороны издательств, принявших участие в издании книг серии «Классический университетский учебник». Мы расцениваем это как поддержку ими позиции, которую занимает Московский университет в вопросах науки и образования. Это служит также свидетельством того, что 250-летний юбилей Московского университета — выдающееся событие в жизни всей нашей страны, мирового образовательного сообщества.

Ректор Московского университета
академик РАН, профессор

В. Садовничий

В.А. Садовничий
ПРЕДИСЛОВИЕ АВТОРОВ

Первый базовый университетский учебник по низшим растениям «Курс низших растений» был выпущен в 1933 г. (авторы — сотрудники кафедры низших растений, а ныне — кафедры микологии и альгологии Московского университета Л.И. Курсанов, Н.А. Комарницкий и Б.К. Флеров). Эта книга выдержала два переиздания (1937 и 1945 гг.). В 1981 г. вышел учебник под тем же названием, редактором которого был М.В. Горленко, а авторами — коллектив преподавателей и сотрудников той же кафедры. Необходимость издания новой версии учебника (5-й по счету) вызвана двумя обстоятельствами. Во-первых, за четверть века, прошедших после последнего издания, учебник стал библиографической редкостью и отсутствует во многих университетах страны, не только вновь открытых, но и традиционных. Во-вторых, за это время произошли кардинальные изменения во взглядах на систематику и филогению, которые привели к ревизии многих таксонов разного уровня, причем изменения в системе низших организмов оказались наиболее существенными. Сейчас стало просто невозможно готовить специалистов для работы на уровне современных задач, стоящих перед биологией, по старым учебникам.

В связи с вышесказанным был подготовлен новый университетский курс, написанный с учетом современных сведений из области микологии, альгологии, лихенологии и общеbióологических дисциплин — физиологии, биохимии, цитологии, генетики, молекулярной биологии, экологии. Новые взгляды на таксоны, составляющие «низшие растения», сказались и в изменении названия учебника. Нововведением настоящего издания является и то, что систематическое изложение водорослей и грибов завершает небольшой, но очень важный раздел, посвященный грамматическим правилам написания латинских названий и диагнозов и основам Международного кодекса ботанической номенклатуры.

Авторы книги — сотрудники кафедры микологии и альгологии биологического факультета Московского университета им. М.В. Ломоносова. Они много лет читают курсы лекций, посвященные объектам, о которых пишут в учебнике, ведут научные исследования в разных направлениях микологии, альгологии и лихенологии. Поэтому им присущи главные качества, необходимые для авторов хорошего учебника, — знание классической и современной
научной литературы, опыт ее подачи студентам и собственный взгляд на многое дискуссионные вопросы.

Разделы книги написаны докторами биологических наук профессорами Л.Л. Великановым, Л.В. Гарибовой, Ю.Т. Дьяковым, В.П. Прохоровым, И.И. Сидоровой; доктором биологических наук ведущим научным сотрудником А.Н. Камневым, доктором биологических наук старшим научным сотрудникум Т.Ю. Толпышевой, кандидатами биологических наук доцентами Г.А. Беляковой и К.Л. Тарасовым. Общее редактирование книги осуществил Ю.Т. Дьяков.

Преемственность с последним изданием «Курса низших растений» выражена в том, что описание многих низших таксонов (родов и видов) сделано по схеме, принятой в нем. В частности, сохранены описания многих родов и видов водорослей, сделанные ушедшими из жизни Н.П. Горбуновой и Т.П. Сизовой, некоторые сведения об экологии водорослей, написанные Т.Ф. Коптяевой, взгляды М.В. Горленко на эволюцию мучнистороссянных и ржавчинных грибов.

Авторы благодарят профессора Д.Г. Звягинцева и доктора биологических наук Л.В. Ильяша за благожелательные официальные отзывы на рукопись и сделанные замечания.

Также выражаем благодарность Н.К. Тарасовой за техническую помощь.
Современная биологическая методология

Последний раз «Курс низших растений» издавался более 20 лет назад. За это время в биологии произошли кардинальные методологические и идейные изменения, которые не могли не затронуть и объектов, изучаемых в настоящем курсе.

Во-первых, электронный микроскоп и другие приборы для тонкого изучения клетки, представившие во времена выхода последнего издания учебника «новейшие методы исследования», вошли в арсенал стандартного лабораторного оборудования, значительно усовершенствовались и позволили обнаружить в клетках и на их поверхности такие детали, о существовании которых ранее не подозревали и которые оказали существенное влияние на выделение комплекса таксономически значимых признаков.

Во-вторых, систематики стали использовать для построения эволюционных деревьев методы кladistiki, в которых на смену интуитивного сравнительного анализа таксономически значимых признаков пришли математические методы определения предковых и производных форм, расчета мест ветвления дерева и длины его ветвей.

В-третьих, анализ первичных и вторичных метаболитов сравниваемых организмов сменился анализом кодирующих молекул — ДНК и РНК. Возникла принципиально новая наука — геномика, которая произвела переворот в основных принципах биологической методологии. Если ее организмы, различающиеся фенотипическими признаками (природные варианты или искусственно полученные мутанты), скрещивали и по результатам гибридологического анализа картировали на хромосомах ген, контролирующий признак, т.е. путь исследования был направлен от признака к кодирующему его гену, то теперь стало возможно по структуре гена установить кодируемый им продукт. Сведения об этих продуктах собираются в банках генов, так что любой исследователь может через Интернет получить информацию о функциях продуктов того или иного гена, т.е. путь исследователя теперь направлен от гена к признаку.

Соединение геномики и кладистики привело к возникновению новой науки — геносистематики. Ее цель — исследование генов изучаемых организмов и построе-
Введение

ние по сравнительным данным статистически достоверных эволюционных деревьев. Такие деревья называют филогенетическими, так как они указывают на признаки сходства групп организмов, обусловленные не параллельными адаптациями (сходством фенотипов), а филогенетическим родством (сходством генотипов).

Первичную процедуру геносистематики составляет определение последовательности пар азотистых оснований (нуклеотидов) ДНК — секвенирование. Для целей геносистематики никто не секвенирует весь геном сравниваемых организмов, ибо, во-первых, это очень длительная и дорогостоящая процедура, а во-вторых, число генов у сравниваемых организмов может сильно различаться и стать источником ошибок при построении деревьев. Вследствие этого секвенируют одни и те же гены, присутствующие у сравниваемых организмов, а показателями степени сходства или различия служат число и положение замен нуклеотидов, вызванных мутациями или иными генетическими процессами. Соединение палеонтологических данных с молекулярными исследованиями позволяет установить примерные промежутки времени между фиксацией двух спонтанных мутаций. Это дает возможность накладывать молекулярные деревья на временную сетку истории Земли (геологических эпох) и определять время возникновения (отхождения) тех или иных таксонов.

Для филогенетических построений используют гены, которые есть у всех сравниваемых организмов. Наиболее популярны гены рибосомальной РНК (rib-фены), т.е. участки ДНК, на матрицах которых синтезируются молекулы рибосомальных РНК. Поскольку рибосомальный (матричный) синтез белка присущ всему живому, рибосомы (и гены, контролирующие их синтез) есть как у про-, так и у эукариот. Рибосома состоит из малой и большой субъединиц, образованных разными молекулами РНК. Прокариоты имеют 5S и 23S РНК в большой субъединице (S — константа седиментации, показатель скорости осаждения молекулы при ультрацентрифугировании) и 16S РНК — в малой. Большинство эукариотов имеют 5S, 8S и 28S РНК в большой субъединице и 18S РНК в малой; растения — 25S РНК в большой и 16S РНК в малой. Соответственно рибосомальные гены (рДНК) представляют собой отрезки ДНК, кодирующие разные молекулы РНК и разделенные внутригенные спейсераами участками, не образующими рибосомальной РНК (ITS — intragenic transcribed spacer). Рибосомальные гены расположены на хромосоме в виде повторяющихся групп (тандемно), разделенных межгенныхми спейсерами (IGS — intergenic spacer).

Рибосомы выполняют важнейшую внутриклеточную функцию — синтез белка, поэтому кодирующие их гены высоко консервативны, ибо большинство мутаций приводят к губительным для клетки последствиям (летальны). Фиксируется (передается потомству) лишь ограниченное число мутаций, поэтому филогенетические деревья, построенные по сравнению рДНК, при наложении на геологические эпохи оказываются растянутыми (между каждой заменой протекают длительные промежутки времени). Следовательно, сравнение структуры рДНК позволяет изучать события, происходившие десятки и сотни миллионов лет назад, и строить макрофилогении (царства, отделы, классы, порядки). Внутри- и межгенные спейсеры не участвуют в построении рибосом (не транскрип-
Критерии, используемые для группировки организмов

Итак, какие же изменения внесли новые методы и методологии в группу, называемую «низшие растения»? В прошлом издании учебника к низшим растениям были отнесены вирусы; бактерии, разнесенные по двум разделам: большинство — в специально отведенный для них раздел, часть (цианобактерии) — в раздел «Водоросли»; водоросли; микросомы; грибы и лишайники, т.е. конгломерат организмов, не рассматриваемых ботаниками и зоологами. Уже тогда было ясно, что это сборная группа, которая требует внутренней группировки и присутствие отдельных членов которой внутри единого университетского курса нуждается в обосновании. Группировку какого-либо множества организмов можно проводить по разным критериям. Назовем важнейшие из них.

Филогенетический критерий. Организмы объединяются на основе общности происхождения, которое сейчас устанавливают главным образом описанными выше методами геносистематики. По этому критерию к низшим растениям из всего многообразия, представленного в предыдущем издании, можно отнести
только зеленые водоросли, образующие вместе с вышими растениями единую филу (царство), а остальные организмы формируют другие филы, родство которых с растениями отсутствует или неясно.

Структурно-морфологический критерий. Согласно этому критерию вирусы — неклеточные представители биоты, лишенные основных присущих всем клеткам компонентов — двух типов нуклеиновой кислоты, белоксинтезирующего аппарата и ферментов энергетического обмена — и способные только к объективно-паразитическому существованию внутри клеток хозяина. Вирусы — предмет науки вирусологии, и среди низших растений им, конечно, нет места.

Клеточные организмы по структуре компонентов клетки разделяются на про- и эукариоты. Более древние прокариоты (бактерии и археи) не имеют покрытых мембранами ядер и других органелл (митохондрий, хлоропластов); объединения ДНК и белков в хромосомах; митоза как способа разделения удвоившегося генома; жгутиков, построенных из покрытой мембранной системы микротрубочек; истинного полового процесса. Большинство бактерий к растениям отношения не имеет и изучается микробиологами, а не ботаниками. Однако клетки одной группы, которую микробиологии называют цианобактериями, а ботаники — синезеленными водорослями, в незапамятные докембрийские времена были поглощены эукариотическими клетками и превратились во внутриклеточные органеллы — хлоропласти, обеспечивающие им фотосинтез (создание органических соединений из углекислого газа и воды). Поскольку хлоропласти есть у всех растений, как низших (водорослей), так и высших, цианобактерии в отличие от других прокариот имеют генетические связи с линией растительных организмов. Как образно заметил известный микробиолог Г.А. Заварзин, растения в конечном счете представляют собой оболочку, с помощью которой цианобактерии вносятся над поверхностью земли ближе к солнечному свету.

Наконец, эукариоты разделяются на одноклеточные, многоклеточные и тканевые. Большинство низших эукариот, включая «низшие растения», не имеют листостебельного плана строения и представляют собой талломы (слоевищные) одно- и многоклеточные организмы.

Эколого-трофический критерий. По типу питания все организмы разделяются на автотрофные и гетеротрофные. Первые способны синтезировать органические вещества из неорганических с помощью хемосинтеза или фотосинтеза. Вторые в качестве источников энергии должны использовать готовые органические вещества из окружающей среды. Хемосинтетики встречаются только среди прокариот. Фотосинтетики с оксигенным типом фотосинтеза (использование воды в качестве донора водорода и выделение кислорода в процессе фотосинтеза) — это прокариотные цианобактерии и эукариоты, имеющие хлоропласти (растения в широком смысле слова). В свою очередь эукариотические гетеротрофы также разделяются на две группы — осмотрофи, всасывающие органические вещества всем телом (грибы), и зоотрофы, заглатывающие другие организмы или их части всем телом в мембраны пузьрьки (пиноцитозом) или с помощью специального органа — глотки.

Таким образом, на основании эколого-трофического критерия мы имеем три большие группы организмов: растения (фототрофы с оксигенным фотосинтезом), животные (зоотрофы) и грибы (осмотрофы). Тогда к низшим растениям, по определению известного альголога Ф. Фрича, надо относить организмы
с оксигенным фотосинтезом и их бесцветные производные (вторично потерявшие фотосинтез), не достигшие уровня морфологической организации архегониальных растений (листостебельного плана строения), т.е. не только зеленые, но и другие водоросли, филогенетически не связанные с ними.

Как очевидно, ни по одному из приведенных критериев отнесение к низшим растениям грибов и миксосциетов не правомочно и является лишь данью университетских традиций, сложившихся в XIX в. В связи с этим при очередном издании учебника оказалось невозможным сохранить старое его название.

Надо отметить, что эколого-трофический критерий, хорошо разделяющий высших представителей растений, животных и грибов, часто перестает разделять низших их представителей, большинство из которых и является предметом дальнейшего изложения. Например, одноклеточная водоросль эвгlena имеет хлоропласти и питается с помощью фотосинтеза. Однако в среде, богатой азотом, она переходит на смешанное (миксотрофное) питание и может наряду с фотосинтезом всасывать органические вещества (как грибы) и даже заглатывать мелкие частицы (подобно животным). В таких условиях эвгlena часто теряет хлоропласти и превращается из растения в животное. Многие беспозвоночные животные (инфузории, коралловые полипы и др.) в природных условиях всегда живут с находящимися внутри их тела водорослями (зоохлореллы, зооксантеллы) и питаются как путем заглатывания пищи, так и продуктами фотосинтеза, производимыми эндосимбиотическими водорослями, которые заменяют им хлоропласти. Более того, по приведенному выше определению Фрича, к водорослям следует относить и организмы, вторично утратившие хлоропласти (и среди высших цветковых растений есть паразиты, утратившие хлоропласти за ненадобностью). Но тогда к низшим растениям (водорослям) следует отнести многих паразитических простейших (малярийный плазмодий, паразитирующая в кишечнике амёба и др.), у которых обнаружили структурные остатки хлоропластов и некоторые ферменты, обслуживающие фотосинтез (ранее они были фотосинтетиками, но утратили это свойство в связи с паразитическим образом жизни). Как тут не вспомнить прозорливое замечание К.А. Тимирязева, сделанное более 100 лет назад, о том, что «нет ни растения, ни животного, а есть один нераздельный органический мир. Растение и животное — только средние величины, только типичные представления, которые мы слагаем, отвлекаясь от известных признаков организмов, придавая исключительное значение одним, пренебрегая другими».

Структура отдельных групп

Очертив границы объектов, рассмотрим в целом структуры больших групп организмов, описываемых в данном учебнике.

ВОДОРОСЛИ

Вопросы происхождения и эволюции эукариотных водорослей нельзя обсуждать без учета положений теории эндосимбиотического происхождения эукариотных клеток, согласно которой митохондрии и хлоропласты произошли от ранее свободно живущих клеток прокариот.
Итак, первичная эукариотная водоросль возникла в результате поглощения какими-то бесцветными одноклеточными эукариотными организмами прокариот, существующихся оксигенным фотосинтез, которые превратились в хлоропласт. Отсюда возникает вопрос: как строить макросистемы водорослей — по строению клетки хозяина или по хлоропластам, т.е. по симбионтам?

Долгое время алгологи в качестве фундаментальных признаков рассматривали пигменты хлоропластов, придавая тем самым решающее значение симбионтам. На этом основании выделяли три линии эволюции: Rhodophyta (красные, родофиты), Chlorophyta (зеленые, хлорофиты) и Chromophyta (желто-бурье, хромофиты). Первые содержат в хлоропластах пигменты хлорофилл a и фикобилипротеины, вторые — хлорофиллы a и b, третьи — хлорофиллы a и c. Хлоропласты этих трех групп водорослей отличаются также по составу других пигментов (каротиноидов) и ультраструктуре. Кроме признаков хлоропластов у этих линий имеются и некоторые другие общие черты: по-видимому, клетки родофит, лишенные жгутиков, произошли от амёбообразных простейших; хромофиты с двумя неоднаковыми по строению жгутиками — от гетероконтовых (разножгутиковых) зоофлагеллят, а хлорофиты с двумя одинаковыми жгутиками — от изооконтовых (равножгутиковых). Внутри групп, принимаемых как царства, дробление таксонов на отделы шло по строению жгутиков, клеточных покровов, составу запасных углеводов, жизненным циклам и т.д.

Однако против признания пигментов основополагающими признаками при построении макросистем водорослей накапливается все больше возражений, а именно: 1) криптофитовые водоросли (из линии хромофитовых) содержат хлорофиллы a и c и фикобилипротеины; 2) некоторые зеленые водоросли (Mantoniella из класса Prasinophyceae) имеют хлорофилл c; 3) найдены динофлагелляты (из линии хромофит), имеющие хлорофилл b; 4) филогении, построенные на основании сравнения рибосomialных генов, однозначно свидетельствуют о монофилетическом происхождении хлоропластов водорослей от цианобактерий.

В связи с этим в основу макросистемы водорослей следует все-таки ставить признаки клетки-хозяина. Однако положение осложняется тем, что многие таксоны водорослей произошли вследствие не только первичных, но и вторичных эндоэллибов между еще одной бесцветной флагеллатой и эукариотной водорословой клеткой, также превратившейся в хлоропласт. Поэтому для эволюционных построений важно выделить первично- (как исходные) и вторично-симбиотические таксоны (как производные). Здесь опять встает вопрос: по каким структурам строить системы — по клетке-хозяину или по симбиотическим эукариотным водорослям? Вопрос важен еще и потому, что в отличие от хлоропластов первичных симбионтов, которые, как было сказано, монофилетичны, хлоропласты вторичных симбионтов произошли от разных водорослей. У первичных эндоэллибических водорослей хлоропласт имеет две оболочки (мембраны): первая — остатки собственной оболочки эндоэллибиотической цианобактерии, вторая — измененный эндоэллибиозный мембранный пузырек, в котором симбионт транспортировался в клетку хозяина. Основные признаки вторичных симбиозов: 1) три или чаще четыре оболочки хлоропластов, образованные оболочками хлоропластов симбионта, плазмаляемой симбионта, эндоэллибиозной мембраной хозяина; наружная оболочка вследствие общности происхождения может сли-
ватьсь с эндоплазматической сетью хозяйской клетки; 2) наличие в некоторых группах редуцированного ядра симбионта — нуклеоморфы; 3) наличие в клетке нескольких хлоропластов и двух ядер с разной ультраструктурой (хозяйские и симбиотные).

Первичные симбионты, хлоропласт которых покрыт только двумя оболочками (цитоплазматическая мембрана эндосимбионта и эндоцитозная мембрана хозяина), составляют три отдела (или, скорее, царства): Rhodophyta, Chlorophyta и Glaucocystophyta. Последняя группа включает небольшое число недостаточно изученных видов, а от двух первых путем эндосимбиоза произошли хлоропласты большинства современных водорослей. По данным молекулярной филогении, одноклеточная красная водоросль дала начало хлоропластам большинства хромофитов, имеющих хлорофилл c, а зеленая водоросль — эвгленам и зеленым амёбам (Chlorarachniophyta).

На основании изучения ультраструктуры клеток и построения молекулярных филогенетических деревьев, по ядерным рибосомальным генам наиболее крупной ревизией подверглась группа желто-буроокрашенных водорослей (имеющих хлорофилл c), которая оказалась не монофилетичной, а была распределена по нескольким филам (царствам). Самостоятельные филии образуют криптофитовые, динофитовые водоросли, а также гаптофиты, которые ранее относили к золотистым водорослям.

Бурые, диатомовые, желтоzelеные, золотистые водоросли объединены в один отдел — Ochrophyta, их статус понижен до классов. Большие изменения претерпела группа золотистых водорослей: они были подразделены на несколько классов. Отдел Ochrophyta помещен в царство или надотдел Stramenopila, общей чертой которого являются трубчатые трехчастные (состоящие из трех участков) веточки (мастигонемы) на одном из двух гетероморфных жгутиков и трубчатые кристы митохондрий.

Эвгленовые водоросли выделены в самостоятельное царство вместе с простейшими животными трипаносомами и некоторыми миксосцидами.

Зеленые и красные водоросли (первичные эндосимбионты) сохранили статус самостоятельных фил, но их система также претерпела сильную ревизию по сравнению с системой, приведенной в предыдущем издании, о чем подробно рассказано в соответствующем разделе учебника.

ГРИБЫ

По определению американского ботаника Р. Уиттейкера, к гриbam следует относить гетеротрофные эукариотные организмы с осмотрофным питанием. С особенностями питания связаны характерные черты строения, образа жизни и химических свойств грибов.

1. Наиболее распространенной формой вегетативного тела грибов (пластинка) является мицелий, или грибница. Это многократно ветвящиеся нити (гифы), которые пронизывают субстрат, будь то почва, ткань растения или навозная куча. Такое строение оптимально для всасывания из субстрата питательных веществ всем телом.
Введение

2. Большинство органических веществ в субстрате находится в форме биополимеров — полисахаридов, белков и крупных молекул других веществ, неспособных проникать через клеточную мембрану. Гифы грибов, выделяя в окружающую среду активные ферменты деполимеразы, разрушают полимеры до способных транспортироваться в клетку моно- или олигомеров.

3. Клетки грибов развиваются огромное, несопоставимое с клетками других зукариотных организмов тургорное давление, позволяющее им, как насосу, всасывать из окружающей среды растворенные в воде питательные вещества.

4. Поскольку все вегетативное тело погружено в субстрат, у многих грибов возникают проблемы с распространением спор. Поэтому большинство грибов формируют споры на специальных спороносцах, поднимающихся над субстратом. То, что в просторечье называют «грибами», является их спороносящими органами.

Такие морфологические и эколого-тrophicеские особенности присущи большой группе организмов, которые в предыдущем издании учебника рассматривались в качестве классов единого отдела «Грибы». Однако уже в то время было известно, что некоторые грибы (классы Hypochothyriomycetes и Oomycetes) имеют кардинальные отличия в ультраструктуре жгутиков и митохондрий, химическом составе и других свойствах от остальных грибов. По перечисленным признакам они имели больше сходства с гетероконтными (разножгутиковыми) желто-буровокрашенными водорослями, чем с другими грибами. Эти различия были подтверждены молекулярными филогенетиками. Показано, что большинство грибов имеет мноофилетическое (от одного корня) происхождение и формирует самостоятельное царство Eumycota. Классы Hypochothyriomycetes, Oomycetes и сетчатые слизевики, относимые ранее к микросиметам (класс Labyrinthulomycetes), имеют общее происхождение с отделом Ochrophyta и образуют вместе с ним самостоятельное царство Stromenopila. Долгое время господствовало представление, что оомицеты — ветвь гетероконтных водорослей (на основании морфологических аналогий их относили к желтоеzelеным), потерявшая хлоропласты. Многие соображения, в том числе и те, которые основаны на данных молекулярной филогении, показывают, что эти организмы составляют ветвь страменопил, отклонившуюся до того, как зоофлагеллятный предок приобрел в качестве хлороplaста одноклеточную красную водоросль.

В связи с вышеизложенным многие микологи вообще не рекомендуют называть оомицеты и родственные им группы «грибами», предлагая такие названия, как «псевдогрибы», «гибеподобные организмы» и т.п. В предлагаемом учебнике они рассматриваются не среди грибов, как в предыдущем издании, а отдельно, предваряя разбор филогенетически единого царства Eumycota.

Что касается «истинных грибов», то изменения их системы, произошедшие в последние годы, подробно рассмотрены в соответствующем разделе. Здесь лишь сделаем два замечания: 1) поскольку статус грибов поднят с отдела до царства, отдельные классы в данном пособии рассматриваются как отделы; 2) с позиций филогении класс Deuteromycetes (несовершенные грибы), в который объединяли сумчатые (главным образом) грибы, вторично утратившие половое спороношение, упраздняется, ибо входящие в него организмы полифилетичны (произошли
от разных предков). Рассмотрение дейтеромицетов как отдельной группы в данном руководстве, хотя и с оговорками, вызвано многообразием этих грибов и той важной ролью, которую они играют в природе и хозяйственной деятельности.

ЛИШАЙНИКИ

Лишайник представляет собой симбиотический организм, в котором клетки водоросли оплетены гифами гриба. Такой симбиоз обусловил специфические особенности морфологии, физиологии, биохимии и образа жизни лишайников, представляющих собой четко отграниченную в морфологическом и физиологическом отношении группу, которую изучают специалисты именно по этой группе — лихенология. Однако лишайники — полифилетическая группа, ибо их тело образовано грибами и водорослями из разных отделов и классов. Тело лишайника образовано грибным талломом, а водоросли находятся обычно внутри него, поэтому в современных системах лишайники разбросаны по тем группам грибов, которые входят в их состав. В данном учебнике лишайники рассматриваются отдельно по высказанным выше соображениям относительно своеобразия их строения и образа жизни.

МИКСОМИЦЕТЫ

Миксомицеты, или слизевики, имеют одноклеточный амёбоидный или многоклеточный плазмоидный таллом, не покрытый плотной оболочкой и способный к амёбообразным движениям. Для них характерно миксотрофное (смешанное) питание — путем всасывания растворенных питательных веществ (как грибы) и заглатывания мелких бактериальных и дрожжевых клеток в пищеводный пузырек (как животные). На этом основании знаменитый немецкий ботаник и миколог А. де Бари назвал их Mycetozoa (грибо животные). Согласно современным филогенезам, большинство миксомицетов образует самостоятельное царство, примыкающее к амёбам, но есть группа (акразиевые), объединенная в одно царство с эвгленами.

Итак, мы рассмотрели с разных позиций особенности тех групп организмов, которые включены в «Курс альгологии и микологии». Как видно, эти организмы выходят за рамки водорослей и грибов в узком понимании этих терминов (sensu stricta). Они образуют большое число самостоятельно эволюционирующих групп (царств), причем у разных исследователей (по-разному понимающих объем отдельных царств) это число неодинаково. В табл. 1 приведены те царства, в которые входят рассматриваемые в учебнике организмы. В основу таблицы положена система, рассматриваемая в книгах О.Г. Кусакина и А.Л. Дроздова «Филогенетическое мира», с рядом модификаций, касающихся главным образом группы хромофитовых (в системе Кусакина и Дроздова — гетероконтных), которые, исходя из предложенного выше принципа брать за основу классификации хозяйственную, а не эндосимбиотическую клетку, разделены на три царства.
Таблица отчетливо показывает, что водоросли и грибы в широком смысле слова (sensu lato) — понятия не филогенетические, ибо могут находиться не только в разных, но и в общих (одних и тех же) филях, которые могут объединять практически все эколого-трофические группы организмов — растения (водоросли), животные (простейшие) и грибы. Это, с одной стороны, свидетельствует о единстве живой природы, а с другой — усложняет принципы изложения материала в учебнике, где в целях оптимального восприятия нужны четкие раздельительные признаки, которых, к сожалению, в природе нет.

Таблица 1

Мегасистема организмов, изучаемых в курсе альгологии и микологии

<table>
<thead>
<tr>
<th>Царство</th>
<th>Отдел</th>
<th>Трофическая группа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прокариоты</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gracilicutobiontes</td>
<td>Cyanophycota</td>
<td>Водоросли</td>
</tr>
<tr>
<td>Эукариоты</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euglenobiontes</td>
<td>Euglenophycota</td>
<td>Водоросли</td>
</tr>
<tr>
<td></td>
<td>Acraziophytes</td>
<td></td>
</tr>
<tr>
<td>Myxobiontes</td>
<td>Dictyosteliophytes</td>
<td>Миксомицеты</td>
</tr>
<tr>
<td></td>
<td>Myxogasteroides</td>
<td>Миксомицеты</td>
</tr>
<tr>
<td></td>
<td>Plasmodiophorophytes</td>
<td>Миксомицеты</td>
</tr>
<tr>
<td>Rhodobiontes</td>
<td>Rhodophycota</td>
<td>Водоросли</td>
</tr>
<tr>
<td>Alveolobiontes</td>
<td>Dinophycota</td>
<td>Водоросли</td>
</tr>
<tr>
<td>Cryptobiontes</td>
<td>Cryptomonadophycota</td>
<td>Водоросли</td>
</tr>
<tr>
<td>Primnesiabiontes</td>
<td>Primnesiophycota (Haptophycota)</td>
<td>Водоросли</td>
</tr>
<tr>
<td>Stramenopiles</td>
<td>Labyrinthulomyctea</td>
<td>Миксомицеты</td>
</tr>
<tr>
<td></td>
<td>Oomyctea</td>
<td>Грибы</td>
</tr>
<tr>
<td></td>
<td>Ochrophyctea</td>
<td>Водоросли</td>
</tr>
<tr>
<td>Chlorobiontes</td>
<td>Prasinophycota</td>
<td>Водоросли</td>
</tr>
<tr>
<td></td>
<td>Chlorophycota</td>
<td>Водоросли</td>
</tr>
<tr>
<td></td>
<td>Streptophycota</td>
<td>Водоросли, высшие растения</td>
</tr>
<tr>
<td>Mycobiontes</td>
<td>Chytridiomycota</td>
<td>Грибы</td>
</tr>
<tr>
<td></td>
<td>Zygomycota</td>
<td>Грибы</td>
</tr>
<tr>
<td></td>
<td>Dikariomycota</td>
<td>Грибы</td>
</tr>
</tbody>
</table>

Грибы и водоросли как важная составная часть биоты

Организмы, традиционно называемые «низшими растениями», являются важной составной частью биоты и неразрывно соединены многочисленными связями с другими организмами. Их изучение имеет огромное значение для многих разделов теоретической и прикладной биологии, важнейшие из которых следующие.
Введение

Как было сказано, эти организмы входят в состав многих независимых эволюционных линий, различающихся не только происхождением, но и ультраструктурую, обменом веществ, образом жизни. «Низшие растения» — это полигон, на котором природа методом «проб и ошибок» создавала оптимальные конструкции, оказавшиеся способными стать доминирующими на суше и в море. В связи с этим их сравнительное изучение (молекулярно-биологическое, цитологическое, морфологическое, биохимическое) имеет огромное значение для понимания ранних и средних этапов эволюции биоты.

Изучение «низших растений» очень важно для решения одной из центральных задач современной биологии — «инвентаризации» биологического разнообразия. Согласно определению, принятому Международной конвенцией по биоразнообразию в Рио-де-Жанейро, «биологическое разнообразие означает вариабельность живых организмов из всех источников, включая среди прочего наземные, морские и иные водные экосистемы и экологические комплексы, частью которых они являются; это понятие включает в себя разнообразие в рамках вида, между видами и разнообразие экосистем». Если инвентаризация высших эукариот (высших растений и позвоночных животных) близка к завершению, то оценка разнообразия ряда групп низших организмов находится лишь на начальной стадии. Предполагается, что описана только небольшая часть обитающих в морях грибов и «псевдогрибов», диатомовых и гаптофитовых водорослей. Огромное число неописанных видов грибов обитает в тропических лесах на листьях растений, существует в качестве паразитов и симбионтов насекомых и других беспозвоночных животных. Кроме того, в последние годы было установлено экспериментальными методами, что многие грибы, описанные как один вид на основании морфологического сходства, на самом деле включают множество (до десяти и более) биологических нескрепящихся видов-двойников, различающихся многими физиологическими параметрами.

«Низшие растения» вносят огромный вклад в глобальную экологию, в частности в миграцию углерода. Морские водоросли — важнейший продуцент органического вещества в океане, на запасах которого существует вся пищевая пирамида вплоть до крупных рыб и китообразных. С учетом вклада в фотосинтез пикопланктона (мелких одноклеточных цианобактерий и эукариотных водорослей) продукция связанного углерода в Мировом океане превышает продуктивность наземных растений. Мелкие одноклеточные морские водоросли, покрытые известковыми пластинками, — гаптофитовые, в последние 150 млн лет вносили главный вклад в связывание углерода углекислого газа кальцием и образование осадков известняка, покрывающих половину поверхности дна океана (треть всей поверхности Земли). Наземные грибы, наоборот, как важнейшие редуценты разлагают органические полимеры и освобождают их углерод вплоть до углекислого газа. Огромные запасы связанного углерода накапливаются в древесине в виде очень стойких полимеров — целлюлозы и лигнина. Грибы (особенно трутовые) — единственные организмы на Земле, обладающие ферментами, способными разрушить лигноцеллюлозный комплекс. Не будь их, лес был бы до макушек деревьев покрыт мертвыми ветками. Не менее важную роль играют грибы в миграции органических веществ в почве и создании почвенного гумуса. Через тело грибов проходит 2/3 запасенного органического углерода нашей планеты.
Введение

- Многие «низшие растения», особенно грибы, наносят огромный урон народному хозяйству и угрожают здоровью населения. Они вызывают наиболее разрушительные эпидемии растений. Ржавчина хлебных злаков, фитофтороз картофеля, ожог листьев риса, корневые гнили и другие болезни растений часто приводят и приводят к гибели урожая на огромных площадях. Поскольку многие грибы образуют токсические метаболиты, зараженная ими пища становится причиной массовых отравлений людей и скота. ДермаТофиты, разлагающие белок кератин, который входит в состав покровных тканей (кожи, ногтей, волос), вызывают поверхностные микозы у диких и домашних животных и людей.

В последние годы участились случаи гораздо более опасных — внутренних — глубоких микозов человека, часто приводящих к смертельному исходу. Наличие у грибов разнообразных ферментов позволяло им освоить новые техногенные субстраты: заменители кожи, полимеры, кинопленки, стекло, бумагу, строительные материалы. Повреждение промышленных изделий наносит огромный материальный ущерб, а при разрушении грибами произведений искусства — картин, древних рукописей, исторических зданий — потери вообще невосполнимы. Мероприятия по защите всех этих разнообразных живых и техногенных объектов невозможны без детального изучения вредных грибов, их физиологии и молекулярных основ взаимоотношений паразитов с их хозяевами.

- Благодаря продукции разнообразных биологически активных соединений грибы и водоросли с древних времен являются объектами пристального внимания биотехнологии. Так, первым промышленным микроорганизмом, использоваемым человечеством, были грибы — дрожжи, давшие людям важнейшие продукты — хлеб и вино. Антибиотики и другие лекарственные препараты, ферменты, витамины, органические кислоты, пищевые добавки, съедобные грибы и морские водоросли — вот далеко не полный перечень их биотехнологического использования. В связи с этим огромную роль играет практически только начатое изучение биоресурсов грибов и водорослей, т.е. генетических ресурсов организмов и популяций, имеющих фактическую или потенциальную ценность для человечества. Можно ли было предположить еще 20 лет назад, что многие древоразрушающие грибы окажутся источником замечательных лекарственных препаратов — противораковых, иммуностимулирующих и др.?

- Будучи простейшими эукариотами, «низшие растения» стали излюбленной моделью экспериментальной биологии. Клеточный микромицет Dictyostelium и зеленая водоросль Acetabularia — замечательные объекты для изучения биологии развития; дрожжи — первый эукариотный организм, у которого секвенирован весь геном и сделано много замечательных открытий, оказавших влияние на развитие молекулярной и клеточной биологии у всех организмов, вплоть до человека; зеленая водоросль Chlamydomonas широко используется в работах по изучению молекулярной биологии хлоропластов; исследования генетической рекомбинации у сумчатых грибов заложили основы для создания молекулярной теории рекомбинации. Но для изучения молекулярной биологии, генетики и биохимии этих и других объектов надо хорошо знать их биологию, а также уметь выбирать из разнообразия видов наиболее адекватный для решения новой экспериментальной задачи. Подходы к такой деятельности дает предлагаемый читателю «Курс альгологии и микологии».
ВОДОРОСЛИ

ОБЩАЯ ХАРАКТЕРИСТИКА

Водоросли — сборная группа растений, вегетативное тело которых — таллом, или слоевище, — не расчленено на стебель, листья и корни, хотя иногда может внешне имитировать такую дифференциацию. Прaktически все водоросли содержат хлорофилл и способны к фотосинтезу.

Объем понятия «водоросли» различается у разных авторов. Наибольшие разночтения вызывает отнесение к этой группе прокариотных цианобактерий (синезеленых водорослей) и ныне объединяемых с ними хлороксикабактерий (прохлорофитов). Тем не менее учитывая, что под понятием «водоросли» мы подразумеваем не какой-либо таксон, а сборную группу, можно считать правомерным отнесение к ряду и некоторых прокариот. Связано это с тем, что указанные группы, как и эукариоты, осуществляют оксигенный фотосинтез, т.е. фотосинтез с использованием воды в качестве донора водорода и выделением кислорода (остальные фотосинтезирующие прокариоты характеризуются аноксигенным фотосинтезом, т.е. используют не воду в качестве донора водорода и выделяют не кислород). Согласно широко популярной в настоящее время теории симбиогенеза, именно какие-то цианобактерии были предками хлоропластов всех фотосинтезирующих эукариот.

Предполагается, что некий одноклеточный эукариотный организм, имевший жгутик (или жгутики), и в то же время амебоидный, питался одноклеточными цианобактериями, переваривая их внутри себя. Затем цианобактерия могла превратиться из жертвы в симбионта и начать передаваться по наследству от одного эукариотного организма к другому. Так возникли растения. В дальнейшем они развивались разными, рано разошедшимися в ходе эволюции линиями, и некоторые достигли достаточно высокого уровня развития, а другие так и остались на низком уровне. Особенно далеко по пути усовершенствования строения продвинулись зеленые водоросли, давшие начало высшим растениям, и бурые водоросли из охрофитов. Крупным эволюционным линиям обычно придается таксономический ранг отделов.

В ходе эволюции этих отделов наблюдается замечательный параллелизм, который выражается в том, что в разных, самостоятельных по своему происхождению отделах водорослей встречаются аналогичные ступени морфологической дифференциации таллома, или типы организации. Эти ступени следующие.
Типы организации таллома

1. Монадная организация характеризуется активной подвижностью с помощью жгутиков. Она присуща прежде всего одноклеточным жгутиконосцам, которые являются начальными звеньями эволюции многих отделов водорослей. Разновидность монадной организации — подвижные (с помощью жгутиков) колонии и ценобии, т.е. колонии, в которых число клеток определяется на ранних стадиях развития и не меняется до следующей репродуктивной фазы (рис. 1, A—Г).

2. Ризоподиальная (амёбоидная) организация* наблюдается у некоторых лишённых твердой оболочки форм, которые развивают цитоплазматические отростки — ризоподии.

Рис. 1. Монадные, пальмелоидные и коккоидные формы водорослей.
A—Г — монадные формы: A — Chlamydomonas (Chlorophyta); Б — Gymnodinium (Dinophyta); В — Phacus (Euglenophyta); Г — Eudorina (Chlorophyta); Д — пальмелоидная форма Hydrurus (Ochrophyta); Е—И — коккоидные формы: Е — Chlorella (Chlorophyta), Ж — Pediastrum (Chlorophyta), З — Navicula (Ochrophyta), И — Ophiocytium (Ochrophyta)

* Некоторые авторы, считая гетеротрофный тип питания исходным, отстаивают точку зрения о первичности ризоподиальной организации и вторичности монадной. Возможно, это и имело место на ранних этапах формирования жизни на Земле, но никаких прямых доказательств тому нет. Что же касается ныне живущих форм, то здесь есть вполне достоверные факты (например, неоднократно наблюдавшееся появление у постоянно ризоподиальных форм в момент размножения монадных стадий), свидетельствующие в пользу вторичности ризоподиальных форм и первичности монадных. Поэтому в системах ныне живущих организмов ризоподиальные формы лучше помещать после жгутиковых — монадных. Впрочем, как уже упоминалось, предок растений мог быть организм, одновременно и монадный, и амёбоидный (амёбофлагеллят), так что тогда предмет спора снимается.
3. Пальмелоидная, или капсальная, организация характеризуется сочетанием отсутствия подвижности с наличием клеточных органелл, свойственных монадным организмам: сократительных вакуолей, глазков, жгутиков или их производных. Клетки часто погружены в общую слизь (рис. 1, Д).

4. Коккоидная организация характеризуется неподвижными, одетыми оболочками клетками, одиночными или соединенными в колонии и цепочках (рис. 1, Е–Н).

5. Нитчатая (трихальная) организация представлена клетками, соединенными в нити, прямые или развитвленные. Клетки нити непрерывно делятся поперечными перегородками, обусловливая нарастание ее в длину (рис. 2, А–В).

6. Гетеротрихальная, или разнонитчатая, организация представляет собой сложный вариант нитчатого строения, для которого характерны две системы нитей: стеляющиеся по субстрату и отходящие от них вертикальные нити (рис. 2, Г).

7. Тканевая (паренхиматозная) организация также легко выводится из нитчатой: в результате делений клеток нити не только в поперечном, но и в продольном направлении возникают талломы в виде паренхиматозных пластинок (рис. 2, Д, Е).

8. Ложнотканевая (псевдопаренхиматозная) организация представлена слоевищами, иногда довольно крупными, которые образовались в результате срастания развитвленных нитей, нередко сопровождаемого морфофункциональной дифференциацией прилегающих ложных тканей.

9. Сифональная, или сифоновая, организация отличается отсутствием клеточных перегородок, так что талломы, часто крупных размеров, имеющие значительную внешнюю расчлененность, формально представляют собой одну клетку обычно с большим количеством ядер. В этом случае часто говорят о неклеточном строении (рис. 2, Ж–Н).

10. Сифонокладальная организация представлена многоядерными клетками, соединенными в нитчатые или иной формы многоклеточные талломы (рис. 2, К, Л).

Кроме того, у зеленых водорослей бывают колонии, представляющие собой группы (пачки или нитевидные образования), которые возникают в результате деления одной исходной клетки и заключены в растягивающуюся оболочку этой клетки. Такое строение часто рассматривают как особый тип дифференциации таллома — сарциноидный.

Перечисленные ступени организации таллома в разных отделах водорослей представлены далеко не в равной мере. Наиболее полно они встречаются в отделах зеленые (Chlorophyta) и охрофитовые (Ochrophyta).

Удивительное на первый взгляд явление параллелизма в эволюции разных крупных таксонов водорослей объясняется довольно просто. Многократно на многочисленных примерах из разных отделов водорослей было показано, что монадная, т.е. снабженная жгутиками, клетка довольно легко может терять их и временно переходить в одних случаях в ризоподиальное, в других — в пальмелоидное состояние. Обычно из этих временных состояний возврат к исходной монадной форме происходит более или менее легко. Если же эти преходящие, случайные состояния продлеваются во времени и охватывают большую часть жизненного цикла, а к монадному состоянию организм будет возвращаться только в момент размножения, то получается соответственно ризоподиальный
Рис. 2. Нитчатые, гетеротрихальные, тканевые (паренхиматозные), сифоновые и сифонокладальные формы водорослей.

А—В — нитчатые формы: А — Ulothrix (Chlorophyta), Б — Oscillatoria (Cyanophyta), В — Bulbochaete (Chlorophyta); Г — гетеротрихальная форма Stigeoclonium (Chlorophyta); Д—Е — тканевые формы: Д — Ulva (Chlorophyta), Е — Laminaria (Ochrophyta); Ж—И — сифоновые формы: Ж — Caulerpa (Chlorophyta), З — Botryidum (Ochrophyta), И — Vaucheria (Ochrophyta); К, Л — сифонокладальные формы: К — Valonia (Chlorophyta), Л — Cladophora (слева — внешний вид таллома, справа — многоядерная клетка; 1 — хлоропласть, 2 — пиреноиды, 3 — ядра)
и пальмелоидный типы талломов. Нитчатый таллом также без труда можно вывести из монадного: такой переход можно наблюдать каждый раз при прорастании зооспоры в нить, а из нити легко может возникнуть пластинчатый таллом. Таким образом, монадная организация — исходная для всех остальных типов организации талломов водорослей. Поскольку же начальные ступени эволюции во многих отделах водорослей представлены довольно сходными монадами (различающимися, однако, по окраске, продуктам метаболизма и строению жгутиков), то параллельный ход эволюции в разных отделах водорослей объясняется параллельным развитием из монадной стадии остальных ступеней морфологической дифференциации таллома. Усложнивое строения и переход к многоклеточности сопровождались потерей подвижности в вегетативном состоянии. Исходная монадная организация сохранялась только у репродуктивных клеток, а то не всегда. При этом подвижная монадная стадия, всё более сокращающаяся, удержала, по-видимому, основные черты родоначальной формы. Вот почему монадные репродуктивные клетки водорослей из разных отделов столь полно воспроизводят признаки, присущие одноклеточным исходным представителям данного отдела.

Другой причиной, обусловившей параллельное развитие разных групп водорослей, могло быть большее однообразие водной среды по сравнению с местообитаниями суши, что и определило достаточно однотипный ход эволюции у водорослей по сравнению с ходом эволюции организмов, покинувших водную среду.

Говоря о клетке водорослей, следует сразу отметить, что к водорослям в традиционном плане относятся как эукариоты (большинство), так и прокариоты.

Клетка водорослей

Клетки многих примитивных, имеющих монадную организацию, эукариотных водорослей (например, Dunaliella из зелёных водорослей, Ochromonas из охрофитовых водорослей), а также зооспоры и гаметы большинства водорослей «гольные», т.е. ограничены снаружи только цитоплазматической мембраной (плазмалеммой, или клеточной мембраной). У большинства водорослей, как и у высших растений, кнаружи от плазмалеммы находится клеточная стенка. У водорослей существуют еще и другие типы клеточных покровов, рассмотрение которых более уместно при описании соответствующих групп.

Клеточная стенка (оболочка)* состоит из аморфного, образованного гемицеллюлозами и пектиновыми веществами матрикса, в который погружены чаще всего целлюлозные микрофибриллы**, определенным образом ориентированные. Нередко в толще клеточной стенки присутствуют добавочные компоненты: кремний (Pediasastrum), спорополлидин (Chlorella, Scenedesmus и др.), карбонат кальция (Acetabularia), харовые водоросли, Padina, многие красные водоросли),

* Клеточная оболочка и клеточная стенка — синонимы, одинаково широко употребляемые в литературе.
** У многих зелёных водорослей, имеющих сифоновое строение, микрофибрильлы образованы ксиланом и маннаном.
альгиновая кислота, фукоидин и фуцин (у бурых водорослей). У некоторых водо-
рослей (Cladophora, Oedogonium) в стенке имеется хитин. У диатомовых водорос-
лей матрикс клеточной стенки также пектиновый, содержит в качестве скелетного
вещества не целлюлозу, а кремнезем. Клеточная стенка бывает цельной или состо-
ит из двух и более частей, пронизана порами, может нести различные выросты.

Цитоплазма у большинства водорослей расположена тонким постенным сло-
ем, окружающим большую центральную вакуоль с клеточным соком. Вакуоль
отсутствует в клетках синезеленых водорослей и в монадных клетках (у пресно-
водных монадных форм имеются пульсирующие вакуоли). В цитоплазме эука-
риотных водорослей хорошо различимы элементы эндоплазматической сети,
рибосомы, митохондрии, аппарат Гольджи, клеточные ядра, хлоропласты.

Митохондрии обычного строения, с наружной гладкой мембраной, окружаю-
щей сильнокладчатую (с кристами) внутреннюю мембрану, которая заключает
центратное пространство с матриксом. Форма кристи митохондрий может быть
разной, причем определенный ее тип характерен для тех или иных таксонов во-
дорослей. Так, у охрофитовых водорослей они трубчатые, у зеленых — пластини-
чатые, у эвгленовых — дисковидные. В митохондриях наблюдаются электронно-
прозрачные участки, содержащие фибриллы ДНК (растворяющейся под действием
dезоксирибонуклеазы). Описаны митохондриальные рибосомы, более мелкие, чем
цитоплазматические, расположенные как свободно в матриксе, так и прикрепле-
нные к кристам.

Аппарат Гольджи (диктиосомы) образован рядом уплощенных, блюдоцевидных
структур, покрытых мембраной. На их концах нередко имеются вакуоли, которые
отшнуровываются в виде мелких пузырьков. В цистернах аппарата Гольджи
формируются чешуйки, кокколиты, мастигогены, которые затем с помощью
пузырьков выносятся на поверхность клетки.

В клетках водорослей (за исключением синезеленых) из органелл особенно
заметны хлоропласти (хроматофоры)* — структуры, в которых осуществляется
фотосинтез. В отличие от хлоропластов высших растений, хлоропласти водоро-
слей чрезвычайно разнообразны по форме (рис. 3). В большинстве случаев
они занимают в клетке постенное положение (париетальные хлоропласти) и
могут быть чашевидными (большинство видов Chlamydomonas), в виде кольца,
опоясывающего клетку (Ulothrix), в виде полого цилиндра, продырявленного
многочисленными отверстиями (Oedogonium), одной или многих идущих по
спирали лент (Spirogyra), одной-двух крупных париетальных пластинок (пеннат-
ные диатомеи). У многих водорослей хлоропласти многочисленны и имеют вид
зерен или дисков, расположенных в постенной цитоплазме (зеленые водоросли,
имеющие сифоновую организацию, харовые, центрические диатомовые, динофи-
товые, бурые, красные водоросли). Реже хлоропласт занимает в клетке централь-

* Относительно употребления этих терминов единства мнений нет. Раньше обычно хромато-
форами называли крупные фотосинтезирующие органеллы, находящиеся чаще всего по одной в
клетке (как у хламидомонаады или хлореллы), а хлоропластами — отдельные мелкие зерна (как,
например, у харовых). Однако нередко какой-либо из этих двух терминов применялся для обозна-
чения всех фотосинтезирующих органелл водорослей. В последнее время термин «хлоропласт»
практически полностью вытеснил термин «хроматофор».
Общая характеристика

ное положение, тогда чаще всего он состоит из массивной центральной части, от которой к периферии клетки отходят лопасти или гребни (звездчатый хлоропласт Zygnema и большинства Desmidiales).

Субмикроскопическое строение хлоропластов водорослей в основных чертах сходно. У зукариотных водорослей хлоропласты ограничены оболочкой, под которой находится тонкосернистый материал матрикса (стремы), заключающий уплощенные, одетые мембраной мешочки, или пузырьки — тилакоиды, или диски, содержащие хлорофилл и каротиноиды. У синезеленых и красных водорослей на поверхности тилакоидов располагаются фикобилиновые пигменты, собранные в особые гранулы — фикобилиосомы. Фикобилины имеются и у криптофитов, но расположены они внутри тилакоидов. Кроме того, в матриксе хлороплазта находятся рассеянные хлоропластные рибосомы, фибриллы ДНК, липидные гранулы и особые включения — пиреноиды (кроме водорослей пиреноиды встречаются и в клетках антозоарготных мхов).

В деталях тонкого строения, касающихся оболочки, расположения тилакоидов и фибрилл ДНК, формы пиреноидов, места образования и отложения зерен запасных полисахаридов, хлоропласти водорослей обнаруживают весьма постоянные различия, что и позволяет использовать их наряду с набором пигментов, продуктами запаса и строением жгутикового аппарата в качестве таксономических признаков, характеризующих большие группы — отделы водорослей.

Оболочка хлороплазта у зеленых и красных водорослей образована только двумя параллельными мембранами. У эвгленовых и динофитовых имеется еще дополнительная мембра, т.е. их оболочка образована тремя мембранами. У охрофитов водорослей вокруг двух мембран хлоропластов имеется также сложная система мембран, находящаяся в прямой связи с мембраной ядра, — «хлоропластная эндоплазматическая сеть», в результате хлоропласты оказываются окруженными четырьмя мембранами. Две дополнительные мембраны хлоропластной эндоплазматической сети имеются также у Cryptophyta.

Расположение тилакоидов, которые содержат хлорофилл и рассматриваются как места фотохимических реакций, в матриксе хлороплазта также неодинаково в разных отделах водорослей, при этом хлоропласти водорослей со сходными пигментами характеризуются и сходным расположением тилакоидов (рис. 4).

Наиболее простое расположение наблюдается у красных водорослей: тилакоиды лежат в матриксе поодиночке (рис. 4, A, B). У остальных зукариотных водорослей тилакоиды группируются, образуя ламеллы, причем число тилакоидов, входящих в состав одной ламеллы, постоянно в пределах больших групп, объединяющих родственные водоросли. Есть водоросли (Cryptophyta), у которых тилакоиды соединяются по два (рис. 4, В). У Ochrophyta, Dinophyta и Euglenophyta

Рис. 3. Хлоропласты водорослей.

A — Ulothrix (Chlorophyta); B — Cladophora (Chlorophyta); В — Spirogyra (Chlorophyta); Г — Botrydium (Ochrophyta); Д, Е — Closterium (Chlorophyta); Д — вид клетки сбоку, Е — поперечный разрез клетки; Ж, З — Mougeotia (Chlorophyta): Ж — клетка с хлоропластом в профиль, З — клетка с хлоропластом, обращенным к зрителю широкой стороной; Н — Zygnema (Chlorophyta); І — хлоропласт; 2 — пиреноид; 3 — ядро
тилакоиды располагаются преимущественно по три (рис. 4, Г, Д). Обычно между соседними тилакоидами внутри ламеллы имеются промежутки. У зеленых водорослей расположение тилакоидов наиболее вариабельно: число их в ламеллах может колебаться от 2 до 6, а иногда до 20; в таких случаях стопки тилакоидов столь тесно прижаты друг к другу, что пространство между соседними тилакоидами исчезает, и тогда эти стопки называют гранами (рис. 4, Е). В хлоропластах охрофитовых водорослей с трехтилакоидными ламеллами находятся так называемые периферические (опоясывающие) тилакоиды, идущие параллельно оболочке хлороплаза и окружающие остальные тилакоиды, пересекающие хлоропласт (рис. 4, Г, Д).

Рис. 4. Схема расположения тилакоидов в хлоропластах водорослей.
A — модель хлороплаза красной водоросли; B — одиночное расположение тилакоидов в хлоропластах красных водорослей; В — двухтилакоидные ламеллы криптофитовых; Г, Д — трехтилакоидные ламеллы в хлоропластах бурых и динофитовых водорослей; Е — граны зеленых водорослей; 1 — оболочка хлороплаза; 2 — тилакоиды; 3 — опоясывающий тилакоид; 4 — граны

У одних видов красных водорослей опоясывающие тилакоиды имеются, у других — отсутствуют. В хлоропластах зеленых и эвгленовых водорослей опоясывающие тилакоиды отсутствуют. У зеленых водорослей крахмал откладывается в матриксе хлороплаза между ламеллами и вокруг пиреноида, у всех остальных водорослей запасные вещества (хризоламинарин, ламинарин, крахмал динофитовых водорослей, парамилон, багрянковый крахмал) откладываются вне хлороплазма — в цитоплазме. У криптофитов крахмал откладывается между двумя парами мембран оболочки хлороплаза.

Существуют различия и в распределении в хлоропластах электронно-прозрачных участков, содержащих фибриллы ДНК, — генофоров: если у зеленых, динофитовых и красных водорослей эти участки беспорядочно рассеяны по матриксу хлороплазма, то у охрофитовых отмечена точная локализация кольцеобразного генофора под периферической (опоясывающей) ламеллой.
В хлоропластах содержатся различные пигменты, обычно определяющие ту или иную их окраску.

Хлорофиллы водорослей, обеспечивающие, как и у других фотоавтотрофных организмов, процесс фотосинтеза, представлены несколькими формами (табл. 2). Во всех случаях их молекула (рис. 5) состоит из 4 связанных между собой пиррольных колец с хелатированным атомом магния в ее центре. В живой клетке хлорофилл связан с белками. Хлорофиллы \(a \) и \(b \) имеют длинную фитольную цепь (радикал \(R_4 \) на рис. 5), которая отсутствует у хлорофиллов \(c \). Хлорофилл \(a \) имеется у всех организмов, осуществляющих оксигенный фотосинтез. Хлорофилл \(b \) содержится у зеленых, эвгленовых и некоторых прокариотных водорослей (прохлорофитов, ныне интегрируемых в систему Cyanophyta). Хлорофиллы \(c_1 \) и \(c_2 \) характерны прежде всего для Ochrophyta, но встречаются и в других таксонах водорослей.

Таблица 2

<table>
<thead>
<tr>
<th>Форма хлорофилла</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(\text{CH}_3)</td>
<td>(\text{CH}_2\text{CH}_3)</td>
<td>(\text{CH}_2\text{CH}_2)</td>
<td>(\text{C}{20}\text{H}{39})</td>
</tr>
<tr>
<td>(b)</td>
<td>(\text{CHO})</td>
<td>(\text{CH}_2\text{CH}_3)</td>
<td>(\text{CH}_2\text{CH}_2)</td>
<td>(\text{C}{20}\text{H}{39})</td>
</tr>
<tr>
<td>(c_1)</td>
<td>(\text{CH}_3)</td>
<td>(\text{CH}_2\text{CH}_3)</td>
<td>(\text{CHCH})</td>
<td>(\text{H})</td>
</tr>
<tr>
<td>(c_2)</td>
<td>(\text{CH}_3)</td>
<td>(\text{CHCH}_2)</td>
<td>(\text{CHCH})</td>
<td>(\text{H})</td>
</tr>
</tbody>
</table>

Рис. 5. Обобщенная формула хлорофиллов (см. табл. 1)
Каротиноиды (рис. 6, А, Б) — изопренOIDные полиеновые пигменты. Они присутствуют у многих организмов, но синтезируются только фитосинтезирующими организмами. К этой группе пигментов относятся каротины и их гидроксилированные производные ксантофилилы. Цвет их обычно красный, бурый или желтый. Они играют защитную роль, так как эффективно поглощают опасное синее и ближнее ультрафиолетовое излучение.

Билипротеины (филокаротины и фицианоцианы) содержат билиновые пигменты филокаротробилин и фицианобилин (рис. 6, В, Г). Это линейные тетрапирролы, которые, в отличие от хлорофиллов, прочь связаны ковалентной связью с белком. Красные филокаротины и сине-зеленые фицианоцианы существуют в разных формах. Они известны у синезеленых, красных водорослей и криптофитов. Эти формы, различающиеся организацией полипептидных компонентов, неоднаковы и по спектральным характеристикам.

Как уже упоминалось, у многих эукариотных водорослей хлоропласты могут содержать особые включения — пириеноиды, которые находятся внутри хлоропластов или выделяются за его пределы (сидят на одной или многих ножках), но и в этом случае они заключены в оболочку хлоропласта. Пириеноид имеет грануллярную белковую строму. У одних видов в нее внедряются ламеллы, а у других этого не наблюдается. Расположение тилакоидов в строме пириеноида может быть различным. Число пириеноидов в клетке также может варьировать — от одного до многих. Они представляют собой бесцветные плотные образования белковой природы, округлые или угловатые. Считается, что основная функция пириеноида — концентрация фермента рибулеоздисфосфаткарбоксилазы (Rubisco) для распределения его между дочерними клетками и транспорта в места активного функционирования в хлоропласте. У зеленых водорослей, кроме того, пириеноид служит центром отложения запасного вещества — крахмала.

Монадные клетки (зоиды) обычно имеют кирпично-красный глазок, или стигму, представленный рядом гранул, содержащих пигмент астаксантин. У водорослей разных групп глазки в деталях различаются. В большинстве случаев они являются частью хлоропласта и располагаются между ламеллами, однако у некоторых (например, зеленых) водорослей глазки находятся вне пластиды. Среди тех водорослей, у которых гранулы стигмы заключены в оболочку хлоропласта, у одних нет связи глазка со жгутиковым аппаратом (зефельные водоросли), у других (охрофитовые) такая связь имеется, и тогда основание заднего жгута, расположенное вблизи глазка, несет характерное вздутие (рис. 7). У зеленых водорослей глазок располагается вне хлоропласта, но связан со жгутиком (рис. 7, В, Г). Особенно сложно устроенные глазки встречаются среди динофитовых водорослей.

Зоиды снабжены жгутиками. Жгутики всех водорослей имеют единый план строения. Жгутик можно подразделить на наружный и внутренний (соответственно экстра- и интрацеллюлярный) отрезки. Наружный отрезок (свободная часть жгута) всегда одет мембраной, которая служит непосредственным продолжением цитоплазматической мембраны. В свою очередь наружный отрезок состоит из трех частей: кончика, главного стержня и переходной зоны. Внутренний (интрацеллюлярный) отрезок охватывает основание жгута (базальное тело) и корни жгута.
Рис. 6. Химическая структура некоторых наиболее важных фотосинтетических пигментов.
A — фукоксанти; B — β-каротин; В — фикоцианин; Г — фикоэритрин
Весь жгутиковый аппарат пронизан пучком белковых микротрубочек (или фибрилл) — аксонемой, поперечный разрез которой выглядит неодинаково на разных уровнях жгута: в его кончике, стержне, переходной зоне и базальном теле (рис. 8).

Главный стержень на поперечном срезе (рис. 9) обнаруживает типичное для всех водорослей (и вообще эукариотных растительных и животных организмов) расположение микротрубочек: кольцо из девяти пар (дублетов) микротрубочек окружает две одинарные центральные микротрубочки — структура (9–9) + 2.

Рис. 7. Глазки (стигмы).
A, B — Dinobryon (Ochrophyta); B, Г — Euglena (Euglenophyta); 1 — оболочка хлоропласта; 2 — вдвуречие основания жгута, прилегающего к стигме; 3 — пигментные глюбулы; 4 — тилакоиды

Рис. 8. Схема строения жгутиков Chlamydomonas.
1 — продольный разрез жгутиков; 2, 3 — поперечный разрез через кончик жгута; 4 — поперечный разрез через стержень жгута; 5 — переходная зона; 6 — поперечный разрез через основание жгута — базальное тело (подробности в тексте)

Рис. 9. Схема поперечного разреза через стержень жгута.
1 — оболочка жгута; 2 — наружные дублеты, образованные А- и B-микротрубочками; 3 — боковые «руки»; 4 — центральные микротрубочки; 5 — центральный футляр; 6 — интердублетные соединения; 7 — радиальные спицы

Кончик — это участок жгута, тупой или слегка заостренный, у которого нарушается описанное для главного стержня жгута нормальное, т.е. $(9−9)+2$, расположение микротрубочек. По мере приближения к кончику утрачивается материал матрикса, а периферические дублеты один за другим постепенно теряют одну из микротрубочек, становясь одинаковыми, но сохраняя при этом изначальное кружевое расположение. Затем постепенно сокращается число периферических микротрубочек. пока не останутся только центральные микротрубочки, которые сохраняются почти до самого конца жгута (см. рис. 8).

Переходная зона, т.е. зона между свободной частью жгута и базальным телом, внешне легко отличается от стержня, так как здесь жгутики перетянуты: жгутиковая мембрана плотно прилегает к дублетам аксонемы. У проксимального (морфологически нижнего) конца наружной части жгута находится базальный диск, у которого оканчиваются две центральные микротрубочки. Периферические дублеты продолжаются ниже базального диска, где к ним вскоре добавляются дополнительные трубочки, превращающие дублеты в триплеты базального тела (см. рис. 8).

Девять триплетов базального тела соединяются друг с другом тонкими нитями между A- и C-трубочками соседних триплетов (см. рис. 8, а).

Жгутики большинства водорослей имеют «корни», прикрепленные к их базальным телам. Корни обычно бывают двух типов: группы исчерченных полосатых волокон и группы микротрубочек. Ориентация корней по отношению к базальным телям и в клетке различна. Например, у хламидомонады базальные тела двух жгутиков связаны друг с другом широким исчерченным (полосатым) соединительным волокном, от которого отходят четыре микротрубчатых корня; из них два четырехчленные, а два — двучленные. Они идут внутрь клетки не посредственно под цитоплазматической мембраной (рис. 10).

При едином общем плане строения жгутики разных водорослей могут отличаться в деталях, причем эти различия весьма постоянны и характерны для больших групп — отделов — водорослей. Число жгутиков может варьироваться от одного до многих, хотя преобладают двуягтиковые формы. Места прикрепления к клетке разнообразны: жгутики могут отходить от конца клетки, тогда это терминальные жгутики, или сбоку — латеральные.

У двуягтиковых клеток оба жгутик могут быть одинаковой длины (изоконтные клетки) или разной длины (гетероконтные клетки). Жгутики могут быть одинакового строения — изоморфные или различаться по форме — гетероморфные. В последнем случае один из жгутиков (обычно более короткий) может быть гладким, а к мембране другого могут прикрепляться волосовидные образования — мастигонемы. Мастигонемы имеют сложное и разнообразное строение и расположение. Поверхность жгутиков может быть покрыта различной формы чешуйками и нести шипы.
Рис. 10. Строение жгутиковых корней у Chlorophytina (A) и Charophytina (B).
1 — базальное тело; 2 — верхняя перемычка; 3 — жгутик; 4 — жгутиковый корень в виде ленты микротрубочек; 5 — нижня перемычка; 6 — перемычка; 7 — жгутиковый корень из 2 микротрубочек; 8 — жгутиковый корень из 4 микротрубочек

Большинство перечисленных особенностей касается морфологии жгутиков, однако имеются специфические отклонения и в тонком строении: так, у диатомовых водорослей в жгутике отсутствуют центральные микротрубочки, т. е. схема расположения трубочек будет иной: (9—9) + 0 вместо обычной (9—9) + 2. Особенно вариабельна переходная зона жгутика. У зеленых водорослей в ней находится так называемое звездчатое тело (см. рис. 8). У охрофитовых водорослей между периферическими дублетами и центральными трубочками в этой зоне имеется спиральное тело. У Dinophyta переходная зона имеет камерное строение благодаря диафрагмам. Сказанное не исчерпывается все особенности жгутиков: подробно они рассмотрены при описании отдельных представителей водорослей.

Клетки эукариотных водорослей содержат одно или много типичных клеточных ядер, делящихся, как правило, митотически. Динофитовые водоросли характеризуются особым ядром, носящим специальное название динокарпийон (мезокарпийон) с хромосомами, почти лишенными гистонов и различными в интерфазном ядре. Схема строения клетки эукариотной водоросли по данным электронной микроскопии рассмотрена далее на примере хламидомонады (см. рис. 22).

Мутоз в деталях протекает несколько по-разному. У одних центриоли имеются (Kirchneriella, Tetraedron, Chlorella, Hydrodictyon, Klebsormidium, Scenedesmus), у других (Oedogonium, Zygnematophyceae) отсутствуют. То же касается и кинетохоров (участков хромосом, к которым прикрепляются микротрубочки веретена). Они описаны у Cladophora, Oedogonium, Spirogyra, Hydrodictyon и не наблюдались у Chlamydomonas, Ulva. У Oedogonium, Ulothrix, Stigeoclonium, Microspora, Acetabularia ядерная оболочка на протяжении всего митоза интактна и веретено полностью внутриядерное (закрытое); у других зеленых водорослей — Kirchneriella, Tetraedron, Hydrodictyon, Chlamydomonas — в оболочке ядра возникают полярные
отверстия, через которые центриоли и экстрануклеарные вначале микротрубочки перемешиваются в ядро и веретено становится внутриядерным (полузырчатое веретено); наконец, у Stichococcus, Klebsormidium, Coleochaete, Spirogyra, Closterium, Cosmarium, Micrasterias, Neptium, Charophyceae, как и у высших растений, ядерная оболочка полностью исчезает к поздней профазе и отсутствует до ранней телофазы, веретено открытое.

Электронно-микроскопическими исследованиями обнаружено значительное разнообразие в структуре цитокинетического аппарата. У сравнительно немногочисленных зеленных водорослей (например, Klebsormidium, Coleochaete, Spirogyra, Charophyceae), как и у высших растений, после анафазы митоза, когда хромосомы движутся к полюсам и телофазные ядра, далеко раздвинутые, реконструируются, между полюсами веретена остаются натянутыми непрерывные, так называемые интерзональные волокна. В экваториальной плоскости веретена образуются микротрубочки, расположенные параллельно этим волокнам и перпендикулярно плоскости будущего цитокинеза. Эта система микротрубочек называется фрагмо-мопластом. Сохраняющееся интерзональное веретено и фрагмо-мопласт удерживают дочерние ядра далеко раздвинутыми в тот момент, когда между ними образуется поперечная перегородка.

У большинства других на данный момент исследованных зеленных водорослей иная цитокинетическая система: после телофазы интерзональные волокна разрушаются, далеко раздвинутые сначала дочерние ядра сходятся так, что оказываются прижатыми друг к другу. Между ними возникают микротрубочки, ориентированные под прямым углом к митотическому веретену и, следовательно, параллельно плоскости предстоящего цитокинеза. Система таких микротрубочек называется фикопластом. Ее назначение — определить правильное направление растущей перегородки, чтобы она прошла между дочерними ядрами и разделила дочерние клетки.

Фикопластная система обнаружена у Volvocales (Chlamydomonas, Tetrasi'), Chlorococcales (Kirchneriella, Tetraedron, Ankistrodesmus, Scenedesmus), Oedogoniales (Oedogonium, Bolbochate), некоторых представителей Ulothrichales (Ulothrix), Chaetophorales (Stigeoclonium). Независимо от того, какая система микротрубочек (фрагмо- или фикопласт) развивается, сам цитокинез происходит двояко: или посредством инвагинации плазмалеммы и центрипетального (от периферии внутрь клетки) разрастания борозды дробления, или же путем образования срединной (клеточной) пластинки — полужидкого слоя, возникающего за счет слияния пузырьков — деградит диктиосом. Клеточная пластинка разрастается центрифутально (по направлению к периферии клетки) благодаря включению в нее дополнительных пузырьков Гольджи и, наконец, достигает продольной стенки материнской клетки, сливаюсь с ней. Позднее на эту срединную пластинку откладывается клеточная стенка, завершающая деление клетки. Цитокинез у спирогиты занимает промежуточное положение между этими двумя типами деления. После деления ядра новая поперечная стенка закладывается в виде кольца клеточной стенки, которое распространяется центрипетально, перерезая вакуоль с клеточным соком. Когда септа наполовину готова, цитоплазматические тяжи, соединяющие дочерние ядра, вздуваются в цене, соединяются с цитоплазмой, смешаемой
растворяя септой, и, сливаются, образуют между ядрами цилиндр цитоплазмы. По- перек отверстия септы в цитоплазме собираются пузырьки, в результате слияния которых формируется клеточная пластинка, разрастающаяся центрífутально. В цитоплазматическом тяже, связывающем дочерние ядра, наблюдаются продольно ориентированные миcroтрубочки — фрагмопластоподобное образование.

Фрагмопласт в сочетании с клеточной пластинкой наблюдается у харофициевых водорослей; системой клеточной пластинки — фикопласт обладают Ulothrix fimbriata, Stigeoclonium helveticum, Fritschiella tuberosa (фикопластные микротрубочки у F. tuberosa не описаны, но близкое расположение телофатических ядер предполагает их присутствие), а также Tetraspora, Oedogonium, Chlorella, Scenedesmus и др. Фрагмопласт и центрипетально разрастающаяся борозда дробления описаны у ряда видов Klebsormidium (K. flaccidum, K. subtilissimum). Сочетание борозды дробления и фикоплазма наблюдается у Microspora, Urospora. У некоторых водорослей (Cylindrocapsa, Ulva, Dictyosphaeria) борозда дробления при делении клетки врастает без участия каких-либо микротрубочек; у них не отмечалось образования ни фикоплазмы, ни фрагмопласта.

У водорослей с сифонокладальной организацией таллома обнаружен особый тип септирования таллома, известный как сегрегативное клеточное деление. Например, у диктиосферии многоядерный протопласт в первоначально сифоновом таллите (пузыре) раскалывается на многочисленные многоядерные цитоплазматические массы различного размера, из которых каждая секретирует клеточную стенку, а затем увеличивается в размерах до тех пор, пока не придет в соприкосновение с такими же соседними клетками внутри материнской клеточной стенки.

Размножение водорослей

Обычно различают вегетативное, бесполое (споровое) и половое размножение.

- При вегетативном размножении части таллома отделяются без каких-либо заметных изменений в протопластах. Типичные примеры вегетативного размножения — деление одноклеточных форм (например, десмидиевых или диатомовых водорослей) на две дочерние особи и фрагментация (разрыв на отдельные участки) талломов нитчатых водорослей. Более специализированная форма вегетативного размножения — образование толстостенных, переполненных запасными продуктами клеток, которые предназначены для перенесения неблагоприятных условий. Такие клетки, называемые акинетами, часто развиваются у нитчатых зеленых и синезеленых водорослей.

- Бесполое (споровое) размножение осуществляется посредством особых спор. Самый распространенный способ бесполого размножения водорослей из многих отделов — посредством зооспор, как правило, голых монадных клеток (рис. 11, A, B). Из содержимого каждой клетки может сформироваться только одна зооспора (например, у Oedogonium) или чаще содержимое клетки делится на 2, 4, 8 или более частей и продуцирует соответствующее количество зооспор. У многих водорослей клетки, в которых формируются зооспоры, не дифференцированы специально, однако у зеленой водоросли Trentepohlia и у всех бурых водорослей...
есть специальные спорангии, образующиеся только во время бесполого размножения и отличающиеся по форме и размерам от обычных вегетативных клеток.

У значительного числа водорослей вместо зооспор образуются апланоспоры — неподвижные, лишенные жгутиков споры. Примеры — моно- и тетраспоры красных водорослей (рис. 11, B), тетраспоры Dictyotales из отдела охрофитовые водоросли. В тех случаях, когда апланоспоры, еще будучи заключенными в оболочку материнской клетки, принимают все отличительные черты последней — (характерные очертания, особенности оболочки), их называют автоспорами (например, у многих коккоидных зеленых водорослей, рис. 11, Г).

У колониальных монадных и коккоидных зеленых водорослей при бесполом размножении образуются дочерние колонии. В ряде групп водорослей бесполое размножение отсутствует у Zygnematophyceae, Charophyceae, многих зеленых водорослей сифонового строения, у всех диатомовых, Fucales — из бурых водорослей.

Половое размножение широко распространено почти во всех отделах водорослей (пока оно неизвестно лишь у прокариотных синезеленых). Сущность полового процесса заключается в слиянии (копуляции) двух гаплоидных клеток, в результате чего образуется диплоидная зигота. Половой процесс обычно осуществляется в несколько этапов: вслед за сливанием цитоплазмы двух гамет (плазмогамией) рано или поздно следует кариогамия — слияние ядер, происходящих из той и другой гаметы, и ассоциация их хромосом внутри ядра зиготы. Ядро зиготы, таким образом, диплоидно, т.е. несет двойной набор хромосом.

При изогамии (примитивной форме полового процесса) сливаются подвижные гаметы, морфологически не различающиеся. Частным случаем изогамии можно считать встречающуюся у некоторых примитивных форм хологамию (го-логоамию), при которой сливаются целые вегетативные особи.

Изогамия обычно связана с отсутствием дифференцированных органов для производства гамет, которые возникают благодаря делению протопластов обыч-ных вегетативных клеток. Исключение составляют изогамные бурые водоросли из порядков Ectocarpales и Sphacelariales, у которых гаметангии представляют собой многокамерные (многоядренные) структуры. У многих водорослей с изогамным половым процессом наблюдается разница в поведении сливающихся гамет: одна более пассивна, другая более активна. Так, у Ectocarpus и Sphacelaria одни гаметы (женские) имеют более короткий период движения, другие (мужские) сохраняют подвижность дольше, и слияние происходит только после прекращения движения женских гамет.

При анизогамии, или гетерогамии, сливающиеся подвижные гаметы различаются размерами. Такой тип полового процесса наблюдается, например, у некоторых видов Chlamydomonas и многих Bryopsidales.

Оогамия заключается в слиянии крупной неподвижной, лишенной жгутиков яйцеклетки с мелким, снабженным жгутиками сперматозоидом (рис. 12, B). У красных водорослей яйцеклетки оплодотворяются мужскими клетками, ли-шенными жгутиков, — спермациами. Оогамия может встречаться и у простых — монадных и коккоидных — водорослей. Однако гораздо шире она распространена у водорослей с нитчатой и тканевой организацией таллома, у которых
сперматозоиды и яйцеклетки, как правило, развиваются в специальных половых органах — антеридах (мужских) и оогониях (женских), обычно резко отличающихся от вегетативных клеток.

В ряде случаев (например, у конъюгат) сливается содержимое двух вегетативных недифференцированных клеток, физиологически исполняющих функцию гамет. Такой половой процесс называется конъюгацией* (рис. 12, Г).

Растения, производящие гаметы, могут быть обоепольными — гомоталличными и раздельнопольными — гетероталличными. В первом случае к копуляции способны гаметы, происходящие из одного растения (из одной клетки). В случае гетероталлистики копуляция наступает между гаметами из разных растений. Гетероталлистика наблюдается при любой форме полового процесса; у изогамных форм гаметы при морфологическом тождестве оказываются физиологически различными и обозначаются условными знаками «+» и «−».

Во всех случаях в результате полового процесса образуется зигота, содержащая одно копуляционное диплоидное ядро — продукт слияния ядер двух гамет. Чаще всего зигота окружается толстой оболочкой, переполненной запасными продуктами и растворенными в жирах каротиноидами. Затем она прорастает или сразу, или после более или менее продолжительного периода покоя.

* Термин «конъюгация» в биологии, к сожалению, применяется к совершенно разным явлениям (помимо данного случая применительно к бактериям, инфузориям, хромосомам при мейозе). Следует помнить, что природа этих явлений различна. Несомненно, для каждого из них необходимо самостоятельное название.
Жизненные циклы водорослей

Соотношение диплоидной и гаплоидной фаз в жизненном цикле водорослей неодинаково.

В одном случаях прорастание зиготы сопровождается редукционным делением копуляционного ядра (зиготическая редукция, рис. 13, A), при этом развивающиеся растения оказываются гаплоидными. Так, у многих зеленных водорослей зигота — единственная диплоидная стадия в цикле развития, вся вегетативная фаза проходит у них в гаплоидном состоянии, т.е. они являются гаплонтами.

У других водорослей, наоборот, вся вегетативная фаза диплоидна, гаплоидная фаза представлена лишь гаметами, перед образованием которых и происходит редукционное деление ядра (гаметическая редукция, рис. 13, B). Зигота без редукционного деления ядра прорастает в диплоидный таллом. Эти водоросли являются диплонтами. Таковы многие зеленые водоросли, имеющие сифоновое строение, все диатомовые, из бурых — представители порядка фуксовые.

Рис. 13. Схемы жизненных циклов водорослей.
A — зиготический (диплоидна только зигота); B — спорический;
B — гаметический (гаплоидны только гаметы); Г — соматический
Синезеленные водоросли — это прокариотические фототрофы. Но, несмотря на это, они обладают целым рядом признаков, отличающих их от других фототрофных прокариотических организмов — фотосинтезирующих бактерий.

В противоположность фотосинтезирующим бактериям цианеи являются обитателями оксигенными фототрофами и практически не способны (за исключением некоторых видов) усваивать экзогенные органические соединения. Другой специфической чертой синезеленных водорослей является наличие двух фотосистем, расположенных на мембранах специализированных фотосинтетических структур — тилакоидов, в большинстве случаев не соединенных с плазмаляемой. Выделение O₂ у них связано с фотолизом воды, осуществляющимся за счет энергии солнечного света. Еще одним признаком синезеленных водорослей, отличающим их от других прокариот, является возможность протекания в пределах одной клетки двух взаимоисключающих процессов — оксигенного фотосинтеза и анаэробной аэтофикации. Отличительной чертой является и отсутствие у цианей жгутиков или жгутиковых стадий.

Уникальным признаком, отличающим синезеленные водоросли от всех организмов (и прокариот, и эукариот), является отсутствие у них дыхания на свет, а также то, что процессы дыхательного и фотосинтетического переноса электронов происходят в одних и тех же мембранах тилакоидов (но в разное время), которые, таким образом, выполняют одновременно функцию и пластид, и митохондрий.

К отделу синезеленных водорослей, включающему в настоящее время группу прохлорофитовых водорослей* (или хлороксисбактерий), относится, по разным источникам, от 1000 до 2000 видов, широко распространенных в разнообразных водных и вневодных биотопах. Эти водоросли получили свое название благодаря специфической сине-зеленой окраске, характерной для большинства их представителей. Но они могут иметь и другие цвета — стальной, зеленый, оливковый, желто-зеленый, красный и даже черный. Это зависит от условий обитания и соответственно от различных комбинаций их фотосинтетических пигментов — хлорофилла a, реже хлорофилла b, каротиноидов и фикобилинов. Синезеленные водоросли могут быть прикрепленными и не прикрепленными к субстрату, неподвижными или способными к скользящему движению, но при этом, как уже говорилось выше, они никогда не образуют жгутиков и ресничек.

В морфологическом отношении синезеленые водоросли представлены одно- клеточными, колониальными и многоклеточными формами.

Одноклеточные формы — это отдельные клетки цианей, функционирующие как самостоятельные организмы (рис. 14, A). Одиночные клетки могут объединяться в колонии, в которых связующим материалом является слизь, выделяемая клетками водорослей (рис. 14, B). И одноклеточные, и колониальные формы имеют так называемый коккоидный тип организации, для которого характерно наличие неподвижных, одетых оболочками клеток**.

* Данная группа, несмотря на морфологические и некоторые физиологические особенности своих представителей, отнесена к отделу синезеленных водорослей на основании результатов определения нуклеотидной последовательности 16S рНК.

** В данном случае под неподвижностью понимается отсутствие структур, отвечающих за движение, — жгутиков и ресничек.
Рис. 14. Формы строения тела у представителей различных порядков синезеленых водорослей.

A — *Synechocystis* (Chroococcales), отдельные клетки; B — *Microcystis* (Chroococcales), общий вид колоний; B — *Microcoleus* (Oscillatoriales), гомоцистный трихом; Г — *Anabaena* (Nostoccales), гетероцистный неразветвленный трихом; D — *Fischiielopsis* (Stigonematales), гетероцистный разветвленный трихом

Многоклеточные формы имеют нитчатый* тип организации. Иногда наблюдается тенденция к пластинчатому или объемному расположению клеток. Морфологической единицей у этих цианей является трихом, т.е. неразветвленное

* Нити могут образовывать и одноклеточные формы, объединяясь в цепочки клеток, однако в данном случае клетки нити не связаны между собой плазмодесмами, т.е. формируют просто нитевидную колонию.
Рис. 16. Схема строения муреина.
Гетерополимерные цепочки, состоящие из чередующихся остатков N-ацитилглюкозамина (N-АцГлю) и N-ацитимурамовой кислоты (N-АцМур), связаны между собой пептидными мостиками. Слева — детальное строение фрагмента, изображенного справа в рамке. Треугольниками отмечены связи, расщепляемые лизоцимом (мурамидазой) и специфической муразэндопептидазой. Справа внизу — схематическое изображение структуры однослоиного поперечнослитого муреинового мешка, состоящего из N-АцГлю (G) и N-АцМур (M). m-Dpm — мезо-диаминопимелиновая кислота

Муреин подобно сетке-мешку окружает клетку цианей, обеспечивая ее прочность, структурную жесткость и эластичность, что позволяет синезеленым водорослям выживать в экстремальных условиях. Прочность этого слоя может продемонстрировать следующий пример: если из клеточной стенки выделить муреиновый слой, то даже в изолированном виде он сохранит форму клетки. Повреждение муреинового слоя в какой-либо одной точке не уменьшает прочности всей клеточной стенки.
В связи с тем, что муреиновый слой не связан с цитоплазматической и внешней мембраной, а свободно лежит в периплазматическом пространстве, на электронно-микроскопических фотографиях это выглядит как чередование слоев: электронно-прозрачный, электронно-плотный, электронно-прозрачный слои, которые ранее выделяли как самостоятельные.

Дополнительная внешняя мембрана (8—10 нм толщиной) имеет вид типичной элементарной мембраны. В ее состав входят различные полисахариды, липополисахариды, белки, липопротеины, липиды. Многие исследователи считают ее дополнительным слоем клеточной стенки.

Помимо внешней мембраны у некоторых синезеленных водорослей обнаружен «S-слой», состоящий из белковых глобул. У отдельных представителей цианей отмечаются известковые отложения.

Капсулы, или чехлы, которые также относятся к клеточным оболочкам, представляют собой слизистые образования, обволакивающие клетки, сохраняющие связь с клеточной стенкой и имеющие четко очерченную поверхность. Эти образования могут быть слоистыми и неслоистыми. Чаще у них отмечается фибриллярное строение, реже — гомогенное.

Выделяемые цианями слизи могут также формировать более или менее стойкие и четкие слизистые обертки, которые в отличие от капсул не имеют выраженной структуры. Слизистые продукты разных клеток могут объединяться, что нередко ведет к образованию колониальной слизи. Внешний слой колониальной слизи, часто кажущийся двухконтурым, называется перицермом.

Химический состав слизей синезеленных водорослей изучен недостаточно. Предполагается, что они представляют собой комплекс сложных полисахаридов. В зависимости от возраста и условий обитания слизистые образования могут изменять строение и цвет. В целом слизь предохраняет клетки от высыхания, позволяет прикрепляться к субстрату и, по-видимому, участвует в процессе скользящего движения.

Все клеточные оболочки (и клеточная стенка, и слизи) являются производными протопласта цианей, который представляет собой цитоплазму, окруженную цитоплазматической мембраной — плазмалеммой, очень часто образующей многочисленные складки, направленные внутрь клетки.

Цитоплазматическая мембрана цианей принципиально не отличается от плазмалеммы как других прокариот, так и эукариот. Тем не менее эта структура у синезеленных водорослей имеет свою особенность — высокое содержание каротиноидов, что обусловливает ее оранжевую окраску. У некоторых цианей, например у Synechocystis sp., удельное содержание каротиноидов в плазмалемме на порядок выше, чем в тилакоидах. Благодаря насыщенности плазмалеммы этими пигментами она способна выполнять фотопротекторную функцию. Кроме того, предполагается ее участие и в процессе дыхания.

Цитоплазма синезеленных водорослей имеет вязкую, гелеобразную консистенцию. При изучении окрашенных клеток цианей с помощью микроскопа в цитоплазме выделяют участки интенсивно окрашенные и менее интенсивно
синезеленых водорослей представляют собой бициклические симметричные соединения, сходные с эукариотными и отличные от ациклических каротиноидов фотосинтезирующих бактерий.

К фикобилинам (от греч. phykos — морская трава, англ. bilin — от лат. bilis — желчь) синезеленых водорослей относятся фикоцианобилин, фикоэритробилин, фикоуробилин, фикобиливилолин (рис. 18, A). Они ковалентно связаны с белками и в виде фикобилипротеинов образуют компоненты светособирающих антенн — фикобилисом (см. рис. 17).

В светособирающих комплексах у синезеленых водорослей обнаружены девять различных типов фикобилипротеинов, которые отличаются друг от друга по составу и количеству хромофорных групп (т.е. билиновых пигментов) (рис. 18, B): фикоцианины, фикоэритрины, аллофикацианины, фикоэритроцианин.

Благодаря наличию фикобилиновых пигментов, имеющих различные цвета (фикоэритрин — красный, фикоцианин — голубой), синезеленые водоросли способны поглощать световую энергию в зеленой и желтой областях спектра.

Рис. 18. Структура фикобилинов и фикобилипротеинов.
A — фикобилины — структура и связь с апопroteинами. B — фикобилипротеины — распределение простестических групп и их субъединичный состав: α, β, γ — полиептидные субъединицы; PBV — фикобиливилолин; PCB — фикоцианобилин; PEB — фикоэритробилин; PUB — фикоуробилин

\[\text{C-фикоцианин (αβ) _1/18 PCB} \]
\[\text{R-фикоцианин (αβ) _3/6 PCB, 3 PEB} \]
\[\text{Фикоэритроцианин (αβ) _3/6 PCB, 3 PBV} \]

\[\text{B-фикоэритрин (αβ) _6/38 PEB, 2 PUB} \]
\[\text{b-фикоэритрин (αβ) _n/4 PEB} \]
\[\text{C-фикоэритрин (αβ) _6/36 PEB} \]

\[\text{R-фикоэритрин (αβ) _6/26 PEB, 8 PUB} \]
\[\text{Аллофикацианин (αβ) _3/6 PCB} \]
\[\text{Аллофикацианин B (αβ) _3/6 PCB} \]
Рис. 19. Электронная микрофотография клетки *Microcystis wesenbergii* Komárek на стадии деления.
Обозначения: гв — газовые вакуоли; знп — зачаток новых клеточных перегородок — септ; нпо — нуклеоплазматическая область

Гликогеноподобный полисахарид является продуктом ассимиляции цианей. Он образует в клетках этих организмов гранулы разной формы длиной от 30 до 300 нм.

Наличие азотсодержащего запасного продукта цианофицина — характерная особенность синезеленых водорослей. Этот полимер не найден ни у каких других организмов, кроме цианей. Цианофицин представляет собой полипептид, образованный равным количеством аргинина и аспарагиновой кислоты. Его молекулярная масса составляет 25—100 кДа. В клетках он образует гранулы (диаметром от 1 мкм и более), известные под названием структурированных, или цианофициновых (см. рис. 15, А; 20). Полагают, что цианофицин может служить источником азота при его недостатке в среде, а также использоваться синезелеными водорослями в качестве источника энергии (для синтеза АТФ), когда их клетки находятся в темноте в анаэробных условиях.

В цитоплазме ряда синезеленых водорослей присутствуют полиэдрические образования, называемые карбоксисомами. В них находится рибулозобисфосфаткарбоксилаза — один из ключевых ферментов, участвующих в ассимиляции углекислоты в цикле Кальвина.

Рис. 20. Схема строения споры (акинеты) синезеленной водоросли.
Обозначения: цм — цитоплазматическая мембрана; кс — клеточная стенка; ос — обертка споры; т — тилакоиды; ф — фикобилисомы; ц — цитоплазматический матрикс; нпо — нуклеоплазматическая область с нитями ДНК; рп — рибосомы и полисомы; цг — цианофициновые гранулы; в — волютин
Из вегетативных клеток в результате их дифференцировки образуются гетероцисты и акинеты. Формирование гетероцитов сопровождается рассеиванием ДНК по всей цитоплазме, ее перестройкой, реорганизацией мембранной системы: тилакоиды разрушаются и формируются новые, плотно упакованные мембраны. В клетке исчезают гранулярные включения. Цитоплазма становится гомогенной. Одним из наиболее четких признаков гетероциста, которые видны даже с помощью светового микроскопа, является их сильно утолщенная клеточная оболочка (см. рис. 15, Б). В ее состав входит внутренний слой из гликолипидов и внешний из полисахарида. Наиболее толстая часть оболочки приходится на зону перетяжки между гетероцистой и вегетативной клеткой. Благодаря такой прочной многослойной защите гетероцисты выдерживают серьезные механические воздействия и защищены от внешнего кислорода, присутствие которого блокирует работу фермента нитрогеназы.

Как уже говорилось выше, специализированные клетки-гетероцисты участвуют в восстановлении атмосферного азота, что характерно только для прокарийотических организмов. Для того чтобы клетка приобрела способность фиксировать атмосферный азот, при дифференцировке вегетативных клеток в гетероцисты необходим сложный естественный генно-инженерный процесс.

У синезеленых водорослей фиксация молекулярного азота регулируется не только на уровне транскрипции, как у бактерий, но и посредством метаболического контроля нитрогеназной активности концентрацией фиксированного азота. Активность фермента нитрогеназы блокируется кислородом, поэтому в гетероцистах фотосинтетический кислород не выделяется, а от поступления внешнего кислорода чувствительный к нему фермент (нитрогеназа) защищен полисахаридными слоями клеточной стенки и пробками. Фиксация атмосферного азота может происходить и в вегетативных клетках у безгетероцистных форм синезеленых водорослей, но в этом случае процессы азотфиксации и фотосинтеза разделяны во времени и пространстве.

Наличие у синезеленых водорослей С- и N₂-автотрофии позволяет считать их абсолютными первичными продуцентами органических веществ на планете.

В гетероцистах обычно отсутствуют фикобилипротеины и соответственно фикобилисомы. Фотосинтез в этих клетках проходит без выделения молекулярного кислорода. Кроме того, гетероцисты дефектны по ферментам, участвующим в ассимиляции CO₂. Превращение отдельных вегетативных клеток в гетероцисты происходит, когда в среде нет в достаточном количестве аммония и некоторых других соединений, используемых цианобактериями в качестве источников азота. Запасные вещества в гетероцистах отсутствуют.

С функцией гетероциста в определенной степени также связывают процессы вегетативного размножения. Так, например, у гетероцистных форм распад нитей на отдельные участки (гормогонии), из которых развиваются новые талломы, обычно происходит по гетероцистам. Сами гетероцисты к делению не способны.

Другими специализированными клетками, которые также образуются путем дифференцировки вегетативных клеток, являются споры — акинеты (см. рис. 20). Обычно это более крупные, чем вегетативные, клетки, толстостенные, причем споровый покров окружает спору полностью в отличие от гетероциста, которые через поровый канал сохраняют контакт с соседними вегетативными клетками.
При дифференцировке спор из вегетативных клеток заметно утолщается мурениновый слой и, кроме того, кнаружи от клеточной стенки образуется широкая обертка. В отличие от гетероцист зрелые споры переполнены запасными гранулярными включениями, особенно цианофициновыми гранулами. Расположение и структура тилакоидов в спорах те же, что и в вегетативных клетках. Содержание ДНК в спорах заметно возрастает, иногда в 20–30 раз по сравнению с содержанием ее в вегетативных клетках.

Споры могут выдерживать высыхание и затем прорастают каждая в новую особь (рис. 21). Прорастание споры сопровождается образованием на одном конце поры в оболочке, через которую выходит проросток.

Размножение одноклеточных и колониальных синезеленых водорослей осуществляется равным, реже неравным делением клеток. При делении клетки на боковой стенке (см. рис. 15, A; 19) формируется кольцевая складка (перетяжка), образованная цитоплазматической мембраной и внутренними слоями клеточной стенки (см. рис. 15, A). Разрастаясь от периферии к центру, эта складка смыкается, образуя поперечную перегородку — сиену. Перед клеточным делением количество ДНК удваивается и затем распределяется между двумя новыми клетками. Деление клеток может происходить в одной, двух или трех плоскостях. У колониальных форм это приводит к возникновению разных типов расположения клеток и даже к образованию трихомов с настоящей многорядностью. Некоторые виды размножаются посредством мелких клеток гонидий, либо образующихся внутри материнской клетки и называющихся в этом случае эндоспорами, либо отшнуровывающихся от верхушки материнской клетки и называющихся экзоспорами (бооцитами). В отдельных случаях наблюдается множественное деление содержимого клетки, но во всех случаях митоз и мейоз отсутствуют. Несколько следующих друг за другом делений клетки приводят к формированию мелких сферических клеток — бооцитов, которые освобождаются через разрыв покровов материнской клетки (рис. 22). Из одной клетки может образовываться от 4 до 1000 бооцитов.

Большинство нитчатых синезеленых водорослей размножаются с помощью гормогониев, которые формируются при распаде нити на отдельные участки. После периода движения, обусловленного выделением слизи, гормогонии прорастают в новые нити. У морфологически прогрессивных многоклеточных форм имеются зоны активного деления, т.е. «меристематические зоны» базальные,
В ОДОРОСЛИ

Рис. 23. Зоны активного деления клетки («меристематические зоны»):
1 — верхушечная (Scytonema); 2 — базальная (Calothrix); 3 — интеркалярная (Rivularia);
4 — нарастание трихома с «настоящей» многогорядностью (Stigonema) за счет верхушечной клетки.
Обозначения: мз — «меристематическая» зона; вк — верхушечная клетка

интраклярные, верхушечные), а у некоторых видов даже специализированные верхушечные клетки, по внешнему виду сходные с таковыми эукариотических водорослей (рис. 23).

Многие нитчатые (гетероцитные) синезеленые водоросли образуют покоящиеся споры (акинеты) для переживания неблагоприятных условий, которые, с одной стороны, также способны делиться, как вегетативные клетки, а с другой — могут прорастать при изменении условий, т.е. участвовать в размножении. Таким образом, размножение синезеленых водорослей можно рассматривать как вегетативное и бесполое. Типичный половой процесс отсутствует, но обнаружены парасексуальные процессы, в результате которых происходит частичное объединение геномов различных клеток.

В связи с тем, что синезеленые водоросли являются прокариотами, многие исследователи, в том числе и ботаники, придерживаются микробиологической классификации этих организмов. В этом случае на основании изучения чистых культур цианеи сгруппированы в 5 секций, или порядков. Интересно отметить, что в данном случае ботанический и микробиологический подходы при классификации цианей достаточно близки.

В учебнике рассматриваются порядки: хроококковые, плеврокапсовые, осциллаториевые, ностоковые, стигонемовые.

ПОРЯДОК ХРООКОККОВЫЕ
(CHROOCOCCALES)

Порядок объединяет одноклеточные и колониальные формы. У одноклеточных форм, как правило, полярность отсутствует. Размножение осуществляется за счет бинарного деления клеток пополам, а также за счет почкования экзоспорами.
Строение и форма колоний зависят от способа деления клеток и особенностей слизеобразования. Если клетки делятся в двух взаимно перпендикулярных плоскостях, то образуются однослоиные пластинчатые колонии. Примером таких колоний являются представители рода *Merismopedia* (рис. 24). Если клетки делятся во многих направлениях, возникают объемные колонии, хорошо выраженные у рода *Gloeocapsa* (рис. 25).

Род микроцистис (*Microcystis*) характеризуется самой разнообразной формой слизистых колоний, образованных шаровидными клетками, делящимися во всех направлениях (см. рис. 14, Б). Представители этого рода широко распространены в пресноводном планктоне, где их активный рост вызывает цветение воды. Виды рода микроцистис — важнейшие продуценты органического вещества в озерах и прудах. Они являются отличным кормом для микрофауны, однако некоторые виды этого рода, например *M. toxica* из Южной Африки, токсичны для животных.

Род глео kapsa (*Gloeocapsa*) характеризуется колониями, в которых клетки находятся в сложной системе вставленных друг в друга слизистых оболочек или слизистых пузырей (см. рис. 25). Это является результатом формирования вокруг дочерних клеток своих собственных осязяющихихся оболочек и при сохранении осязяющихихся оболочек материнской клетки. Клетки колоний рода *Gloeocapsa* имеют шаровидную форму. Виды рода глео kapsa распространены в воде и на суше. В воде обычно обитают виды с бесцветной слизью. На суше они поселяются в виде корочек и налетов на влажных камнях, скалах и стенах домов. Слизь этих видов обычно окрашена в сине-зеленый, желтый, ярко-красный, черный и другие цвета.
Род мерисмопедия (*Merismopedia*) представлен плоскими колониями в виде табличек (см. рис. 24), образованными шаровидными клетками, делящимися в двух направлениях. Местообитание — планктон пресных водоемов.

Род хамесифон (*Chamaesiphon*) представлен эллипсовидными, грушевидными или пальцеобразными клетками, прикрепленными к субстрату (рис. 26). На их вершине формируются экзоспоры, которые отпадают по мере образования. Широко распространены в пресных водоемах.

Род прохлорон (*Prochloron*) — это одноклеточные неподвижные микроорганизмы сферической формы 10—30 мкм в диаметре (рис. 27). Считается, что их размножение осуществляется путем бинарного деления. Клетки имеют развитую систему мембран (тилакоидов), которые (в отличие от других родов) обычно парные и собраны в стопки. Кроме того, помимо хлорофилла a, они содержат хлорофилл b. Фикобилины и соответственно фикобилисомы у них отсутствуют. Иногда в клетках обнаруживаются несколько небольших вакуолей или одна большая центральная. Род представлен только видом *Prochloron didemni*, который является экзосимбионтом асцидий — морских низших хордовых животных, принадлежащих к оболочникам.

Рис. 26. *Chamaesiphon* — общий вид (э — экзоспоры)

Рис. 27. Схема строения *Prochloron.*

A — колониальная асцидия *Lissolinum patera* с включенными в стенку клоаки клетками *Prochloron*;
B — схема строения клетки *Prochloron*.

Обозначения: ac — анальный сифон; bс — бухкальный сифон; k — клоака; h — нуклеоид; ot — общая туника; п — прохлорон (*Prochloron*); pk — полость клоаки; sk — стенка клоаки; т — тилакоиды
ПОРЯДОК ПЛЕВРОКАПСОВЫЕ
(PLEUROCAPSALES)

Порядок объединяет одноклеточные и колониальные формы, состоящие из изолированных толстостенных клеток, покрытых дополнительным фиброзным (волокнистым) слоем, тесно прилегающим к наружному слою оболочки. Клетки различной формы (шаровидной, грушевидной, цилиндрической) в колониях часто расположены неправильно и образуют ложную паренхиму; иногда они расположены несколькими слоями. Представители этой таксономической группы обычно прикреплены к субстрату. Многие из них эпифиты. Размножение вегетативное и посредством эндоспор и экзоспор. Эндоспоры, или беоциты, возникают внутри материнской клетки (спорангия) и освобождаются при разрыве оболочки спорангия или в результате сбрасывания части стенки спорангия как крышек.

Род дермокарпа (Dermocarpa) характеризуется шаровидными, яйцевидными или булавовидными клетками, часто растущими группами. Эндоспоры образуются при делении протоплазмы материнской клетки в трех плоскостях. Количество эндоспор колеблется от 4 до 1000. Освобождение происходит через разрыв стенки верхушки материнской клетки или при ослаблении всей ее стенки. Обитает в пресной и морской воде. Представитель Dermocarpa prasina (рис. 28).

Рис. 28. Dermocarpa — образование эндоспор.

А — кучка клеток при небольшом увеличении; Б — эндоспоранги; В — клетки на Cladophora sp
ПОРЯДОК ОСЦИЛЛАТОРИЕВЫЕ
(OSCILLATORIALES)

Порядок объединяет нитчатые гомоцитные формы.
Род осциллатория (Oscillatoria) представлен видами, часто образующими сине-зеленые пленки, покрывающие влажную землю, подводные предметы, или плавающие в виде толстых кожистых лепешек на поверхности стоячих водоемов. Длинные нити осциллатории сложены из цилиндрических клеток, совершенно одинаковых, за исключением верхушечных, которые по форме могут несколько отличаться от остальных (рис. 29, А). Рост происходит в результате поперечных делений клеток. Нити обнаруживают своеобразное колебательное (осциллаторное) движение, сопровождающееся вращением нити вокруг собственной оси и ее поступательным движением. Размножение осуществляется подвижными гормоноциями, которые прорастают в новые нити.
Род триходесмийум (Trichodesmium) распространен в планктоне тропических морей. Он отличается от осциллатории тем, что расположенные параллельно нити соединены в пучки.
Род спирулина (Spirulina) объединяет виды, нити которых скручены в правильную спираль (см. рис. 29, Б). Некоторые виды, например S. maxima, содержат много протеинов (60—80% от сухой массы) и с давних времен используются в пищу населением некоторых районов Африки. В последние годы в ряде стран, в том числе и в России, стали заниматься вопросами массового культивирования видов спирулины.
Род лингбия (Lynghya) имеет такое же строение нити, что и осциллатории. Клетки окружены хорошо заметным мощным чехлом и влагалищем (см. рис. 29, В).

Рис. 29. Общий вид нитей.
A — Oscillatoria; B — Spirulina; V — Lynghya
Род прохлоротрикс (Prochlorothrix). Представитель Prochlorothrix hollandica — многоклеточный организм, похожий по форме на нитчатые водоросли рода Oscillatoria, а по физиолого-биохимическим характеристикам — на род Prochloron (т.е. характеризуется наличием хлорофила b и отсутствием фикобилинов). Отдельные клетки в тритоме Pr. hollandica палочковидные; они имеют средние размеры 0,5—1,5×3,0—10,0 мкм. Тритоны содержат от 1 до 100 клеток, в которых присутствуют тилакоиды, образующие стопки, газовые вакуоли и карбоксисомы. Pr. hollandica, в отличие от Prochloron didemni, является свободноживущим гидробионтом.

ПОРЯДОК НОСТОКОВЫЕ
(NOSTOCALES)

Порядок объединяет водоросли с гетероцитными неразветвленными нитями или нитями с так называемым ложным ветвлением.

Род анабена (Anabaena) представлен организмами, имеющими вид обычно одиночных или собранных в неправильные скопления нитей. Нити симметричные, одинаковой ширины на всем протяжении, состоят из округлых или бочонкообразных вегетативных клеток с промежуточными (интеркалярными) гетероцитами (рис. 30). Нити прямые или изогнутые. Виды анабены встречаются как в бентосе (придонные), так и в планктоне. У планктонных видов клетки содержат множество газовых вакуолей. Размножение — гормогониями, на которые нити распадаются большей частью по гетероцитам. Горгоногии растут только за счет поперечных делений клеток. Большинство видов имеет споры, обычно резко отличающиеся по форме и размерам от вегетативных клеток. Для многих видов (A. cylindrica, A. oryzae, A. variabilis и пр.) характерна способность к фиксации атмосферного азота.

Для рода афанизоменон (Aphanizomenon) характерны нити, обычно собранные в пучки или чешуйки, видимые невооруженным глазом (рис. 31). Развиваясь в массе в планктоне, вызывает «цветение» воды. Как и микроцистис, представляет собой важный продуцент органического вещества в водоемах. В прудовом хозяйстве развитие афанизоменона искусственно стимулируют добавлением в воду калийных и фосфорных удобрений.

Род носток (Nostoc) характеризуется слизистыми или студенистыми колониями разных размеров (от микроскопических мелких до крупных, достигающих величины сливы) и формы — от сферических или эллипсоидальных до неправильно рас пространенных и нитевидных. Слизь имеет разную консистенцию, содержит массу извитых нитей — или беспорядочно перепутанных, или расходящихся более или менее радиально из центра колонии (рис. 32). Нити похожи на нити анабены: наряду с вегетативными клетками они включают интеркалярные гетероциты. Размножается посредством гормогониев, которые возникают в результате распада нитей по гетероцитам (при этом гетероциты отмирают и выпадают) на совершенно прямые частицы. Образование гормогониев сопровождается также внутриклеточными перестройками. Внешне они выражаются в том, что в большинстве случаев изменяются размеры и формы клеток. Очень часто у бентосных форм, лишенных газовых вакуолей в вегетативном состоянии, эти вакуоли появляются в клетках гормогониев.
Гормогонии приобретают подвижность и покидают материнскую колонию. Слизь к этому времени расплывается. Если колония покрыта плотным наружным слоем — перидермом, то этот слой разрывается. Гормогонии обычно служат и для распространения вида, так как обладают скользящим движением и благодаря развитию в клетках газовых вакуолей — лучшей плавучестью. После некоторого периода движения первоначально прямые гормогонии останавливаются, теряют газовые вакуоли (у бентосных видов) и прорастают в спирально извитые нити. При этом клетки гормогония делятся или косыми, или продольными перегородками. Во втором случае сначала возникает двухрядная нить, а затем при разъединении определенных клеток этой нити формируется уже зигzagообразная нить, свойственная ностокам. Обычно конечные клетки молодой нити превращаются в гетероцисты, выделяется обильная слизь, и таким образом возникает молодая колония, в которой нити дальше растут только за счет поперечных делений клеток. Помимо образования гормогониев у многих ностоков развиваются споры, обычно мало отличающиеся по форме и размерам от вегетативных клеток.
Сферические ностки нередко размножаются почкованием колоний. Самый крупный сферический носток — сливовидный (Nostoc pruniforme), в огромных количествах развивающийся в наших северных водоемах, а также носток с колониями в виде слизистых тяжей, в которых нити расположены более или менее параллельными рядами (N. flagelliforme), съедобны. Последний вид, растущий в пустынях и высокогорных областях, употребляется как лакомство.

Род Калотрикс (Calothrix) включает виды, имеющие бициклические нити: на их расширенном конце дифференцируется базальная гетероциста (рис. 33, A), противоположный конец утончается и часто заканчивается многоклеточным волоском из отмерших клеток. Нить одета чехлом и может ветвиться. Ветвление ложное и заключается в том, что на протяжении нити в результате отмирания промежуточной клетки происходит разрыв (рис. 33, B, V). Участок, расположенный ниже разрыва, прорывает чехол и продолжает расти вбок, образуя ветвь. Конечная клетка верхнего фрагмента может превратиться в базальную гетероцисту (рис. 33, B) или же базальный конец верхнего фрагмента может дать вторую боковую ложную ветвь (рис. 33, B). В первом случае ложное ветвление одиночное, во втором — двойное.

У видов родов Ривулярия (Rivularia) и глеотрихия (Gloeotrichia) талломы, как и у видов рода носток, студенистые. Нити асимметричные, как у Калотрикса, окружены общей слизью и расходятся из центра по радиусам. К центру колонии обращены расширенные концы с базальной гетероцистой, к периферии — волоски (рис. 34). Размножение Калотрикса, Ривулярии и Глеотрихии происходит посредством гормоногенов: при этом волоски сбрасываются и в образовании гормоногенов участвуют нижерасположенные клетки, за исключением нескольких.

Рис. 33. Calothrix.
A — общий вид; B, V — ложное ветвление: одиночное (B) и двойное (V)

Рис. 34. Gloeotrichia.
A — общий вид; B — колония в разрезе (видны отдельные нити со зрелой спорой);
B — от ельная нить
базальных. Как и у ностоков, формирование гормогониев сопряжено с изменениями размеров и формы клеток, часто появляются газовые вакуоли. Гормогонии прямые и симметричные. Они отделяются от основания нити в результате отмирания промежуточной клетки и после некоторого периода движения оставляются, прорастая в асимметричные нити. При этом на одном конце их клетка превращается в базальную гетероцисту, а на противоположном конце клетки вытягиваются в волосок. У колониальных форм, например у глеотрихии, гормогонии, как правило, собраны в пучки, и молодая колония формируется за счет прорастания многих гормогониев: вокруг развивающихся в асимметричные нити гормогониев выделяется обильная слизь, в которой молодые нити располагаются по радиусам.

У ривулярии споры отсутствуют. У некоторых видов калотрихса и у всех видов глеотрихии имеются споры. У глеотрихии длинная спора с зернистым содержимым образуется за счет слияния нескольких клеток, расположенных над базальной гетероцистой. К концу вегетационного периода все нити в колонии образуют споры, вегетативные клетки отмирают и в слизи остаются только споры, у шаровидных видов (например, у G. pisum) расходящиеся из центра колонии по радиусам. При помещении таких колоний в благоприятные условия споры более или менее одновременно прорастают. Содержимое их делится с образованием длинных симметричных многоклеточных нитей — спорогормогониев или первичных гормогониев, в клетках которых обычно появляются обильные газовые вакуоли. Стенка на верхушке споры разрывается, и спорогормогонии, плотность которых меньше, чем у воды (из-за газовых вакуолей), всплывают на поверхность воды обычно соединенные пучками, где и прерываются дальнейшее развитие, подобное развитию гормогониев (вторичных), образующихся из взрослых вегетативных колоний.

ПОРЯДОК СТИГОНЕМОВЫЕ (STIGONEMATALES)

Для представителей порядка характерны гетероцидные нити с настоящим ветвлением.

Род стигонема (Stigonema) имеет нити, для которых характерен верхушечный рост. На некотором расстоянии от верхушки ветвей клетки прерывают продольные деления, и нить становится многорядной (рис. 35).

Род мастигоизадус (Mastigocladus) представлен единственным видом M. laminosus. Это типично термальная водоросль, со сложным ветвящимся гетероцидным талломом; распространена по всему свету (рис. 36).

Особенность индивидуального развития нитчатых (гормогониевых) водорослей, представленных в трех последних порядках, заключается в том, что в ходе развития из взрослых особей они проходят ряд неодинаковых морфологических стадий, или статусов, сходных со зрелыми особями других родов. Так, все гормогониеевые водоросли в состоянии гормогониев отвечают признакам рода осцилла-тория (симметричая гомоцидная нить). При дальнейшем развитии разные роды
Рис. 35. Stigonema — общий вид,
часть нити с гормогониями

Рис. 36. Mastigocladus — общий вид

различаются по статусам, и число последних тем больше, чем сложнее организация таллома данного рода, чем больше имеется разных морфологических признаков, формирующихся независимо друг от друга. Так, если у рода осцил- латория весь жизненный цикл сведен к одному состоянию (осциллератриеподоб-ному), то у рода лингбия к статусу осциллератриеподобному прибавляется еще статус лингбиеподобный, для которого характерен толстый чехол вокруг гомо- цитной нити. У рода калотрикс наблюдаются состояния осциллератриеподобное (гормогонии) и калотриксоподобное (зрелые особи с асимметричными гетеро- цитными нитями). У рода ривулярия в жизненном цикле уже три состояния: осциллератриеподобное, калотриксоподобное и ривуляриеподобное, а у рода глоотрихия — четыре: осциллератриеподобное, калотриксоподобное, ривулярие- подобное и глоотрихиеподобное — взрослый таллом со спорами.

Наконец, у мастигокладуса, имеющего сложный гетероцитный таллом с диф- ференцировкой вегетативных клеток, различающихся по форме в разных частях таллома, с разными типами ветвления (истинного, ложного), удается установить в жизненном цикле уже десять статусов. На разных морфологических стадиях (или статусах) гормогониевые водоросли могут задерживать свое развитие, дли- тельно существовать в таком состоянии и даже размножаться посредством гормо- гониев.

* * *
Синезеленые водоросли распространены повсеместно и растут даже там, где не могут произрастать никакие другие растения. Они первыми заселяют вновь образующиеся поверхности Земли, например вулканические острова. Синезеленные водоросли обитают в пресных водах и в море. В планктоне прудов, озер, медленно текущих рек виды родов микрокистис, анабена, афанизоменон, глеотрихия часто вызывают «цветение» воды. Планктонные виды обычно имеют в клетках газовые вакуоли, благодаря чему всплывают на поверхность воды. *Trichodesmium erythraeum* (от избытка фикоэритрина, имеющий красный цвет) вызывает «цветение» воды в Красном море, что и послужило причиной для названия этого моря.

Большое значение синезеленые водоросли играют в продуктивности океана. Ранее продуктивность океана считалась достаточно низкой. Она оценивалась в 30—60 млрд т углерода в год. Затем в планктоне были обнаружены очень мелкие клетки (0,2—2 мкм), которые были представлены гаптофитовыми и синезеленными водорослями, с преобладанием рода *Synechococcus*, получившие название микопланктона (от исп. *pico* — малая величина). Подсчет продуктивности океана с учетом фотосинтетической активности этих водорослей дает более высокие значения — до 187 млрд т углерода в год, что превышает продуктивность наземных растений.

Многие синезеленые водоросли развиваются вне воды, например на почве или лука пустьнь (главным образом ностоки), на скалах во влажных тропиках (глекапса, сцитонема). Среди них широко распространен симбиоз: водоросли ряда родов представляют собой гонидии (фотобионты) лишайников (носток, стигонема, сцитонема, калотрикс), живут в корнях высших растений, являются внут- риклеточными симбионтами некоторых жгутиковых, корненожек и др.

Синезеленые водоросли имеют большое значение в жизни человека, как положительное (азотфиксация, съедобные), так и отрицательное (токсичные, возбудители «цветения» воды, которые при отмирании загрязняют воду и могут вызывать массовую гибель — замор рыбного населения водоема).

ОТДЕЛ КРАСНЫЕ ВОДОРОСЛИ (RHODOPHYTA)

Среди красных водорослей имеются одноклеточные, колониальные и много-клеточные представители с коккоидным, нитчатым, гетеротрихальным, псевдопаренхиматозным и паренхиматозным типами дифференциации таллома (рис. 37, A—D). Однако подавляющее большинство имеют псевдопаренхиматозные талломы, возникающие за счет переплетения боковых ветвей либо одной оси, неограниченно нарастающей с помощью верхушечной клетки, либо многих таких осей; в первом случае говорят об одноосевом строении, во втором — о многоосевом, или мультиосевом (рис. 38). Пластинчатые талломы истинно паренхиматозного строения, получающиеся в результате как поперечных, так и продольных делений клеток, встречаются среди красных водорослей редко (порфира см. рис. 37, D).
Рис. 37. Типы дифференциации таллума у красных водорослей.

А — коккоидный у Porphyridium; Б — нитчатый у Erythrotrichia. 1 — верхушка нити, 2 — средняя часть, 3 — базальная часть; В — разнонитчатый у Compsopogon; Г — псевдопаренхиматозный у Thorea (часть продольного среза слоевища); Д — паренхиматозный у Porphira

Для красных водорослей характерно полное отсутствие в жизненном цикле жгутиковых стадий и центриолей. Хлоропласти, как правило, париетальные, многочисленные, в виде зерен или пластинок. У бангиевых встречаются звездообразные хлоропласти с центральными пиреноидами. В хлоропластах красных водорослей помимо хлорофилла а и каротиноидов (α- и β-каротин, зеаксантин, антраксантин, α- и β-криттоксантин, лютеин, неоксантин) содержится еще ряд водорастворимых пигментов — фикобилинов: фикоэритрины красного цвета, фикоцианины и аллофикоцианин синего цвета. От соотношения пигментов зависит окраска таллума, варьирующаяся от малиново-красной (преобладание фикоэритрина) до голубовато-стальной (при избытке фикоцианина). Хлоропласти одеты оболочкой из двух мембран («хлоропластной эндоцитао-матической сети» нет), содержат одиночные тилакоиды, на поверхности которых
локализованы фикобилисомы. Хлоропластная ДНК в виде отдельных гранул расположена в строе хлоропластов. Периферические тилакоиды в одних случаях отсутствуют (у более примитивных форм со звездчатыми или сильнолопаствыми хлоропластами с пиреноидами), в других (у более высокоорганизованных красных водорослей с дисквидными хлоропластами без пиреноидов) имеются. Запасной продукт — полисахарид «багрянковый крахмал», от йода приобретающий буро-красный цвет. Зерна багрянкового крахмала откладываются в цитоплазме всегда вне связи с пиреноидами и хлоропластами.

Клетки красных водорослей одеты оболочкой, пектиновые и гемицеллюлозы, которые сильно набухают и часто сливаются в общую слизь мягкой или хрящевой консистенции, заключающую протопласты. Нередко в стенках откладывается извести.

Клетки одно- и многоядерные, митоз закрытый, без центриолей. Циклинез идет за счет впачивания цитоплазматической мембраны. На месте вакуоли в перегородке формируется пора, которая закрывается белковой поровой пробкой (рис. 39, A—B). Наличие поровых соединений — отличительная особенность красных водорослей, имеющая также значение для разграничения порядков.

Рис. 38. Одноосевое (A — Gelidium) и многоосевое строение (B — Furcellaria) таллома. 1 — внешний вид таллома; 2 — апикальная часть

Рис. 39. Схема формирования порового соединения у красных водорослей. A — поперечная перегородка с порой в центре; B — в поре поперечной перегородки располагаются цистерны эндоплазматического ретикулума, вокруг и внутри которого концентрируется материал для пробки; B — формируется поровая пробочка
Размножение у красных водорослей — вегетативное, бесполое и половое. Преобладает жизненный цикл спорический с тремя многоклеточными фазами, две из которых диплоидные. Редукционное деление связано с образованием спор бесполого размножения. У батрахоспермовых — жизненный цикл с соматической редукцией. Бесполое размножение красных водорослей осуществляется посредством неподвижных клеток, развивающихся из содержимого спорантия в числе одной — тогда их называют моноспорами — или четырех — тогда говорят о тетраспорах (рис. 40). Тетраспоры формируются на диплоидных бесполых растениях — спорофитах (тетраспорофитах). В тетраспорантиях перед образованием тетраспор происходит мейоз.

Половой процесс — своеобразная оогамия. Женский орган — карпогон (рис. 41). У большинства красных водорослей (флоридей) он состоит из расширенной базальной части — брюшка и отростка — трихогины (отсутствующей у бангиевых). Карпогон обычно развивается на особой короткой карпогонной ветви. Сперматангии — мелкие бесцветные клетки, содержимое которых освобождается в виде мелких, голых, лишенных жгутиков мужских оплодотворяющих элементов — сперматиев. Выпавшие из сперматангив сперматии пассивно переносятся токами воды и прилипают к трихогине. В месте контакта сперматия и трихогины их стенки растворяются, и ядро сперматии перемещается по трихогине в брюшную часть карпогона, где сливаются с женским ядром. После оплодотворения базальная часть карпогона отделяется перегородкой от отмирающей трихогины и претерпевает дальнейшее развитие, приводящее к образованию карпоспор.

Рис. 40. Chantransia с моноспорами (A) и Callithamnion с тетраспорами (B) — из них видны только три. Два верхних тетраспоранти молодые (до образования моноспор)

Рис. 41. Nemalion — ветвь с карпогоном (1) и антеридиями (2)
Детали этого развития имеют важное систематическое значение. У одних красных водорослей содержимое зиготы (оплодотворенного карпогона) непосредственно делятся с образованием карпоспор, у других из оплодотворенного карпогона (или из его дочерней клетки) вырастают ветвящиеся нити — гонимобласты, клетки которых превращаются в карпоспоранги, производящие по одной карпоспоре. Наконец, у большинства красных водорослей гонимобLASTы развивается не непосредственно из брюшка оплодотворенного карпогона, а из особых вспомогательных — ауксилярных клеток. Последние могут быть удалены от карпогона или же располагаются на талломе в непосредственной близости от него (рис. 42). В тех случаях, когда ауксилярные клетки удалены от карпогона, из его брюшка после оплодотворения вырастают соединительные, или областемные, нити. Их возникновению предшествует митотическое деление копуляционного ядра, и клетки областемных нитей содержат, таким образом, диплоидные ядра. Областемные нити подрастают к ауксилярным клеткам, в точке контакта оболочки развиваются, и между клеткой областемной нити и ауксилярной клеткой устанавливается соединение. Это слияние клеток не сопровождается слиянием их ядер (диплоидного ядра клетки областемной нити и гаплоидного ядра — ауксилярной), однако слияние с ауксилярной клеткой стимулирует деление диплоидного ядра клетки областемной нити и развитие гонимобластов, клетки которых содержат диплоидные ядра и продуцируют диплоидные карпоспоры. ГонимобLASTы, развивающиеся карпоспоры, обычно рассматриваются как особую диплоидную фазу жизненного цикла — карпоспорофит (гонимокарп).

Рис. 42. Acrosymphyton (по: Hoek van den et al., 1995).
A — оплодотворение; B — развитие областемных нитей; B — развитие карпоспор: 1 — трихогина, 2 — спермацет, 3 — ауксилярная клетка, 4 — областемная нить, 5 — сливание областемной нити с ауксилярной клеткой, 6 — карпоспоры
У наиболее высокоорганизованных красных водорослей ауксиллярные клетки развиваются только после оплодотворения карпогона и в непосредственной от него близости. Совокупность ауксиллярной клетки (или клеток) с карпогоном носит специальное название — прокарпий. Здесь нет надобности в образовании длинных ообластных нитей, связывающих карпогон и ауксиллярные клетки, ауксиллярная клетка просто сливается с брюшком оплодотворенного карпогона, после чего из нее развиваются гониомобласти с карпоспорами. Карпоспорангии часто располагаются тесными группами, одетыми оболочкой, развивающейся из соседних с карпогоном клеток. Это — цистокарпий.

Обитают красные водоросли главным образом в морях, реже встречаются в пресных водах. Они прикрепляются к камням, ракушкам, другим водорослям, являясь, как правило, эпифитами, однако известны и эндфиры и даже паразиты. Многие красные водоросли живут на больших глубинах (100—200 м) при наличии подходящих грунтов и хорошей прозрачности воды. Чаще всего заросли красных водорослей кончаются на глубине 20—40 м. Глубоководные формы отличаются особенно яркой окраской. Нередко в пределах одного и того же вида глубоководные особи имеют ярко-малиновые талломы, тогда как мелководные особи окрашены в желтоватый цвет. Этот факт пытается объяснить теория Энгельмана, согласно которой преобладание той или иной окраски на разных глубинах связано с силой и окраской проникающих сюда световых лучей.

Отдел содержит более 670 родов, 2500—6600 видов. Красные водоросли представляют собой естественную единую, несмотря на многообразие, и весьма древнюю группу. В последнее время пересматривают традиционное деление красных водорослей на две группы (два класса) — бангиеевые и флоридеевые. На основании ультраструктурных особенностей и филогенетического анализа показано, что бангиеевые — парафилетическая группа, в то время как флоридеевые — монофилетическая. Для бангиеевых долгое время считалось характерным отсутствие поровых соединений, апикального роста и полового размножения, в то время как флоридеевые имели поровые соединения, апикальный рост и трехфазный жизненный цикл. Но оказалось, что у ряда бангиеевых (представители порядков родохетовые, бангиеевые) есть поровое соединение, апикальный рост и половое размножение, в то же время не у всех флоридеевых имеется апикальный рост (например, отсутствует у кораллиновых), не у всех существует трехфазный жизненный цикл (например, у батрахоспермовых). Сравнение последовательностей ряда генов также доказывает, что все красные водоросли, за исключением цианидиевых, следует отнести к классу Rhodophyceae. Детали развития карпоспорофита (из оплодотворенного карпогона или из ауксиллярных клеток), а также время дифференцировки ауксиллярных клеток (до или после оплодотворения), их положение на талломе, жизненный цикл, тип поровых соединений и др. кладутся в основу деления красных водорослей на порядки, из которых ниже приводятся только восемь.

В учебнике рассматриваются порядки: бангиеевые, компстогоновые, немаклеевые, батрахоспермовые, кораллиновые, пальмаривые, анфельциевые, церамиевые.
ПОРЯДОК БАНГИЕВЫЕ
(BANGIALES)

Представитель — род порфиры (Porphyra) (рис. 43, A), широко распространенный как в северных, так и в южных морях в прибрежной (литоральной) зоне. Листовидный таллом пурпурного цвета прикрепляется своим основанием к субстрату; его длина достигает 50 см, редко больше (до 2 м). Он сложен из одного или двух слоев клеток, содержащих по одному звездчатому хлоропласту. У порфиры фибриллярная часть клеточной стенки состоит из β-1,3-связанного ксилина (полимер ксилоэы), а аморфная фракция состоит из маннанов, в то время как у ее спорофита (стадия конхоцелис) фибриллярная фракция представлена целлюлозой, а аморфная состоит из галактанов.

При образовании сперматангиев клетки таллома порфиры делятся во взаимно перпендикулярных направлениях на ряд мелких клеток, каждая из которых дает по одному сперматозоиду (рис. 43, Б). При разбухании интерцеллюлярной слизи сперматозоиды выдавливаются и освобождаются.

Карпогонны лишь незначительно отличаются от вегетативных клеток. Типичная трихогина отсутствует. После оплодотворения зигота (оплодотворенный карпогон) непосредственно делится на 2—32 карпоспоры (рис. 43, Б), которые освобождаются так же, как сперматозоиды, — благодаря набуханию межклеточной слизи. Карпоспоры сначала голье, но через несколько дней прикрываются обо-

Рис. 43. Porphyra.
A — внешний вид; Б — разрез таллома со сперматангиями; В — разрез таллома с карпогонами, содержимое которых после оплодотворения делится с образованием карпоспор; Г — стадия Conchocelis
ПОРЯДОК КОМПСОПОГОНОВЫЕ
(COMPSOPOGONALES)

Типичный представитель порядка — пресноводный род компсопогон (Compso-
pogon), широко распространенный в тропиках. Эта водоросль была занесена с аквариумными растениями и стала довольно обычным обитателем аквариумов в нашей стране. Таллом гетеротрихальный. От нитей, стелящихся по субстрату и срастающихся боковыми сторонами с образованием диска, отходят вертикальные моноподиально ветвящиеся нити, достигающие нескольких сантиметров в высоту. Молодые части вертикальных нитей состоят из одного ряда плоских клеток. В более старых частях таллома вокруг клеток, составляющих нить, образуется кора таким образом, что от каждой клетки продольными перегородками последовательно отчленяются перицентральные (peri-ferri-
ческие) клетки. Последние, делясь, образуют сплошную мелкоклеточную кору, которая окружает крупноклеточную центральную ось (рис. 44, A). Таллом компсопогона имеет голубовато-стальную окраску благодаря преобла-
данию в хлоропластах фикоцианина. Хлоро-
пласты имеют вид париетальных лент, легко распадающихся на отдельные диски. Клетки содержат одно крупное ядро. Размножение моноспорами. Миноспорантии отчленяются косо идущей перегородкой от любой клетки таллома и имеют зернистое (от обилия баг-
рянкового крахмала) содержимое, которое пре-
вращается в одну неподвижную моноспору (рис. 44, B, B). Миноспора освобождается че-
рез разрыв в оболочке спорантия, одевается оболочкой и прорастает в новый таллом.
ПОРЯДОК НЕМАЛИЕВЫЕ
(NEMALIALES)

Примером красной водоросли с многоосевым строением может служить морской род немалион (Nemalion). В слабоветвящихся розового цвета слизистых шнуровидных талломах немалиона центральная часть занята пучком продольных нитей, состоящих из вытянутых клеток, от которых радиально расходятся обильно ветвящиеся, богатые хлоропластами нити — ассимиляторы, соединенные слизью мягкой консистенции (рис. 45). Половые органы развиваются на ассимиляторах. Карпоспорофит и карпоспоры у немалиона диплоидны. Карпоспоры прорастают в диплоидный нитчатый ветвящийся тетраспорофит. Имеется гетероморфная смена жизненных форм.

Рис. 45. Nemalion.
A — внешний вид таллома;
B — поперечный разрез таллома

ПОРЯДОК БАТРАХОСПЕРМОВЫЕ
(BATRACHOSPERMALES)

Порядок был описан для трех пресноводных семейств из порядка немалиевых на основании уникального типа жизненного цикла, когда гаметофит возникает непосредственно на диплоидном спорофите в результате соматической
редукции. Кроме того, их отличает от немалевых тип порового соединения одноносевых представителей. В то же время, как и у немалевых, у них отсутствуют ауксилярные клетки, гонимобласты развиваются непосредственно из оплодотворенного карпогона.

Род батрахоспермум (Batrachospermum, рис. 46) встречается в ручьях и реках с чистой прозрачной водой, в болотах, озерах. Таллом в виде сильноразветленного, слизистого на ощупь кустика, достигающего до 40 см в высоту, оливково-зеленого или стального цвета (избыток фикоцианина). Ось, состоящая из одного ряда вытянутых бесцветных клеток, неограниченно нарастает за счет деятельности верхушечной клетки, от каждой из клеток оси непосредственно под поперечной перегородкой возникает мутовка ветвей ограниченного роста, которые сложены из мелких, богатых хлоропластами клеток. Конечные клетки ветвей могут вытягиваться в длинные волоски. Из базальных клеток боковых ветвей (ассимилиаторов) развиваются ветви неограниченного роста. Кроме того, базальные клетки мутовок ветвей дают начало кортикальным (коровым) нитям, которые растут вдоль клеток главной оси, полностью скрывая их, и у некоторых видов, переплетаясь, образуют многослойную обертку. Клетки коровых нитей дают начало вторичным

Рис. 46. Batrachospermum.
A — внешний вид таллома;
B — часть таллома с «цистокарпиями»
мутовкам боковых ветвей, которые вставляются между уже имеющимися. На боко-
вых ветвях ограниченного роста (ассимиляторах) формируются половье органы.
Карпогон с треххигиной; после оплодотворения из брюшка карпогона выра-
ставают ветвящиеся гонимобласты, конечные клетки которых дают карпоспоры,
собранные в тесную группу (рис. 46, Б). Совокупность карпоспорангий имеет
вид плодов малины и часто неправильно называется цистокарпием (в отличие
от настоящего цистокарпия у него отсутствует оболочка). Из карпоспор развиваят
ся полужиче нити, которые ранее были описаны под родовым названием
шантранзия (Chantransia). Она может размножаться посредством моноспор (рис. 47).
При благоприятных условиях из верхушечных клеток шантранзии могут выраста
типечные талломы батрахоспермума. Причем мейоз происходит в апикальной
клетке шантранзии или того, что морфологически уже является гаметофиитной
стадией. Таким образом, здесь мейоз соматический и не связан с образованием
спор или гамет (рис. 48).

Рис. 47. Chantransia. Часть таллома

Рис. 48. Апикальная клетка и латеральные остаточные ядра после соматического мейоза

Род леманеа (Lemanea) встречается в быстро текущих речках с холодной во-
дой. Таллом, имеющий вид неветвящейся щетинки 10—15 см длиной и 1 мм
толщиной, темно-фиолетового или оливково-бурого цвета с узловатыми вздутия-
ми. Прикрепляется к субстрату при помощи подошвы из стелющихся нитей.
По оси таллома проходит одна нить из вытянутых бесцветных клеток. От верхне-
й части каждой клетки центральной оси отходит мутовка большей частью из
четырех расходящихся по радиусам ветвей. Базальные клетки каждой такой ветви
крупные, вытянутые. От их дистального (морфологически верхнего) конца отхо-
дят ветви второго порядка, которые в свою очередь многократно ветвятся.
Конечные разветвления срастаются в многослойную кору. Ее наружные клетки
мелкие и заполнены хлоропластами, внутренние — крупные и почти бесцветные.
От проксимальных (морфологически нижних) концов основных клеток ра-
диальных ветвей отходят коровые нити, окутывающие центральную нить
(рис. 49, A—Б). Сперматангии образуются группами из поверхностных клеток коры
(рис. 49, Г). Карпогонные ветви, несущие карпогоны, развиваются из внутрен-
них клеток коры. Брюшко карпогона находится около внутренней поверхности
коры, а треххигина прорывает кору и высывается наружу (рис. 49, Б). После
оплодотворения из брюшной части карпогона формируются пучки гонимобластов, врастающие в полость таллома. Карпоспорангии образуются целыми цепочками, карпоспоры скапливаются внутри полости таллома и освобождаются после разрушения коры таллома. Карпоспоры прорастают с образованием нитчатого таллома, в апикальной клетке которого происходит редукционное деление. Из апикальной клетки после мейоза развивается гаплоидное растение — гамето-фит леманеи, на котором формируются половые органы.

ПОРЯДОК КОРАЛЛИНОВЫЕ
(CORALLINALES)

Для представителей порядка характерны многоосевые талломы, в клеточных стенках которых откладывается карбонат кальция. Органы полового и бесполого размножения формируются в особых углублениях — концептакулах. Жизненный цикл спорический с изоморфной сменой форм развития.
Примером может служить род кораллина (Corallina), распространенный во всех морях, особенно в тропиках. Вертикально стоящие кусты ветвятся преимуще-
ственнов в одной плоскости (рис. 50, А). Ветви состоят из сильно пропитанных известковь щи членников, соединенных друг с другом сочленениями с малым содержанием известков, что придает всему кусту гибкость, помогающую противостоять действию волн. Если декальцинировать таллом (подействовать соляной кислотой), то можно видеть, что вдоль ветвей проходят много (целый пучок) нитей, неограниченно нарастающих и сложенных из длинных бесцветных клеток. От этих осевых нитей по радиусам отходят ветви, срастающиеся в кору. В местах сочленений (рис. 50, Б) центральные оси остаются неразветвленными. На верхушке пучок центральных нитей разделяется обычно на три части, которые далее растут, как ветви. Органы размножения у кораллины (сперматангии, карпогонь, тетраспорантии) развиваются всегда на разных индивидах (мужском, женском гаметофилах, на тетраспорофитах) на концах ветвей в особых углублениях — концептакулах, сообщающихся с внешней средой посредством узкого отверстия (рис. 50, В, Г). Пропитанные известковь талломы кораллины наряду с такими же талломами сифоновых водорослей участвуют в образовании коралловых рифов.

Рис. 50. Corallina.
А — внешний вид; Б — членники с промежуточными сочленениями; В — концептакул со сперматангиями; Г — концептакул с тетраспорангиями

Рис. 51. Lithothamnion — внешний вид таллома

У рода литотамнцион (Lithothamnion) многоэтажный таллом, также пропитанный известковь, образует на камнях плотные розовые корочки (рис. 51). Особеннов распространенный в северных морях, часто на больших глубинах.
ПОРЯДОК ПАЛЬМАРИЕВЫЕ
(PALMARIALES)

Порядок был установлен для нескольких таксонов, ранее относимых к порядку родименевые. Пальмариевые отличаются своеобразным жизненным циклом (рис. 52, А), при котором морфологически схожи только тетраспорофит и мужской гаметофит, а женский гаметофит сильно редуцирован и отсутствует стадия карпоспорофита. Для них характерны тетраспорангии, способные к пролиферации и формирующиеся на клетке-ножке (рис. 52, Б).

Род пальмария (Palmaria) имеет многоосевое псевдопаренхиматозное слое-вище в виде пластинки. Клиновидные, листовидные до линейных пластинки пальмарии часто рассечены на лопасти. Так выглядят мужские гаметофиты и тетраспорофиты. Женские гаметофиты имеют вид карликовых дисков, на которых после оплодотворения развиваются пластинчатые талломы тетраспорофита. В северных морях России распространена пальмария длиннелистная — P. palmata. В ряде стран эту водоросль употребляют в пищу, в Исландии используют для стойлового откорма коров.
ПОРЯДОК АНФЕЛЬЦИЕВЫЕ
(AHNFELTIALES)

Род анфельция (Ahnfeltia) был выделен в новый порядок из порядка гигартиновые на основании полностью внешних карпоспорофитов, отсутствия сперматангиев, гетероморфного полового жизненного цикла с тетраспорофитом, ранее описанным как самостоятельный род порфириодискус (Porphyrodiscus). Талломы хрящеватые, обычно сильно дихотомические или неправильно разветвлённые, часто с короткими боковыми веточками; прикрепляются подошвой или ризоидообразными веточками (рис. 53). В женских сорусах на верхушках нитей формируются карпогонь. Их содержимое сливается с неспециализированной вегетативной клеткой. Из оплодотворенного карпогона развиваются гонимобласты. При прорастании карпоспор формируется корочковидный тетраспорофит. В России встречается в северных и дальневосточных морях в литоральной и сулблиторальной зонах на каменистых и песчанных грунтах; промышленный агарофит.

ПОРЯДОК ЦЕРАМИЕВЫЕ
(CERAMIALES)

Порядок церамиевые, наиболее высокоорганизованный и богатый видами, характеризуется тем, что ауксилярные клетки дифференцируются только после того, как произошло оплодотворение карпогона и в непосредственной близости от последнего, т.е. имеется прокарпий (рис. 54, B). Длинные обобщественные нити здесь не образуются: брюшко карпогона или непосредственно сливается с рядом расположенной ауксилярной клеткой (клетками), или через короткие выросты, формируя цистокарпии (рис. 54, B). Жизненный цикл спорический с изоморфной сменой генераций.

Простейшие представители, например род калитамнион (Callithamnion), имеют таллом в виде разветвленного кустика, сложенного из одного ряда многоядерных клеток (рис. 54, A). Другие представители имеют внешне более сложные, морфологически расчленённые талломы, которые, однако, легко свести к одноосовому типу. Например, у рода делесерия (Delesseria) таллом в виде ярко-красных «листьев» с перистым жилкованием (рис. 55) образован срастанием боковых ветвей одной главной оси.

В качестве типичного представителя порядка подробнее можно рассмотреть род полицифона (Polysiphonia), широко распространённый как в южных, так и в северных морях. Таллом имеет вид разветвленного кустика до 25 см высотой, ветви которого заканчиваются ве хушечной клеткой, отчленяющейся сегменты.
На некотором расстоянии от верхушечной клетки сегменты претерпевают последовательные деления продольными перегородками, в результате чего от центральной клетки отклоняется ряд (4—25) периферических перикентральных клеток. Таким образом, в более старых частях таллома клетки центральной оси (центрального сифона) окружены перикентральными коровыми клетками (рис. 56, A, Б). У некоторых видов перикентральные клетки делятся с образованием многослойной коры.

Рис. 54. Callithamnion.
A — общий вид таллома; B — прокарпий, В — цистокарпий
На гаметофитах (мужском и женском) половые органы возникают на особых веточках таллома — трихобластах, имеющих моносифоновое строение (один ряд клеток, не окруженных перикентральными клетками). Плодящая часть мужского трихобласта становится полисифоновой, т.е. клетки отчленяют продольными перегородками перикентральные клетки, которые становятся материнскими клетками сперматангив. От них отпочковываются мелкие сперматангиальные клетки (рис. 56, Г). Клетки плодящей части женского трихобласта отчленяют пять перикентральных клеток, от одной из которых развивается карпогонная ветвь с карпогоном, а после оплодотворения отклоняется ауксилярная клетка; остальные перикентральные клетки дают начало нитям, которые образуют вокруг прокарпию и развивающихся карпоспор (цистокарпия) псевдопаренихиматозную оболочку с отверстием на вершине (рис. 56, Д). Из цистокарпии по созревании выпадают карпоспоры, которые развиваются в тетраспорофиты, морфологически сходные с гаметофитами. На тетраспорофите образуются тетраспорангии, в которые превращаются перикентральные клетки. В тетраспорангиях развиваются по четыре расположенных по углам тетраздра тетраспоры (рис. 56, В).

Таким образом, у полисифонии наблюдается изоморфная смена генераций, усложненная диплонтным карпоспорофитом (рис. 57).

Красные водоросли находят довольно большое применение в хозяйстве человека: из них вырабатывают студенистое вещество —agar-agar, применяемое в кондитерской промышленности и ряде других отраслей промышленности, а также в лабораторной микробиологической технике для приготовления твердых питательных сред. Некоторые, например порфира, употребляются в пищу.

На основе сравнения последовательностей ряда генов показано, что пластиды криптофитовых, гаптофитовых и охрофитовых произошли в результате вторичного симбиоза эукариотного гетеротрофного протиста с красной водорослью. Нет единой точки зрения по вопросу об эволюции системы импорта пластид для этих отделов водорослей. Существует точка зрения о единственно вторичном эндосимбиозе, который дал хлоропласты для этих водорослей. В противовес этой точке зрения существует мнение о независимом происхождении пластид для криптофитов, гаптофитов и охрофитов.
Рис. 56. Polysiphonia.

A — схема строения ветви с однослоиной корой; B — поперечный разрез ветви с многослойной корой; В — тетраспорофит с тетраспорангиями;
Γ — собрание сперматангийев; Д — зрелый цистокарпий
Рис. 57. Жизненный цикл *Polysiphonia* (по: Саут, Уиттик, 1990)

ОТДЕЛ ЗЕЛЕНЫЕ ВОДОРОСЛИ (CHLOROPHYTA)

Отдел зеленые водоросли* во многом занимает центральное положение в системе водорослей в целом, что диктуется следующими обстоятельствами:

1) эта обширная группа (по современным данным, около 20 тыс. видов) отличается огромным разнообразием строения таллома своих представителей; здесь есть одноклеточные подвижные и неподвижные, нитчатые, гетеротрихальные и другие формы;

* Следует отметить, что научные названия отдела Chlorophyta и класса Chlorophyceae явно неудачны, так как первое означает «зеленые растения» (тогда как все высшие растения — тоже зеленые растения), а второе означает «зеленые водоросли» (тогда как имеется множество других зеленых водорослей). В связи с этим предлагались различные альтернативные варианты, но единства мнений здесь пока не достигнуто.
2) представители отдела очень широко распространены в самых разных водоемах, особенно пресных, а также во внешних местообитаниях, так что встретить многие из них в природе не представляет большого труда;
3) зеленые водоросли — предки высших растений, представляющие одну крупнейшую эволюционную линию растений; в этом плане зеленые водоросли представляют немальный теоретический интерес;
4) некоторые зеленые водоросли очень широко используются как объекты экспериментальных биологических исследований.

Как уже упоминалось, строение вегетативного тела представителей отдела может быть самым различным. Относящиеся к нему водоросли стоят на самых разных ступенях морфологической дифференциации таллома: монадной, пальмелоидной, коккоидной, нитчатой, разнонитчатой (гетеротрихальной), паренхиматозной, псевдопаренхиматозной, сифоновой, сифонокладальной. Неизвестны, правда, амёбоидные (ризоподиальные) представители. Нет также и крупных форм с тканевой дифференциацией таллома, как у бурых водорослей. В то же время здесь очень широко представлена сифоновая (сифональная) организация, известная еще только у некоторых желтоzelенных водорослей, а сифонокладальная организация встречается только у зеленых водорослей. Кроме того, у зеленых водорослей бывают колонии (пачки или нитевидные образования), возникающие в результате деления одной исходной клетки и заключенные в ее растягивающуюся оболочку. Такое строение часто рассматриваются как особый тип дифференциации таллома — сарциноидный. Очень многие зеленые водоросли — типичные микробифты, т.е. обладают микроскопическими размерами, но имеют и достаточно крупные формы: например, обитающая у берегов Мексики морская сифоновая водоросль кодиум большой (Codium magnum) имеет таллом, который при ширине 25 см может достигать в длину более 8 м.

Клетка обычно покрыта жесткой оболочкой. В большинстве случаев она целлюлозная, но часто имеет другой состав, например гетероглюкановый. Хлоропласти могут иметь самую разную форму. У очень многих представителей хлоропласт один. Чаще хлоропласт располагается по периферии клетки, но у некоторых занимает центральное положение. Встречаются также и клетки с многими мелкими хлоропластами. Хлоропласт чисто зеленого («травяного») цвета. Эта окраска обусловлена хлорофиллами a и b (находящимися в тех же пропорциях, что и у высших растений), которые преобладают над каротиноидами: α- и β-каротином, лютеином, неоксантином, виолаксантином, зеаксантином, антраксантином. Хлоропласти, как и у высших растений, окружены оболочкой из двух мембран, «хлоропластной эндоплазматической сети» нет. Тилакоиды группируются в граны по 2—6 и больше; если один тилакоид принадлежит сразу двум гранам, последние иногда называют «пseudogranы». Пиреноид погружен в строму хлороплакста и пронизан тилакоидами. Запасной продукт — чаще всего крахмал. Он откладывается внутри хлороплакста — вокруг пиреноида и в строе. Глазок (стигма) находится внутри хлороплакста и не связан со жгутиковым аппаратом. У большинства видов значительная часть клетки занята крупной вакуолью с клеточным соком.
Митоз в деталях протекает несколько по-разному. У одних водорослей центриоли имеются (роды *Hydrodictyon, Scenedesmus, Chlorella, Klebsormidium*), у других (*Oedogonium, Conjugatophyceae*) отсутствуют. То же касается и кинетохоров (участков хромосом, к которым прикрепляются микротрубочки веретена). Они описаны у видов родов *Hydrodictyon, Cladophora, Oedogonium, Spirogyra* и не наблюдались у видов родов *Chlamydomonas, Ulva*. У представителей родов *Oedogonium, Stigeoclonium, Ulothrix, Acetabularia* ядерная оболочка на протяжении всего митоза интактна и веретено полностью интрануклеарное (закрытое); у других зеленых водорослей, например видов родов *Chlamydomonas* или *Hydrodictyon*, в оболочке ядра возникают поперечные отверстия, через которые центриоли и экстракулеарные вначале микротрубочки перемещаются в ядро, и веретено становится интрануклеарным (полузакрытое веретено); наконец, у представителей подотдела Charophyta, как и в высших растениях, ядерная оболочка полностью исчезает к поздней профазе и отсутствует до ранней телофазы; веретено открытое. Для изученных до сих пор хлорококковых характерно развитие вокруг ядра перинуклеарной обвертки (чехла эндоплазматической сети) еще до митоза, которая сохраняется до телофазы.

Электронно-микроскопическими исследованиями обнаружено значительное разнообразие в структуре цитокинетического аппарата. У сравнительно немногих зеленых водорослей (представителей подотдела Charophyta), как и у высших растений, после анафазы митоза, когда хромосомы движутся к полюсам и телофазные ядра, далеко раздвинутые, реконструируются, между полюсами веретена остаются натянутыми непрерывные, так называемые интерзональные волокна. В экваториальной плоскости веретена образуются микротрубочки, расположенные параллельно этим волокнам и перпендикулярно плоскости будущего цитокинеза. Эта система микротрубочек называется фрагмопластом. Сохраняющаяся интерзональное веретено и фрагмопласт удерживают дочерние ядра далеко раздвинутыми в тот момент, когда между ними образуется поперечная перегородка.

У большинства других до сих пор исследованных зеленых водорослей иная цитокинетическая система: после телофазы интерзональные волокна разрушаются, далеко раздвинутые вначале дочерние ядра сходятся, так что оказываются прямыми друг к другу. Между ними возникают микротрубочки, ориентированные под прямым углом к митотическому веретену и, следовательно, параллельно плоскости предстоящего цитокинеза. Система таких микротрубочек называется фикопластом. Ее назначение — определить правильное направление растущей перегородки, чтобы та прошла между дочерними ядрами и разделила дочерние клетки.

Фикопластная система обнаружена у вольвоксовых (*Chlamydomonas, Tetraspora*), хлорококковых (*Kirchneriella, Tetraedron, Ankistrodesmus, Scenedesmus*), элгониевых (*Oedogonium, Bulbochaete*), некоторых представителей улотриковых (*Ulothrix*), хетофоровых (*Stigeoclonium*). Независимо от того, какая система микротрубочек — фрагмо- или фикопласт — развивается, сам цитокинез происходит двояко: или посредством инвагинации плазмалеммы и центрипетального (от периферии внутрь клетки) разрастания борозды дробления, или же путем образования срединной (клеточной) пластинки — полужидкого слоя, возникающего
за счет слияния пузырьков — дериватов диктиосом. Клеточная пластинка разрastaется центрифугально — по направлению к периферии клетки благодаря включению в нее дополнительных пузырьков, происходящих от аппарата Гольджи, и наконец достигает продольной стенки материнской клетки, сливаясь с ней. Позднее на срединную пластинку откладывается клеточная стенка, завершающая деление клетки. Цитокинез у спирогиты занимает промежуточное положение между этими двумя типами деления. После деления ядра новая поперечная стенка закладывается в виде кольца клеточной стенки, которое распространяется центрифугально, перерезая вакуоль с клеточным соком. Когда септа наполовину готова, цитоплазматические тяжи, соединяющие дочерние ядра, вздуваются в центре, соединяются с цитоплазмой, смещаемой растущей септой, и, сливаюсь, образуют между ядрами цилиндр цитоплазмы. Поперек отверстия септы в цитоплазме собираются пузырьки, в результате слияния которых формируется клеточная пластинка, разрастающаяся центрифугально. В цитоплазматическом тяже, связывающем дочерние ядра, наблюдаются продольно ориентированные микротрубочки — фрагмопластоподобное образование.

Фрагмопласт в сочетании с клеточной пластинкой имеется у харовых водорослей; системой клеточной пластинки — фикопласт обладают Ulothrix fimбриата, Stigeoclonium helveticum, Fritschiella tuberosa (фикопластные микротрубочки у F. tuberosa не описаны, но близкое расположение телофатических ядер предполагает их присутствие), а также тетраспора, эдогониум, хлорелла, сценедесмус и др. Фрагмопласт и центрителльно разрастающийся борозда дробления описаны у ряда видов клебсомициума (K. flaccidum, K. subtilissimum). Сочетание борозды дробления и фикоплазма наблюдается у микроспоры, уроспоры. У некоторых водорослей (Cylindrocapsa, Ulva, Dictyosphaeria) борозда дробления при делении клетки врастает без участия каких-либо микротрубочек; у них не отмечалось образования ни фикоплазма, ни фрагмоплазма.

У водорослей с сифонокладальной организацией таллома наблюдается особый тип септирования таллома, известный как сегрегативное клеточное деление. Например, у диктиосферии многоядерный протопласт в первоначально сифоновом талломе (пузыре) раскальвается на многочисленные многоядерные цитоплазматические массы различного размера, из которых каждая секретирует клеточную стенку, а затем увеличивается в размерах до тех пор, пока не придет в соприкосновение с такими же соседними клетками внутри материнской клеточной стенки.

Жгутиков у подвижных клеток чаще всего 2, реже — 1, 4 или много (при мерно до 120); во всех случаях они одинакового размера (соответственно монадные формы или стадии называют изоконтными) и одинакового строения (изоморфные). В поле светового микроскопа они выглядят гладкими, электронный микроскоп выявляет наличие тонких волосков («войлока») или чешуек. Трехчастные мастигонемы у жгутиков не встречаются. В зоне выхода жгутиков из клетки находится девятиконечное звездчатое тело. Жгутики могут быть ориентированы относительно друг друга по часовой стрелке («1/7»), против часовой стрелки («11/5»), они могут также находиться на одной линии («12/6») или оба смотреть в одну сторону.
В отделе широко представлены различные варианты вегетативного, бесполого и полового размножения. Встречаются и самые разные циклы развития.

Вегетативное размножение осуществляется в основном делением отдельных клеток или за счет разрыва нитей, бесполое (споровое) размножение — обычно подвижными зооспорами, реже неподвижными апланоспорами. Половой процесс — иозгамия, гетерогамия, оогамия (чаще всего), конъюгация. Большинство представителей отдела — гаплontы, но есть также диплоэты и виды с изо- и гетероморфной сменой генераций.

Представители отдела распространены повсеместно. Преимущественно они встречаются в пресной воде, но есть также немало и морских видов, а также видов, обитающих вне воды: в почве, на стволах деревьев, скалах, на поверхности снега и т.д. Многие зеленые водоросли вступают в симбиотические отношения с другими организмами — грибами (образуя лишайники) и различными животными.

До недавнего времени классификация зеленых водорослей строилась исключительно на внешних особенностях. В этой системе отдел традиционно делился на 3 класса. Основную часть его составлял класс собственно зеленые водоросли (Chlorophyceae). На него во многом распространялась общая характеристика отдела. Класс конъюгаты (Zygophyceae, или Conjugatophyceae) отличался половым процессом — конъюгацией, а класс харовые (Charophyceae) — сложной морфологической дифференциацией гетеротрихального таллома и многоклеточными плавовыми органами. В 1962 г. был выделен из класса собственно зеленых водорослей класс праизинофиты (Prasinophyceae), объединяющий преимущественно монадные формы с чешуйками на теле и жгутиках.

В последней четверти XX в. была разработана принципиально новая система отдела Chlorophyta. В основу ее легли критерии, не привлекавшиеся ранее для классификации зеленых или каких-либо еще водорослей. Это детали строения жгутикового аппарата (прежде всего взаимное расположение жгутиков) и особенности ядерного и клеточного деления. Данные молекулярной систематики полностью подтверждают получаемую таким образом схему классификации. Следует, однако, помнить, что подобные признаки выявлены у отдельных, сравнительно немногих видов, а не изученные в этом плане виды сгруппированы с изученными по внешним признакам. Два класса — конъюгаты и хары — практически сохраняли свой прежний статус*, тогда как собственно зеленые водоросли распались по двум подотделам и нескольким классам. Они были подвергнуты столь серьезной перестройке, что два вида, ранее относившиеся к одному роду, могли оказаться в разных классах. Класс праизинофитов в некоторых современных системах еще сохраняется, но он явно гетерогенен, так что вполне оправдано его расформирование.

Две основные эволюционные линии Chlorophyta (подотделы) различаются не только по особенностям жгутикового аппарата, митоза и цитокинеза. Есть различия и в кардинальных особенностях метаболизма. Так, конечный продукт окисления углеводов у растений — щавелевая кислота. Биологическое окисление может проходить двояко:

* В некоторых современных системах эти два класса, несмотря на большое несходство в строении, объединяются в один с сокращением названия Charophyceae).
1) отщеплением водорода с помощью ферментов дегидрогеназ — этот путь присущ подотделу Chlorophytina:

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{COOH} \\
\mid & + \text{De} \rightarrow & \mid \\
\text{COOH} & \quad \text{COOH}
\end{align*}
\]

гликолевая кислота шавелевая кислота

De — гликолатдегидрогеназа

2) присоединением кислорода с помощью ферментов оксидаз:

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{CHO} \\
\mid & + \text{O}_2 \rightarrow & \mid + \text{H}_2\text{O}_2 \\
\text{COOH} & \quad \text{COOH}
\end{align*}
\]

гликолевая кислота глиоксиловая кислота

В этой реакции образуется перекись водорода — активный окислитель, способный вызвать повреждение в клетке.

С помощью фермента пероксидазы атом кислорода перекиси водорода используется для дальнейшего окисления глиоксиловой кислоты, в результате чего нейтрализуется вредный продукт реакции, а в клетке образуются шавелевая кислота и вода. Такой путь окисления характерен для подотдела Charophytina и всех высших растений, в обмене веществ которых, следовательно, участвует пероксидаза. Она локализована в особых мембранных пузырьках — пероксисомах. С помощью специальных красителей пероксисомы можно увидеть на электронном микроскопическом снимках.

ПОДОТДЕЛ CHLOROPHYTINA

Подотдел объединяет формы самого различного облика и строения, но не достигающие такого высокого уровня организации, как харовые. Митоз закрытый, с сохраняющимся или несохраняющимся телофазным веретеном. Жгутики со сдвигом «1/7» или «11/5», у очень немногих они на одной линии («12/6»). Обитатели пресных и морских вод, почвы, скал, снега и других субстратов. Сюда же относятся и симбионты, в частности подавляющее большинство фотобионтов лишайни ов.
Класс праэнофциеве, или праэнофты
(Prasinophyceae)

Класс праэнофты является, несомненно, сборной группой, однако до сих пор он обычно рассматривается как один из таксонов зеленых водорослей. Этот класс объединяет моначные, реже пальмелоидные и коккоидные формы.
Клетки и жгутики праэнофтов покрыты чешуйками; цитокинез у многих видов с фикопластом. Некоторые праэнофты (Tetraselmis) имеют клетки, покрытые теками, сходные с оболочками хламидомонад. Жгутики у этих водорослей находятся в одной плоскости (конфигурация «12/6») (рис. 58, B). Следовательно, зеленые водоросли из подотдела Chlorophytina, имея общего предка, рано разошлись, дав начало классам Chlorophyceae (конфигурация базальных тел жгутиков «1/7», рис. 58, B) и Ulvophyceae (конфигурация «11/5», рис. 58, A).

Рис. 58. Разные варианты (A—B) расположения жгутиковых корней у Chlorophytina

Цитокинез у многих видов — с фрагмопластом, что указывает на их сходство с эволюционной линией Charophytina. Высказано предположение о происхождении Charophytina от одноклеточных праэнофтов типа Pyramimonas или Nephroselmis, имеющих боковое расположение жгутиков и жгутиковые корни в виде ленты (рис. 59).
Большинство праэнофтов — свободноживущие обитатели морей, солоноватых и пресных вод. Некоторые — симбионты, например тетрасельмис (Tetraselmis) — симбионт морского плоского черва конволюты Convoluta.
Класс собственно зеленые водоросли (Chlorophyceae)

Класс представлен формами, имеющими разные типы организации таллома: монадные, пальмелоидные, коккоидные, нитчатые, гетеротрихальные.

У подвижных стадий (зоидов) ориентация жгутиков «1/7» или (у немногих) «12/6»; у представителей одного из порядков жгутики стефаноконтные. Обычно имеется ризопласт — структура, связывающая базальные тельца жгутиков с ядерной оболочкой. Имеется поперечно-полосатое соединение базальных телец между собой.

При митозе телофазное веретено не сохраняется. Нити веретена в анафазе всегда укорачиваются. Деление клетки происходит бороздой или с образованием пластинки (от гладкой эндоплазматической сети или от аппарата Гольджи), но всегда (насколько известно) с участием фикоплазма — пластинки из микротрубочек, располагающихся в плоскости деления. Наличие этой структуры у представителей только данного класса говорит о том, что он, по-видимому, является тупиковой ветвью эволюции, не давшей ни одной из известных более высокоорганизованных групп организмов.

Жизненные циклы, где они изучены, гаплоидные, с зиготической редукцией. Почти исключительно пресноводные формы, хотя некоторые одноклеточные планктонные виды встречаются в прибрежных зонах морей. Есть даже обитатели гиперталлиевых (сильносолёных) вод. Некоторые виды встречаются вне воды, причем иногда даже в условиях очень сухого климата.

В классе собственно зеленые водоросли рассмотрены порядки: вольвоксовые, хлорококковые, эдогониевые, хетофоровые.

ПОРЯДОК ВОЛЬВОКОВЫЕ (VOLVOCALES)

Порядок объединяет одноклеточные, колониальные и ценобиальные монадные формы. Они подвижны в течение всей жизни и только при наступлении неблагоприятных условий (например, подсыхании) могут переходить в пальмелоидное состояние. Некоторые представители порядка (иногда выделяемые в отдельный порядок Tetrasporales) постоянно существуют в пальмелоидном состоянии. Зоиды у многих имеют желтую клеточную стенку. Ценобии могут быть плоскими или объемными. При развитии объемных ценобиев сначала образуется пластинка из 4, затем 8 клеток. Далее пластинка искривляется до тех пор, пока не образуется полая сфера с маленьким незамыкающимся отверстием. При этом передние концы клеток, где должны возникнуть жгутики, обращены внутрь сферы, впоследствии сфера полностью выворачивается наизнанку. Клетки образуют жгутики.

Типичные представители — одноклеточные водоросли из рода хламидомонада (Chlamydomonas, рис. 60), многочисленные виды которого обитают в лужах, канавах и других мелких пресных водоемах. При их массовом развитии вода нередко принимает зеленую окраску. Сферическая или эллипсоидная клетка,
одетая оболочкой, плотно прилегающей к протопласту или (у более старых особей) несколько отстающей от него в задней части, несет на своем переднем конце два жгутика, с помощью которых она плавает в воде. Протопласт содержит одно ядро, обычно чашевидный хлоропласт, в который погружены пиреноид и глазок, и сократительные вакуоли, находящиеся в передней части клетки.

Рис. 60. Chlamydomonas.
A — вегетативная особь; B — пальмельвидная стадия; B — начало бесполого размножения; Г — молодые особи внутри материнской клетки

При подсыхании водоема хламидомонады легко переходят в пальмельвидное состояние: клетки втягивают жгутики, стенка их ослизняется, и в таком неподвижном состоянии клетки размножаются. Стенки дочерних клеток также ослизняются, и таким образом получается система вложенных друг в друга слизистых оберток, в которых группами расположены неподвижные клетки (рис. 60, B). При этом клетки сохраняют свои пульсирующие вакуоли и глазки. При перенесении в воду клетки снова вырабатывают жгутики и возвращаются к монадному состоянию. Легкость перехода из пальмельвидного состояния в монадное у разных видов неодинакова. Некоторые хламидомонады (C. kleinii) большую часть жизни проводят в пальмельвидном состоянии.

Близки к хламидомонаде род картерия (Carteria), клетка которого несет четыре жгутика, и род хлорогониум (Chlorogonium), имеющий сильно вытянутое в длину веретеновидное, иногда игловидное тело с двумя жгутиками.

В благоприятных условиях хламидомонада и другие одноклеточные вольвообразные интенсивно размножаются бесполым путем. Обычно клетки при этом останавливаются, и протопласт, несколько отстав от стенки, последовательно делится продольно на две, четыре или восемь частей (рис. 60, B, Г). Дочерние клетки (рис. 60, Г) вырабатывают жгутики и выходят наружу после ослизнения стенок материнской клетки в виде зооспор, одетых оболочкой. Они отличаются от материнской клетки только меньшими размерами. После непродолжительного роста эти клетки сами приступают к такому же размножению.
Отдел зеленые водоросли (Chlorophyta)

Имеется и половой процесс. У большинства видов одноклеточных вольвоксов он изогамный. Гаметы образуются внутри материнской клетки так же, как зооспоры, но в большем количестве (32—64) и соответственно меньших размеров (рис. 61, A, B).

Рис. 61. Chlamydomonas — половой процесс.
A — образование изогамет; B — изогамия у C. steinitz; B — гетерогамия у C. braunii;
Г — оогамия у C. coccifera; Д — мужская гамета у C. coccifera; Е — зигота

У некоторых одноклеточных вольвоксов наблюдаетеся гетерогамия и даже оогамия. Так, у Chlamydomonas braunii половой процесс оогамный: крупные женские гаметы, образующиеся в материнской клетке в числе четырех, сливаются с мелкими мужскими гаметами, возникающими в клетке в числе восьми (рис. 61, В). У C. coccifera половой процесс тоже оогамный. Здесь одни клетки теряют жгути и целиком превращаются в неподвижные яйцеклетки, в других же клетках формируется большое количество мелких двужгутиковых мужских гамет, которые и оплодотворяют яйцеклетки (рис. 61, Г). Оогамный половой процесс встречается и у некоторых других одноклеточных вольвоксов.

У многих видов рода Chlamydomonas наблюдается гетероталлизм. Он начинается с образования групп — агрегации (скопления) гамет противоположных половых знаков. Если гаметы одного знака движутся беспорядочно, равномерно заполняя всё поле зрения, то при добавлении в каплю с ними гамет противоположного знака в поле зрения появляются отдельные скопления гамет — группы. В группах гаметы сначала склеиваются попарно своими жгутиками, после чего активируется автолитическая система клеток, растворяющая стенки гамет. После этого гаметы сливаются, образуя зиготу. Некоторые вещества, ингибирующие автолиз клеточных стенок гамет, подавляют и образование зигот. Как показали электроно-микроскопические исследования, у некоторых видов (например, Ch. reinhardtii) гаметы соединяются посредством оплодотворяющей трубки (вырастающей от переднего конца между жгутами одной из сливающихся гамет, рис. 62), у других же видов такая трубка отсутствует.

Вскоре после соединения голых протопластов гамет вокруг них образуется новая клеточная оболочка. Их ядра сливаются, формируя диплоидное копуляционное ядро зиготы.
С помощью электронного микроскопа удалось проследить дальнейшее поведение пластид после копуляции гамет. Зиготы получались в результате скрещивания дикой исходной формы *C. reinhardtii*, хлоропласты которой плотно заполнены стопками тилакоидов, с желтым мутантом, имеющим пластиду, совершенно лишенную тилакоидов. Таким образом, благодаря четким различиям в структуре пластид обеих родительских форм можно было проследить их дальнейшее поведение после копуляции гамет. После слияния клеток и ядер наблюдалось слияние пластид: в основании пластид в участке, близком к пириноиду, возникал тонкий мостик, а затем пластиды сливались. Сначала в слывшемся хлоропласте зиготы можно различить две морфологически различающиеся части: одна часть с развитыми тилакоидами от хлоропласта дикого типа, другая часть без тилакоидов, принадлежащая пластиде желтого мутанта. Позднее в хлоропласте зиготы уже не удается различить частей родительских пластид: мембранные структуры - тилакоиды хлоропласта дикого типа — равномерно распределяются по всему хлоропласту зиготы. При прорастании зиготы до мейоза хлоропласт делился на четыре части, и все образовавшиеся молодые зооспоры имели хлоропласты дикого типа.

Виды рода дуналиелла (*Dunaliella*, рис. 63), как и хламидомонады, — одиночные формы. Внешний облик и внутреннее строение клетки у них также сходны, но дуналиеллы обычно имеют более округлую форму, чем хламидомонады. Главное отличие этих родов — отсутствие у дуналиелл обособленной клеточной стенки; клетки покрыты только перипластиком. Размножаются путем продольного деления клетки на две, обычно продолжая при этом движение. Известен половой процесс — гологамия, когда две вегетативные клетки выступают в роли гамет.

Встречаются дуналиеллы в разных местообитаниях, причем некоторые виды — в водеах с очень высокой концентрацией солей.

В солнечных озерах часто вместе с дуналиеллой встречаются водоросли из рода астеромonas (*Asteromonas*). Они характеризуются гольными клетками обратнояйцевидной или конусовидной формы. Клетка имеет шесть выступов, или ребер, проходящих по всей длине тела, поэтому при рассмотрении с полюса она выглядит как шестилучевая звезда (рис. 64). От переднего конца клетки отходят два жгутика. Как дуналиелла, так и астеромonas размножаются преимущественно продольным делением клеток. Известен и половой процесс в виде гологамии, когда копулируют клетки, внешне неотличимые от вегетативных.
Род гематококк (*Haematococcus*) характеризуется сильным ослизнием внутренних слоев стенки. При этом протопласт образует цитоплазменные отростки, тянущиеся через ослизванные слои стенки к наружному, более плотному пограничному слою. Хлоропласт чаще видный или сетчато продырявленный, пиреноидов два или несколько. Имеются глазок, пульсирующие вакуоли, ядро и два жгутиков (рис. 65). Гематококк легко переходит в пальмелллевидное состояние, образуя при этом цисты: клетки округляются, вырабатывают плотно прилегающую стенку, содержимое переполняется каротиноидами, благодаря чему приобретает кирпично-красную окраску. Цисты выдерживают высшее, а при смыкании прорастают с образованием зооспор, которые выходят наружу через разрыв стенки цисты (рис. 65, 6, 6). Сначала они окрашены в кирпично-красный цвет, но постепенно каротиноиды исчезают, и с периферии клетки обнаруживается зеленый хлоропласт. Однако красная окраска сохраняется обычно в центре клетки в течение нескольких поколений клеток, размножающихся бесполым путем. Только при длительной культуре, препятствующей образованию цист, удается получить чисто зеленые особи гематококка.

У многих вольвоксовских клеток, имеющих строение хламидомонады, соединяются в подвижные ценобии той или иной формы, состоящие из различного числа клеток. Из ценобиальных представителей вольвоксовых чаще всего встречаются виды родов гониум (*Gonium*), пандорина (*Pandorina*), эудорина (*Eudorina*) и вольвокс (*Volvox*).

Гониум образует пластинчатые колонии из клеток, расположенных в один слой. У наиболее широко распространенного вида *Gonium pectorale* (рис. 66) колонии состоят из 16 клеток, которые соединяются оттянутыми концами своих стенок, образуя пластинку или табличку, окруженную снаружи бесцветной слизью. Клетки в этом пластинчатом ценобии ориентированы таким образом, что все передние концы, несущие жгутики, обращены в одну сторону.

У остальных перечисленных родов ценобиальных вольвоксовских колоний представляют собой слизистые эллипсоиды или сферы, по периферии которых в один слой располагается различное (в зависимости от рода и вида водоросли) число клеток.
У пандорины и эвдорины ценобии микроскопически мелкие, образованы клетками, имеющими строение хламидомонады.

Повсеместно встречающийся вид Pandorina morum представляет собой слизистый эллипсоид, по периферии которого под плотным слоем слизи (инволюкром) располагаются 16 клеток. Клетки лежат в общем инволюкре очень тесно, давят друг на друга, вследствие чего имеют граненную форму (рис. 67), и только часть их поверхности, обращенная кнаружи, выпуклая. Общая полость колонии очень мала.

У эвдорины (рис. 68) эллиптические ценобии крупнее, также слизистые, в которых по периферии располагается большее число клеток (32—64), свободно лежащих в слизи. Центр ценобия занят жидкой слизью. Жгутики, отходящие от передних, направленных к периферии ценобия концов клеток, проходят сквозь одевающую всю колонию плотную слизистую обертку (через находящиеся в ней тонкие каналцы) и работой своих свободных частей приводят колонию в движение.

Гониум, пандорина, эвдорина, как и одноклеточные представители вольвоксов, при постепенном подсыхании могут переходить в пальмельлвидное состояние. В таком состоянии эти водоросли размножаются и при культивировании на твердых (агаризированных) питательных средах. При перенесении в жидкие среды клетки вырабатывают жгутики и выходят из слизи в виде зооспор, которые развиваются в соответствующие ценобии.

Наиболее высоко организован вольвокс (Volvox) (рис. 69). Он представляет собой крупный, достигающий 2—3 мм в диаметре шар, одетый тонким инволюкром, под которым по периферии в один слой располагаются клетки. Число их колеблется от 500 до 60 000. Внутренняя полость шара занята жидкой слизью. Отдельные клетки ценобия вольвокса построены по тому же типу, что и клетки гематококка, т.е. внутренние слои стенки с возрастом очень сильно
Рис. 68. *Eudorina elegans*.
A — ценобий; Б — развитие дочерних колоний внутри клеток материнской; В — оплодотворение;
Г — прорастание зиготы; видны одна нормальная зооспора и три абортивные (справа)

Рис. 69. *Volvox aureus*.
A — дочерние шары внутри материнского; Б — молодая дочерняя сфера с незамкнутым отверстием

ослизняются, в результате чего протопласт каждой клетки значительно удален от самого наружного, неослизненного слоя стенки. Более плотные наружные стенки соседних клеток, соприкасаясь, образуют полигональный узор, иногда хорошо видимый, если смотреть на ценобий с поверхности. Протопласты же соседних клеток раздвинуты далеко друг от друга. От протопlasma, занимающего центр клетки, в одной плоскости, параллельной поверхности всей колонии, по радиусам отходят более или менее многочисленные цитоплазматические отростки, проходящие сквозь ослизнившие внутренние слои стенки до самых плотных наружных слоев стенки (рис. 70, A). Цитоплазматические отростки соседних клеток соответствуют друг другу и связаны между собой плазмодесмами. У одних видов (*Volvox globator*) эти отростки толстые, грубые, в них заходят
Рис. 70. *Volvox globator.*

A — строение стенки шары с поверхности;
B — строение стенки шары в разрезе;
В — колония с яйцеклетками (1) и сперматозоидами (2); Г — развитие дочернего шары (1—6), стрелки указывают полярность клеток (подробное объяснение в тексте)
лопасти хроматофора; при рассмотривании таких ценообиев с поверхности протопласти кажутся звездчатыми (рис. 70, А). У других видов (V. aureus) цитоплазматические отростки тонкие, едва различимые. В оптическом разрезе клетки либо сильно сжаты, конической формы (V. globator), либо более или менее округлых очертаний (V. aureus) и на наружной поверхности несут по два жгутика, выходящих наружу через канальцы в инволюкруме.

При бесполом размножении ценобиальных вольвоксовых образуются дочерние колонии. При этом протопласт клеток претерпевает продольные деления, формируя полный комплекс клеток будущего ценобия, после освобождения которого дальнейшие деления клеток прекращаются до наступления новой репродуктивной фазы. Например, у гониума ценобий теряет подвижность, и содержимое каждой клетки делится в продольном направлении последовательно на две, четыре, восемь и, наконец, 16 частей с образованием пластинки; каждая клетка вырабатывает жгутики. Таким образом, внутри стенки материнской клетки формируется новый ценобий, отливающийся от материнского только меньшими размерами. При ослизнении стенки материнских клеток дочерние ценобии освобождаются, и на месте одной 16-клеточной колонии образуются 16 новых. Они растут только за счет увеличения размеров клеток, но не их числа. После некоторого периода роста дочерние ценобии снова приступают к бесполому размножению. При бесполом размножении видов, принадлежащих родам со сферическими ценобиями (Pandorina, Eudorina, Volvox и др.), содержимое клетки, приступающей к образованию молодой колонии, также несколько отстает от стенки и делится продольными перегородками последовательно на две, четыре, восемь и 16 частей (см. рис. 68, Б). Стадия 16-клеточной пластинки из-за своего сходства с гониумом получила название гонической. Дальнейшие продольные деления, в результате которых устанавливается определенное для каждого рода и вида число клеток, сопровождаются загибом краев получившейся клеточной пластинки (гонического состояния) до тех пор, пока не образуется полая сфера с маленьким незамыкающимся отверстием, направленным к наружной поверхности родительского ценобия (см. рис. 69, Б). На этой стадии клетки ориентированы таким образом, что их передние концы, на которых должны возникнуть жгутики, направлены к центру сферы. Нормальная ориентировка клеток с передними концами, направленными наружу, достигается путем полного вворачивания наизнанку незамкнутой сферы, и только после этого ее отверстие замыкается. Клетки образуют жгутики, и получается маленький сферический ценобий (рис. 70, Б).

У видов гониума, пандорины и одного вида эдворины (E. elegans) все клетки, составляющие ценобий, могут образовывать дочерние ценобии при бесполом размножении и гаметы — при половом. У остальных видов эдворины и у рода плевдорина (Pleodorina), отличающегося от эдворины большими размерами сферических колоний (сложены из 128 клеток), можно проследить постепенную стерилизацию клеток колоний: часть клеток ценобия, обычно передних, в числе четырех, двенадцати, половины всех клеток ценобия или даже больше, теряют способность к образованию дочерних колоний. Наиболее резко такая дифференциация клеток колонии на чисто вегетативные и репродуктивные
выражена у вольвокса, где из громадного числа клеток колонии к образованию дочерних колоний способны очень немногие (8—10). Клетки вольвокса, дающие дочерние колонии, носят специальное название — гониумы.

Половой процесс у ценобиальных вольвоксов, как и у одноклеточных, различается по форме: у гониума и пандорины наблюдается изогамия, у эдрорины — гетерогамия, у вольвокса — оогамия.

У гониума в каждой клетке образуется по 16 гамет, которые выходят в воду, где и копулируют. У пандорины гаметы образуются в результате распада молодых колоний на отдельные клетки, функционирующие как гаметы. Эдрорина элегантная (Eudorina elegans) — форма двудомная, т.е. можно различить колонии женские и колонии мужские. В женских колониях клетки непосредственно превращаются в крупные, снабженные жгутиками гаметы, которые, однако, не-подвижны и остаются в слизи женской колонии (виду неподвижности женских гамет половой процесс эдрорины часто считают оогамией). В мужских колониях в результате продольных делений клеток возникают пучки вытянутых двужгутиковых сперматозоидов, которые выходят наружу и плавают в воде. Вступив в контакт с женским ценобием, пучки распадаются на отдельные сперматозоиды, которые проникают в слизь женской колонии и оплодотворяют женские клетки (см. рис. 68, B). У вольвокса половой процесс оогамный. Содержимое мужских клеток — антеридиев — делится с образованием пучков двужгутиковых желтоватых сперматозоидов (см. рис. 70, B). Содержимое женских клеток — ооогониев — превращается в одну крупную яйцеклетку.

Формирующаяся в результате полового процесса зигота одевается толстой многослойной стенкой и у всех вольвоксов переходит в состояние покоя. При ее прорастании редукционно делится диплоидное копуляционное ядро, образуя четыре гаплоидных ядра и, как правило, четыре зооспоры. Так, у многих видов рода Chlamydomonas зигота прорастает с образованием четырех зооспор. У гониума (Gonium pectorale) при прорастании зиготы возникает маленькая четырехлеточная ювенильная колония (см. рис. 66, Г, Д). Из каждой клетки такой колонии при дальнейшем бесполом размножении формируется уже 16-клеточная колония, типичная для этого вида. В других случаях не все из четырех ядер, образующихся в результате редукционного деления, остаются жизнеспособными, часть их дегенерирует. Например, у пандорины и эдрорины при прорастании зиготы остается только одно жизнеспособное ядро и соответственно развивается только одна жизнедеятельная зооспора. То же наблюдается при прорастании зигот у некоторых видов вольвокса (см. рис. 68, Г).

Цитологических исследований мейоза в проращивающей зиготе сравнительно немного (например, у вольвокса). Гораздо больше косвенных доказательств такого деления получено с помощью генетического анализа зооспор, образующихся при прорастании зиготы. Так, удалось скрестить два вида хламидомонад, различающихся по строению вегетативных клеток и зигот. Получившиеся в результате скрешивания зиготы имели строение, промежуточное между зиготами родительских видов. При прорастании таких гибридных зигот в каждой образовалось по четыре зооспоры. Они были изолированы, и при дальнейшем их бесполом размножении были получены четыре культуры, из которых две оказались
тождественными с одним из родительских видов, а две другие — с другим. Этот опыт показал, что разведение признаков гибрида наблюдается при прорастании зиготы, а такое разведение должно происходить при мейозе. Еще больше аналогичных данных получено относительно разделения полов у раздельнопольных, или гетероталличных, форм.

Экспериментальное изучение полового процесса многих вольвоксов показало, что среди них есть как гомоталличные, так и гетероталличные виды. Пример первых (гомоталличных) — многие виды хламидомонады и вольвокса: у них половой процесс может происходить в культуре, полученной из одной особи, размножившейся бесполым путем. Такие культуры называют клонами. Таким образом, у гомоталличных форм половой процесс возможен в пределах одного клона. У некоторых видов хламидомонады, гониума, пандорины, эвдорины половой процесс в пределах одного клона невозможен, так как все особи в пределах клона тождественны в половым отношении. Половой процесс наступает только при соединении особей, неодинаковых в половым отношении, из разных клонов. Такие формы называют гетероталличными. Для них в ряде случаев было показано, что разведение половых свойств происходит в момент прорастания зиготы. У гониума (Gonium pectorale) были изолированы четырехклеточные колонии, развивающиеся при прорастании зиготы (см. рис. 66, Г, Д). В каждой клетке такой колонии через несколько дней формировалась нормальная 16-клеточная колония. Каждая из четырех первых вегетативных колоний также изолировалась и служила для получения клона. В результате было выделено четыре клона из четырех клеток, образовавшихся в прорастающей зиготе. Попарное смешение этих клонов позволило установить, что два из них относятся к одному полу, два — к другому. Виду изогоями гониума особи противоположного пола обозначаются как «+» и «—». В той и другой паре при смешении полов реакция не наступает, копуляция наблюдается лишь при соединении особей разного пола: «+» и «—».

Таким образом, у гониума уже при прорастании зиготы оба пола устанавливаются в равном числе. Разделение полов в момент прорастания зигот — косвенное доказательство мейоза: при этом одни ядра получают потенцию одного пола (+), другие — потенцию противоположного пола (—). При дальнейшем бесполом размножении знак пола не меняется. У гомоталличных обоеполых видов при прорастании зиготы тоже имеет место редукционное деление (направлен, у вольвокса это было доказано цитологически), но оно не влечет за собой разделения полов. Выходящие из зиготы зооспоры потенциально несут оба пола, и лишь в их потомстве наступает половая дифференцировка, которая не связана с редукционным делением и больше определяется внешними условиями, то есть имеет место фенотипическое определение пола.

Представителями зеленных водорослей, характеризующихся пальмелоидным типом таллома, могут служить роды апиоцистис (Apiocystis) и тетраспора (Tetraspora). Таллом Apiocystis представлен грушевидными слизистыми колониями, прикрепленными к другим водорослям (рис. 71). У Tetraspora мешковидные, нередко бесформенные, крупные, видимые невооруженным глазом слизистые
колонии. В слизи как у апиоцистиса, так и у тетраспоры находятся клетки, по строению весьма напоминающие хламидомонаду. Каждая клетка несет по два неподвижных жгутикоподобных отростка — псевдоцилии. Электронно-микроскопическое исследование показало, что эти структуры — производные жгутиков. Их базальные тельца и корни почти идентичны с таковыми хламидомонады; переходная зона имеет звездчатый узор, характерный для жгутиков зеленых водорослей. Однако свободная часть органеллы не имеет центральных микротрубочек, B-трубочки периферических дублетов большей частью очень коротки. Таким образом, под мембраной псевдоцилий микротрубочки (микрофибриллы) имеют расположение 9—0 вместо характерного для типичных жгутиков 9—2. Каждая клетка колонии апиоцистиса и тетраспоры может превратиться в зооспору, при этом вместо псевдоцилий вырабатываются два настоящих жгутика. Зооспоры выходят из слизи и после некоторого периода подвижности прорастают, образуя новые колонии. Наблюдается и половой процесс в виде изогами.

Некоторые виды хламидомонад (например, *C. ehrenbergii*) могут частично переходить к сапрофагическому питанию, не утрачивая при этом способности к фотосинтезу. У многих других вольвоксов, которые приобрели способность к питанию органическими веществами, фотосинтез оказался утраченным. Эти сапрофагические формы встречаются в сильно загрязненных органическими веществами водах. При переходе от авто- к гетерофагному питанию ассимилиационный аппарат этих форм претерпел более или менее полную редукцию. Таким путем возникли бесцветные, полностью лишенные хлоропластов формы. У вольвоксов особенно наглядно можно продемонстрировать параллельные ряды бесцветных и окрашенных форм. Так, роду *Chlamydomonas* соответствует род *Polytoma*, роду *Dunaliella* — род *Hyaliella*.

ПОРЯДОК ХЛОРОКОККОВЫЕ
(CHLOROCOCCALES)

Порядок объединяет коккоидные формы, как одноклеточные, так и колониальные (в том числе ценобиальные). Бесполое размножение — двуягутиковыми зооспорами, не имеющими жесткой клеточной стенки, и автоспорами. Половой процесс изогамный, гетерогамный и оогамный.

Род хлорококк (*Chlorococcum*, рис. 72) встречается в пресноводных водоемах, а также на почве, коре деревьев. Представлен шаровидными, микроскопически мелкими клетками, одетыми оболочкой. Клетки одноядерные или многоядерные, содержат чашевидный хлоропласт с одним или несколькими пиреноидами. Зооспоры вытянутые, двуклеточные, образуются в клетке в количестве от восьми
до 32 и освобождаются через разрыв в стенке мате-ринской клетки. После некоторого периода движе-ния зооспоры теряют жгутики, одеваются оболоч-кой и превращаются в новые шаровидные клетки, постепенно досягающие до размеров материнской
(рис. 72). Известен и половой процесс, заключаю-
щийся в слиянии двухутюговых изогамет.

Диктиосферум (Dictyosphaerium) — колониальная водоросль. Её клетки (обычно четверками) распо-
ложены по периферии слизистых сферических или эллипсоидальных колоний и связаны между собой системой разветвленных слизистых тяжей, расходу-
ящихся из центра колонии и представляющих собой остатки стенок многих генераций клеток. У этого рода при образовании автоспор (обычно четырех) стена родительской клетки не расплывается, а разрывается на четыре сохраняющиеся лопасти, к концам которых и остаются прикрепленными автоспоры (рис. 73). Достигнув размеров материнской клетки, автоспоры также формируют автоспоры, прикрепленные к лопастям материнской стенки, которые впоследство-
ствии скручиваются в нити, и т.д. У одного из видов диктиосферума, распростра-
ненного в Индии (D. indicum), наблюдался оогамный половой процесс. Этот вид двудомный: можно различить мужские и женские колонии. Клетки мужских колоний производят по 8—16—32 двухутюговых сперматозоидов, которые выходят через поперечный разрыв стенки материнской клетки. Содержимое каждой клетки женской колонии делится только один раз, образуя две округлые яйцеклетки, которые выходят наружу через поперечный разрыв стенки и остаются в слизи, окружающей колонию. Сперматозоиды подпливают к женской коло-
nии и сливаются с яйцеклетками. Ооспора одевается оболочкой и переходит в состояние покоя (рис. 73, 6—Е).

Такой половой процесс называется примитивной оогамией в отличие от ис-
tинной оогамии, при которой яйцо оплодотворяется на месте образования — внутри оогония. Примитивная оогамия очень редко встречается у зеленых водо-
рослей: помимо D. indicum она описана у некоторых вольвоцовых (например, у Chlorogonium oogamum, Carteria iyengarii) и одной нитчатой водоросли (Chaeto-
nema irregularare).

Интерес представляет род протосифон (Protosiphon, рис. 74). Раньше его рассма-
tривали как возможное связующее звено между хлорококковыми и бриоцидо-
выми (сифоновыми) водорослями. В настоящее время известно, что сходство между ними чисто конвергентное. Многоядерная клетка, более или менее ша-
ровидная (диаметром до 1,4 мм), несущая в постенной цитоплазме сетчато про-
дырявленный хлоропласт со многими пиреноидами, переходит в бесцветный трубковидный неразветвленный ризоид, внедряющийся в субстрат (рис. 74, В). Хлоропласт постенный, сетевидный, со многими пиреноидами. В неблагопри-
ятных условиях образуются цисты и толстостенные апланоспоры (рис. 74, З).
Рис. 73. *Dictyosphaerium indicum*.

A — внешний вид колонии; B — образование в каждой клетке женской колонии по две яйцеклетки и выход их через разрыв клеточной стенки; В — в клетках мужской колонии формируется по 16—32 сперматозоида; Г, Д — слияние сперматозоида с яйцеклеткой; Е — зигота

Рис. 74. *Protosiphon botryoides*.

A, Б — молодые клетки, образующие трубковидный вырост; В — взрослый таллом; Г — таллом в стадии посевания; Д — группа проростков с дифференцированными бесцветными ризоидами; Е — гамета; Ж — зигота; З — толстостенные апланоспоры (гипноспоры)
Известен изогамный половой процесс: гаметы (рис. 74, Е) развиваются из вегетативных клеток, а также и из цист или толстостенных апланоспор (рис. 74, З). Сливаясь, они дают зиготу с шиповатой стенкой (рис. 74, Ж). Протосифон встречается на сырой земле и распространен повсеместно, особенно в тропиках.

Род гидродикцион, или водяная сеточка (Hydrodictyon), — макроскопическая, достигающая 30 см и более ценобиальная водоросль. Цилиндрические или широкоовальные клетки соединяются концами большей частью по три, образуя сеть. У одних видов, например H. africanum, ценобии плоские, несколько загнутые у краев, — блюдцевидные (рис. 75, А). У других (например, у широко распространенного в водах, богатых азотом, вида H. reticulatum) сеть представляет собой замкнутый мешок (рис. 75, Б). Молодые клетки H. africanum цилиндрические, но с возрастом вздуваются, формируя огромные (до 1 см в диамetre) сферы, которые разбиваются и лежат в виде зеленых шариков на дне мелких водоемов, где этот вид встречается.

У H. reticulatum клетки цилиндрические, с заостренными концами, имеют крупную центральную вакуоль. Постенная цитоплазма содержит многочисленные ядра и сетчатый хлоропласт с многочисленными пиреноидами (рис. 75, В). При бесполом размножении в клетке путем последовательного распада протоплазмы на более мелкие участки возникает много тысяч одноядерных двутычковых зооспор. Они движутся некоторое время внутри оболочки материнской клетки, затем втягивают жгутики, выделяют собственную оболочку и соединяются, образуя маленькую дочернюю сеточку (рис. 75, Б), которая освобождается после разрыва стенки материнской клетки.

Исследования с применением электронной микроскопии показали, что зооспоры соединяются не в любом месте их поверхности, а лишь в тех участках, где под плазмалеммой располагаются микротрубочки. Зооспоры, подвергнутые действию колхицина — яда, разрушающего цитоплазматические микротрубочки, не объединяются в ценобий. Молодые сеточки растут только благодаря росту слающих их клеток, причем число ядер в них увеличивается.

Половой процесс изогамный. Двутычковые изогаметы образуются так же, как зооспоры, но в большем числе и соответственно они мельче. Гаметы освобождаются через отверстие в стенке материнской клетки. H. reticulatum — форма гомоталличная: даже гаметы,
образовавшиеся в одной клетке, способны копулировать. У гидродикционна изо-
гамия. Однако под электронным микроскопом удалось установить разницу в строении сливающихся гамет: одна из них на переднем конце между жгутиками несет электронно-плотную апикальную шапочку, другая такой шапочки лишена. Апикальная шапочка вытягивается в виде оплодотворяющей трубки, кончик которой и сливается с мембраной, находящейся между жгутиками гаметы без апикальной шапочки. Зигота одевается оболочкой, в ней накапливается жир, окрашенный каротиноидами в кирпично-красный цвет. Постепенно зигота увеличивается в размерах и переходит в состояние покоя, а затем прорастает, образуя четыре крупные двудвужгутиковые зооспоры, при этом ядро редукционно делится. Зооспоры, попав в некоторое время, останавливаются, и каждая развивается в многоугольную клетку — полиэдр. Полиэдр разрастаются, становятся многоядерным, и содержимое его распадается на двудвужгутиковые зооспоры, которые слагаются в молодую зародышевую плоскую сеточку, освобождающую через разрыв оболочки полиэдра.

Полиэдры выносят высыхание, губительное для ценобия, и таким образом наряду с зиготой могут представлять покоящуюся стадию в жизненном цикле водяной сеточки.

Род педиаструм (Pediastrum), имеющий сходный с гидродикционным цикл развития, характеризуется микроскопически мелкими пластинчатыми колониями из разного, кратного двум числа клеток (от четырех до 128). Клетки, во взрослом состоянии многоядерные, располагаются обычно концентрическими кругами вокруг одной центральной (рис. 76). Краевые клетки часто несут выросты стенки. Двудвужгутиковые зооспоры освобождаются через щель в стенке материнской клетки и окружены слизистым пузырем. Внутри пузыря зооспоры сначала движутся во всех направлениях, но постепенно они располагаются в одной плоскости и образуют маленькую дочернюю колонию, позднее освобождающуюся.

Половой цикл педиаструма такой же, как у гидродикционна, и также включает стадию полиэдра.

Из родов, для которых характерен ценобий, сложенный из определенного числа клеток, различно расположенных, можно рассмотреть род скенедесмыс (Scenedesmus), у которого эллипсоидные или веретеновидные клетки соединены боковыми сторонами в простые или двойные ряды. У самого обычного вида S. quadricauda (рис. 77), как правило, ценобии четырехклеточные, причем краевые клетки несут выросты стенки — шипы. При размножении в каждой клетке колонии в большинстве случаев образуются четыре автоспоры, которые внутри оболочки материнской клетки слагаются в молодую колонию (рис. 77, B).
Эта колония позднее освобождается через разрыв материнской стенки и растет только за счет роста клеток, число их не меняется.

Электронно-микроскопические исследования многих видов рода *Scenedesmus* показали весьма сложное строение клеточной стенки (рис. 78). Она состоит из трех слоев: внутреннего толстого целлюлозного слоя, очень тонкого среднего слоя, содержащего спорополленин — чрезвычайно устойчивое к действию различных ферментов вещество, встречающееся в пыльцевых зернах и спорах высших растений, — и наружного пектинового слоя. Два первых слоя окружают каждую клетку ценобия, а пектиновый наружный слой одевает весь ценобий, объединяя все его клетки в единое целое. Различная орнаментация клеточных стенок видов сценедесмуса, видимая в поле оптического микроскопа и используемая как диагностический признак, обусловлена сложным строением наружного пектинового слоя. Этот слой образован гомогенным матриксом, на поверхности которого находится сеть, сложенная из шестигранных ячеек. Сеть покойтся на цилиндрических трубчатых подпорках, основание которых прикрепляется к поверхности среднего (спорополленинового) слоя. Пектиновый слой и сеть местами (обычно на концах клеток и вдоль гребней) прерываются округлыми отверстиями, окаймленными подпорками, которые сливаются боковыми сторонами. Со дня отверстий отходят короткие, тоже трубчатые подпорки, от которых, возможно, берут начало длинные щетинки, пучком выходящие из отверстий. Щетинки имеют белковую природу, обнаруживают сложную микроструктуру и способствуют лучшей плавучести ценобиев: если их удалить центрифугированием, ценобии быстро оседают на дно сосуда. Видимые под микроскопом гребни и шипы также образованы подпорками разной длины. Самые длинные подпорки составляют шипы (рис. 78). При формировании клеточной стенки вокруг развивающихся автоспор первым, как и у хлореллы, откладывается средний слой в виде трехслойных дисков, которые растут и, смыкаясь, полностью окружают клетку. Затем начинается образование внутреннего целлюлозного и наружного пектинового слоев.
Рис. 78. Схема строения стенки в ценобии Scenedesmus.
1 — целлюлозный внутренний слой стенки, 2 — цитоплазматическая мембрана, 3 — средний спороплениновый слой, 4 — щит, образованный самыми длинными подпорками, 5 — короткие подпорки, поднимающиеся со дна отверстий, 6 — отверстие в пектиновом слое, 7 — пектиновая сеть, 8 — подпорки, на которых покойится сеть, 9 — гребень, состоящий из более длинных подпорок, 10 — щетинки, выходящие из отверстий, 11 — пектиновый слой

Имеются сведения о существовании у S. obliquus изогамного полового процесса: при снижении в среде содержания азота вегетативные клетки превращаются в гаметангии, в которых развиваются по восемь гамет. На гаметогенез влияют также температура и освещение.

ПОРЯДОК ЭДОГОНИЕВЫЕ
(OEDOGONIALES)

Эдогониевые имеют нитчатый тип организации таллома в классе Chlorophyceae. Нити чаще неветвящиеся, реже ветвящиеся. Они прикрепляются к субстрату ризоидами, но могут отрываться и тогда вести неприкрепленный образ жизни. Клетки более или менее вытянутые, с одним крупным ядром, которое обычно можно видеть даже без специального окрашивания. Хлоропласт сетчатый, тонкий.

Отличительные особенности эдогониевых — «колпачки» и стефаноконтные зоиды.
«Колпачки» — результат своеобразного деления клеток. Во время деления ядра вблизи одного из концов клетки откладывается материал клеточной стенки, образуя кольцевой «валик» (рис. 79, A, Г). После завершения ядерного деления между двумя дочерними ядрами формируется перегородка (септа), которая перемещается в сторону валика (рис. 79, Б). Затем клеточная стенка разрывается возле валика, а материал валика растягивается и принимает цилиндрическую форму, становясь клеточной стенкой соответствующей дочерней клетки (рис. 79, В, Г).

Рис. 79. Oedogonium.

A — строение клетки: 1 — колпачок, 2 — стенка, 3 — хлоропласт, 4 — пиреноид, 5 — ядро; Б, В, Г — деление клетки с образованием валика (1) и колпачка (2); Д — выход зооспоры; Е — нить с антеридиями (2) и сперматозоидами (1); Ж — оплодотворение яйцеклетки (4) в оогонии (3) сперматозоидом (2); З — часть женского растения с оогониями (3) и мужскими карликовыми растениями — наннандрями (5)
Края старой клеточной стенки, находившиеся против валика, остаются заметными в виде воронтичка или колечка. Это и есть «колпачок».

В дальнейшем обычно делится только верхняя из двух дочерних клеток, так что через какое-то время у краев некоторых клеток образуется группа колпачков, обычно до 7—8 (иногда даже примерно до 40). По числу колпачков, видимых как штрихи, можно определить, сколько раз делилась клетка.

Бесполое размножение — посредством зооспор, образующихся по одной из всего содержимого клетки (рис. 79, Д). Поэтому они достаточно крупные. Половой процесс оогамный: некоторые клетки превращаются в оогонии с одной яйцевлеткой, а некоторые — в антериии, где развиваются 2 сперматозоида (реже 1). И зооспоры, и сперматозоиды имеют много жгутиков (от 7—8 до примерно 120), которые располагаются венцом вокруг бесцветной передней части зоида — так называемого «носика». Такого типа зоиды называют стефаноконтными (кроме эдогониевых, такие зоиды встречаются еще только у некоторых представителей порядка бриопсидовые).

Базальные тела, или основания жгутиков, удерживаются фибrozным (волокнистым) кольцом, которое находится на границе бесцветной передней (апикальной) части — «головки» зооспоры (сперматозоида) и остальной части, занятой париетальным сетчатым хлоропластом, — «тела». От фибrozного кольца между базальными телями, через глыбукими с ними, походят корни жгутиков: восходящие волокнистые корни в основном простираются в головку, а трубчатые нисходящие — в тело зооспоры (сперматозоида). Основания жгутиков и корни прочно соединены с фибrozным кольцом и сохраняются вместе с ним при обработках (необходимых для электронно-микроскопических наблюдений), при которых свободные части жгутиков утрачиваются. Это позволило более или менее точно подсчитать жгутики у монадных клеток эдогониевых водорослей, которые различаются только по числу жгутиков, что, несомненно, связано с размерами самих монадных клеток. Так, в зооспорах Oedogonium (наиболее крупных) насчитывается около 120 жгутиков, в более мелких зооспорах Bulbochaete жгутиков 37—49, а у сперматозоидов Oedogonium и Bulbochaete — соответственно 30 и 6—9.

Эдогониевые — обширный порядок (свыше 600 видов). Все его представители обитают исключительно в пресных водах, где являются одними из самых обычных нитчаток. Они предпочитают хорошо прогреваемые водоемы со слабым течением и больше всего тяготеют к местам с отмирающими и отмершими высшими растениями.

Отличительная особенность рода эдогониум (Oedogonium), к которому относится подавляющее большинство представителей порядка, — отсутствие ветвления у нитей. Нити прикрепляются к субстрату при помощи развитевых ризоидов — «подошвы»; у некоторых видов ризоид представляет собой полушаровидную клетку. Хлоропласт постенный, в виде сложно рассеченной пластинки, или сетчатый. Нередко в клетках в живом состоянии отчетливо видно довольно крупное ядро (рис. 79, А).

Бесполое размножение эдогониума осуществляется с помощью крупных зооспор, образующихся по одной из всего содержимого клетки (рис. 79, Д).
Отдел зеленые водоросли (Chlorophyta)

Зооспора эллипсоидальная или шаровидная, темно-зеленая в задней части и с бесцветным носиком спереди, окруженным венцом жгутиков. Экспериментально доказано, что для формирования зооспор эдогониума имеет значение содержание в воде свободной углекислоты. Эти опыты позволяют объяснить неоднократно наблюдаемое разными авторами энергичное зооспорообразование эдогониума (да и других зеленых водорослей, например стигеклониума, драпарналды) при перенесении из текущей воды в стоячую и в темноте. Именно в стоячей воде и в темноте возможно накопление углекислоты, выделяемой водорослью в процессе дыхания и стимулирующей зооспорообразование.

Стекла клетки, в которой образовалась зооспора, разрывается около верхнего конца, обе ее половники расходятся, и зооспора медленно выплывает, сначала одетая тонким слизистым пузьрем, который вскоре исчезает (рис. 79, Д). После некоторого периода движения зооспора прикрепляется передним концом к субстрату, теряет жгутики, выделяет стенку и вытягивается в нить. Первое же деление молодого проростка обычно сопровождается формированием колпачка.

Половое воспроизведение эдогониума оогамное. Оогонии представляют собой крупные, большей частью шаровидно или эллипсоидно вздутые клетки, содержащие по одной яйцеклетке (рис. 79, Ж). Они образуются по одному, по два, а у некоторых видов помногу, образуя цепочку. Оболочка оогонев чаще гладкая, у некоторых видов покрыта складками или гранулированная. В ней имеется хорошо заметная округлые поры, через которую проникает сперматозоид (рис. 79, Ж, З). У ряда видов вместо поры имеется щель; такие оогонии открываются крышечкой. Оболочка яйцеклетки (ооспоры) при созревании приобретает красновато-коричневатую окраску. У одних видов она гладкая, у других орнаментированная.

Антеридии — короткие дисковидные клетки с желтеющими редуцированными хроматофорами. В каждом антеридии развиваются по два (у некоторых видов по одному) желтоватых сперматозоида с венцом жгутиков на переднем конце (рис. 79, Б).

Виды этого рода можно разделить на 3 группы:
1. Однодомные. Оогонии и антеридии образуются на одних и тех же нитях.
2. Двудомные макрандрические. Оогонии и антеридии образуются на разных нитях одинакового облика.
3. Двудомные наннандрические, представляющие большинство двудомных видов (рис. 79, З). Женские нити обычного для рода Oedogonium облика, а мужские растения карликовые (так называемые наннандрии, или «мужчины»), состоящие в основном из одной вегетативной (нижней базальной) клетки и нескольких расположенных цепочкой антеридиев. Наннандрии прикрепляются как эпифиты на женских нитях поблизости от оогоньев и нередко на самом оогонии. Они берут начало от специальных андроспор («мужских» спор), сходных по строению с обычными зооспорами бесполого размножения, но меньшими по величине. Формируются они в так называемых андроспорангиях — коротких дисковидных клетках, отличающихся от антеридиев тем, что хлоропластиы их остаются зелеными и не редуцируются.

Другой род эдогониевых, также обычный в пресных водах, — бульбокхе (Bulbochaeta) — отличается тем, что нити обильно ветвятся и каждая ветвь несет длинный бесцветный волосок и имеет вздутое в виде луковицы основание.
ПОРЯДОК ХЕТОФОРЫЕВЫЕ
(CHAETOPHORALES)

Представители порядка — гетеротрихальные (разнозитчатые) формы. Таллом в «классическом» случае состоит из двух систем ветвящихся нитей: распространенных по субстрату (первичный таллом) и расположенных в пространстве (вторичный таллом). Однако у многих представителей либо первичный, либо вторичный таллом редуцирован. Конечные клетки у многих представителей заканчиваются щетинками или волосками. Бесполое размножение — при помощи зооспор с 4 жгутиками. Половой процесс изо-, гетеро- или оогамный. Гаметы двух- или четырёхжгутиковые. Пресноводные формы.

В наиболее типичной форме гетеротрихальное строение проявляется у рода стигеоклониум (Stigeoclonium). Большинство его видов имеет хорошо развитые стеляющуюся и вертикальную системы нитей (рис. 80). От нитей, стеляющихся по субстрату, отходят вертикально стоящие ветвящиеся нити. Ветви обычно оканчиваются многоклеточными волосками из вытянутых бесцветных отмерших клеток. Клетки имеют один постенный хлоропласт, расположенный пояском,
с одним или несколькими пиреноидами. Виды рода распространены в стоячей или медленно текущей воде на подводных предметах, на их верхней освещенной стороне.

Степень ветвления, образование волосков и другие особенности водоросли зависят от внешних условий. Так, ветвление стигеохклония усилывается с повышением освещенности и понижением концентрации нитратов в среде; развитие волосков тормозится также высоким содержанием в воде нитратов. При недостатке в воде азота и подщелачивании воды стигеохклоний легко переходит в пальмелаевидное состояние. При подщелачивании среды и отсутствии в ней свободной углекислоты стигеохклоний формирует изогаметы (дву- или четырехгуттовые — у разных видов). Наоборот, подкисление среды и присутствие свободной углекислоты способствуют образованию четырехгуттовых зооспор.

Выраженным гетеротрихальным строением отличается и род фричиелла (Fritschiella), единственный вид которого — F. tuberosa — приспособился к внешнему существованию. Таллом его состоит из подземной развliteенной системы нитей, которая дает первичные вертикальные нити. Они прорастают сквозь тонкий слой почвы и развивают над ее поверхностью кустистые «побеги» (рис. 81). Для фричиеллы установлена изоморфная смена генераций. Она до сих пор найдена только в Африке, Индии и Японии, где растет на сравнительно сухих почвах.

Таллом видов рода хетофора (Chaetophora) похож на таллом видов рода Stigeoclonium, но в отличие от него погружен в плотную слизь. Полушаровидные или иной формы ярко-зеленые подушечки хетофоры часто встречаются в озерах на камнях и особенно на водных высших растениях.

В пределах порядка хетофоровые эволюция шла, по-видимому, в двух направлениях: в одних случаях эволюционировала восходящая часть таллома, а стеляющаяся редуцировалась, в других случаях наблюдалась редукция вертикальной системы, а стеляющаяся часть получала наибольшее развитие.

Уже у разных видов стигеохклония стеляющаяся по субстрату система нитей может быть развита неоднаково: от рыхло развительной нити, часто состоящей из сравнительно немногих клеток, до компактного диска, образованного срастанием многочисленных ветвей. Развитие вертикальной системы обычно находится в обратной зависимости от развития распростертых нитей: у форм с хорошо развитой подошвой или диском вертикальная система может быть редуцирована до нескольких коротких веточек или представлена только волосками. Наоборот, при слабом развитии основания нижние клетки хорошо развитых вертикальных нитей дают ризоиды, способствующие прикреплению растения к субстрату.

Первый путь эволюции привел к таким формам, как род драпарналдия (Draparnaldia), у вида которого распростертая система практически отсутствует и таллом прикрепляется с помощью ризоидов, отходящих от нижних клеток восходящей системы. В отличие от большинства видов рода Stigeoclonium, у драпарналдии восходящая система четко дифференцирована на длинные и короткие ветви (рис. 82). Длинные, неограниченно нарастающие, слабо ветвящиеся оси образованы крупными, часто слегка бочонковидными бледными клетками
со слаборазвитым хлоропластом, который представлен экваториальным пояском с изрезанными краями. Короткие боковые ветви ограниченного роста, часто называемые ассимиляторами, растут пучками на длинных осях. Они обильно ветвятся и состоят из коротких клеток с хорошо развитым постенным хлоропластом, занимающим всю поверхность клетки. Концы этих ветвей часто превращаются в длинные многоклеточные волоски. Размножение драпарнальдии такое же, как и у стигеоклониума. Репродуктивные клетки (зооспоры, гаметы) образуются только в ассимиляторах, длинные оси несут главным образом опорную функцию.

У драпарнальдии, как и у стигеоклониума, общий облик таллома может сильно изменяться в зависимости от условий среды. Свойственная драпарнальдии дифференцировка таллома на длинные и короткие ветви подавляется высоким содержанием в среде связанного азота. Варьируя в среде концентрацию нитратов, удалось получить все переходы от типичной драпарнальдии к талломам, похожим на стигеоклониум. В России драпарнальдия встречается в быстро текущих ручьях и других местах с хорошей аэрацией.

Виды рода драпарнальдиец (Draparnaldiella) эндемичны для оз. Байкал, где они образуют обширные заросли на глубине порядка 10 м. Драпарнальдиец имеет крупные, до 0,5 м длины, талломы, как и у драпарнальдии, дифференцированные на длинные и короткие ветви. Однако в крупных клетках длинных осей хлоропласт занимает всю поверхность в виде сеточки, а не в виде экваториального пояска, как у драпарнальдии. У ряда видов драпарнальдиец из основания ассимиляторов развиваются коровые нити, плотно оплетающие осевую часть таллома и тем увеличивающие ее прочность. У драпарнальдиец помимо
вегетативного имеется половое размножение. Копулируют гаметы, слегка различающиеся по размерам (гетерогамия), образованные в разных талломах (гетероталлизм). То что у исследованных видов драпарнальдиеллы наблюдались только гаметы и никогда не наблюдались зооспоры, заставляет предположить у них смену генераций: возможно, исследователи имели дело только с одной генерацией — гаметофитом. Это предположение тем более вероятно, что у некоторых видов стигеоклониума была установлена смена генераций (изоморфная и гетероморфная).

Смена генераций наблюдается и у другого представителя этого семейства — у рода драпарнальдиопис (Draparnaldiopsis), у которого длинные оси состоят из чередующихся коротких и длинных клеток. Ассимиляторы отходят только от коротких клеток длинных осей. Как и у драпарнальдиеллы, от основания ассимиляторов отходят коровые нити, плотно окутывающие длинные оси.

Другой эволюционный ряд форм характеризуется более или менее полной редукцией вертикальной системы. Примером таких больших частью эпифитных форм могут служить роды хетонема (Chaetanema) — редкий эпифит, обитающий в слизи разных пресноводных водорослей (тетраспоры, батрахоспермума), и афанохет (Aphanochaete) — обычный пресноводный эпифит на водорослях. У Aphanochaete вертикальная система представлена, как правило, только волосками (рис. 83); у Chaetanema — короткими нитями, несущими на конце одноклеточный волосок (рис. 84). Бесполое размножение — четырехжгутиковыми зооспорами, известен и половой процесс. У афанохет наблюдается резко выраженная гетерогамия. В крупных женских гаметангиях образуется по одной четырехжгутиковой макрогамете (рис. 83, B), которая выходит из гаметанги, непродолжительное время двигается, затем теряет жгутики, останавливается и оплодотворяется мелкой четырехжгутиковой мужской гаметой (микрогаметой). Такие гаметы формируются поодиночке в мелких, почти бесцветных антеридиальных клетках (рис. 83, B). U Chaetanema irregulare был описан оогамный половой процесс. У этого вида можно различить мужские и женские растения. Некоторые клетки мужских нитей превращаются в антеридии, их содержимое становится плотным и мелкозернистым, они несколько разрастаются, теряют хлорофилл и принимают желто-зеленую окраску, резко отличаясь от зеленых вегетативных клеток (рис. 84, A). В каждом антеридии образуется восемь сперматозоидов овальной формы с двумя жгутиками. Оогонии образуются на женских нитях, обычно на концах коротких боковых ветвей (рис. 84, B). Всё содержимое оогония превращается в одну яйцеклетку без жгутиков, которая выходит через отверстие в оболочке оогония (рис. 84, B). Оплодотворяется яйцеклетка вне оогония, т.е. имеет место примитивная оогамия, известная также еще у нескольких зеленых водорослей из вольвоксовых и хлорококковых.
Класс требуксиевые
(Trebouxiophyceae)

К классу требуксиевых относятся в основном коккоидные формы, часто остающиеся после деления пачками или рядами в оболочке материнской клетки (сарцинкоидные формы). Есть также нитчатые развевенные и пластинчатые представители.

Жгутики у подвижных представителей имеют ориентацию «11/5», как у Ulvophyceae, однако детали митоза и цитокинеза существенно различаются. Отличительная особенность класса состоит в том, что при митозе центриоли располагаются по бокам веретена (т.е. веретено здесь метацентрическое), тогда как у других зеленых водорослей и многих других «протистов» — по полюсам веретена.

Зоиды, форма которых явно сплюснутая, имеют выраженный ризопласт.

Последовательности нуклеотидов малых субъединиц рибосомной РНК свидетельствуют о близости Trebouxiophyceae и Chlorophyceae, но данные по архитектуре митохондриального генома, наоборот, говорят о дальности этих классов.

Представители класса обитают в пресных и морских водах, но больше в различных вневодных местообитаниях. Многие из них — обычайшие фотобионты самых разных лишайников, есть также симбионыты беспозвоночных животных.
Водоросли рода хлорелла (*Chlorella*, рис. 85, *A*) имеют таллум в виде отдельной шаровидной клетки. Она одета гладкой оболочкой, содержит обычно чашевидный хлоропласт с одним пиреноидом или без него, одно ядро. При бесполом размножении содержимое клетки распадается на четыре или более частей — автоспор, которые еще внутри оболочки материнской клетки одеваются собственными оболочками. Освобождаются автоспоры после разрыва стенки материнской клетки (рис. 85, *Б*, *В*). Электронно-микроскопические исследования позволили обнаружить сложное строение клеточной стенки у некоторых видов хлореллы. Наружный трехслойный компонент стенки образован двумя электронно-плотными зонами, заключающими электронно-прозрачную центральную зону, которая, как и у сценедесмуса, содержит спорополленин. Внутренний, более толстый компонент имеет целлюлозные микрофибриллы. У ряда видов хлореллы в оболочке находится только микрофибриллярный слой, а трехслойный наружный компонент из спорополленина отсутствует.

При образовании автоспор (рис. 86) компоненты стенки развиваются следующим образом. Кнаружи от цитоплазматических мембран (плазмалемм) автоспор, заключенных еще в оболочку материнской клетки, появляется первый предшественник клеточной стенки в виде мелких трехслойных изогнутых дисков. Эти диски увеличиваются в числе и размерах, пока не сольются краями. Они образуют вокруг автоспоры сплошной трехслойный наружный компонент, в котором откладывается спорополленин. Как только сформировался сплошной трехслойный наружный компонент стенки автоспор, начинается растворение внутренней микрофибриллярной части стенки материнской клетки, и между образовавшимся трехслойным чехлом и цитоплазматической мембраной авто-

Рис. 85. *Chlorella*.
А — вегетативная клетка; *Б*, *В* — образование и выход зооспор

1 — спорополлениновый слой материнской стенки; 2 — целлюлозный слой материнской стенки; 3 — цитоплазматическая мембрана автоспор; 4 — спорополлениновые диски автоспор; 5 — сплошная спорополлениновая стенка автоспор; 6 — целлюлозный слой стенки автоспор.
Рис. 84. Chaetonema irregulare.
A — мужской таллом с антеридиями; B — женская нить с оогониями; V — выход яйцеклетки
из оогония до оплодотворения

Класс требуксиевые
(Trebouxiophyceae)

К классу требуксиевых относятся в основном коккоидные формы, часто ос-тающиеся после деления пачками или рядами в оболочке материнской клетки (сарциноидные формы). Есть также нитчатые разветвленные и пластинчатые представители.

Жгутики у подвижных представителей имеют ориентацию «11/5», как у Ulvophyceae, однако детали митоза и цитокинеза существенно различаются. Отличительная особенность класса состоит в том, что при митозе центриоли располагаются по бокам веретена (т.е. веретено здесь метацентрическое), тогда как у других зеленых водорослей и многих других «протистов» — по полюсам веретена.

Зоиды, форма которых явно сплюснутая, имеют выраженный ризопласт.

Последовательности нуклеотидов малых субъединиц рибосомной РНК свидетельствуют о близости Trebouxiophyceae и Chlorophyceae, но данные по архитектуре митохондриального генома, наоборот, говорят о дальности этих классов.

Представители класса обитают в пресных и морских водах, но больше в различных вневодных местообитаниях. Многие из них — обычнейшие фотобионты самых разных лишайников есть также симбионты беспозвоночных животных.
Отдел зеленые водоросли (Chlorophyta)

Водоросли рода хлорелла (Chlorella, рис. 85, A) имеют таллом в виде отдельной шаровидной клетки. Она одета гладкой оболочкой, содержит обычно чашевидный хлоропласт с одним пиреноидом или без него, одно ядро. При бесполом размножении содержимое клетки распадается на четыре или более частей — автоспор, которые еще внутри оболочки материнской клетки одеваются собственными оболочками. Освобождаются автоспоры после разрыва стенки материнской клетки (рис. 85, Б, В). Электронно-микроскопические исследования позволили обнаружить сложное строение клеточной стенки у некоторых видов хлореллы. Наружный трехслойный компонент стенки образован двумя электронно-плотными зонами, заключающими электронно-прозрачную центральную зону, которая, как и у сценедесмуса, содержит спорополление. Внутренний, более толстый компонент имеет целлюлозные микрофибриллы. У ряда видов хлореллы в оболочке находится только микрофибрилярный слой, а трехслойный наружный компонент из спорополлина отсутствует.

При образовании автоспор (рис. 86) компоненты стенки развиваются следующим образом. Кнаружи от цитоплазматических мембран (плазмалемм) автоспор, заключенных еще в оболочку материнской клетки, появляется первый предшественник клеточной стенки в виде мелких трехслойных изогнутых дисков. Эти диски увеличиваются в числе и размерах, пока не сольются краями. Они образуют вокруг автоспоры сплошной трехслойный наружный компонент, в котором откладывается спорополление. Как только сформировался сплошной трехслойный наружный компонент стенки автоспор, начинается растворение внутренней микрофибрилярной части стенки материнской клетки, и между образовавшимся трехслойным чехлом и цитоплазматической мембраной авто-

Рис. 85. Chlorella.
A — вегетативная клетка; Б, В — образование и выход эооспор

Рис. 86. Chlorella. Схема последовательного (A—Г) развития разных слоев стенки при образовании автоспор.
1 — спорополлиновый слой материнской стенки; 2 — целлюлозный слой материнской стенки; 3 — цитоплазматическая мембрана автоспор; 4 — спорополлиновые диски автоспор; 5 — сплошная спорополлиновая стенка автоспор; 6 — целлюлозный слой стенки автоспор
споры откладывается микрофибриллярный компонент стенки автоспоры. Стенка материнской клетки, от которой остается только тонкий наружный спорополлениновый компонент, очень стойкий по отношению к химическим (но не механическим) воздействиям, разрывается, и автоспоры освобождаются.

Виды рода хлорелла широко распространены в пресных и морских водах, на сыроем земле, коре деревьев как эндосимбионыты в клетках пресноводных беспозвоночных (например, гидры, губок, различных простейших).

Хлорелла легко культивируется в искусственных условиях и давно используется в качестве объектов физиологических и биохимических исследований, особенно при изучении фотосинтеза. Она служит и объектом массового культивирования для практического использования. В России работы по массовому культивированию водорослей начались в связи с потребностями рыбного хозяйства: были разработаны методы разведения живых кормов для молоди промысловых рыб. Один из основных объектов для разведения живых кормов — ракообразные, в частности дафнии, для которых лучший корм — хлорелла и некоторые сходные с ней водоросли. Хлорелла привлекла также внимание, как источник пищи для человека, сельскохозяйственных животных и как техническое сырье. Пластичность метаболизма хлореллы позволяет выращивать клетки, содержащие в зависимости от условий культуры от 7 до 88% белков и от 1 до 75% жиров. Хлорелла служит также исходным продуктом для получения витаминов, хлорофилла и стеринов, необходимых для синтеза некоторых лечебных препаратов.

В замкнутых системах хлорелла может применяться не только для питания человека, но и для регенерации воздуха, используя в процессе фотосинтеза углекислую, выдыхаемую человеком, и выделяя необходимый для его дыхания кислород.

Род прототека (Prototheca) представляет собой бесцветный аналог хлореллы. Хотя клетки прототеки и лишены хлорофилла, они имеют пластиды, содержащие крахмал (поэтому окраска йодом позволяет отличить их от дрожжей, с которыми они внешне достаточно сходны и с которыми их часто путают). Размножение автоспорами. Прототека встречается в почве и пресной воде, особенно загрязненной органикой. Может вызывать заболевания животных и человека типа пневмонии, а также повреждения деревьев. Клеточные стенки этой водоросли, имеющие трехслойную структуру, содержат устойчивое к гидролизу соединение, флуоресцирующее в ультрафиолете. По инфракрасному спектру оно отличается от спороплелленина. Считается, что им обусловлена устойчивость прототеки к лекарственным препаратам.

Род эремосфера (Eremosphera), обычный в сфагновых болотах, отличается очень крупными (до 200 мкм) одиночными шаровидными клетками с одним ядром и многочисленными мелкими дисковидными хлоропластами, каждый из которых содержит по одному маленькому пиреноиду (рис. 87). Автоспоры в числе двух или четырех освобождаются через разрыв стенки. У E. viridis в экспериментальных условиях можно наблюдать половиной процесс: в одних клетках (оогониях) развивается одна яйцеклетка, в других (антеридиях, или сперматогониях) в результате последовательных делений образуется от 16 до 64 двухугутиковых сперматозоидов. Внутри стенки оогония ооспора одевается скульптурированной оболочкой.
Род гolenкиния (Golenkinia, рис. 88, A) представлен свободноживущими шаро-видными клетками, стенки которых несут выросты в виде сплошных или полых щетинок. Хлоропласт постенный, с пиреноидом, окруженным слоем крахмала. Бесполое размножение осуществляется автоспорами, образующимися по 2—8 в клетке. У некоторых представителей рода (G. longispina, G. solitaria) описан оогамный половой процесс. В одних клетках протопласт делится с образованием 8—16 двугутников сперматозоидов, а другие функционируют как яйцеклетки (рис. 88, Б, В). Зигота имеет шиповатые стенки. Детали ее прорастания и место мейоза неясны.

У видов рода стихококкус (Stichococcus) клетки палочковидные, очень тонкие, одиночные или образующие короткие нити. Единственный хлоропласт постенный, с пиреноидом или без него. Размножение — фрагментацией нитей или делением клетки на две. Бесполое и половое размножение неизвестны.

Стихококкісы встречаются в почве и других внетерригальных местообитаниях, в пресных водах и эстуариях рек. К этому же роду относятся фотобионы некоторых лишайников. Было показано, что лишайники, содержащие фотобионт из рода Stichococcus с пиреноидом, накапливают углерод гораздо эффективнее, чем лишайники, фотобионт которых, относящийся к этому же роду, пиреноида не содержит.

Таллом водорослей из рода требуся (Trebouxia, рис. 89) представляет собой отдельные шаровидные клетки наряду с хлореллами, но хлоропласт у них осевой. Имеется пиреноид. При бесполом размножении образуются зооспоры с двумя немного неравными по размеру жгутиками, лишенные жесткой клеточной стенки и глазка.

Требуся живут вне воды: на коре деревьев или как фотобионы лишайников. Изотопным анализом установлено, что лишайники с требуксиями в качестве
фотобионтов обладают очень активным механизмом накопления углерода, в противоположность лишайникам с фотобионтами из близкого к требуксии рода коккомикса (Coccomyxa), клетки которых не содержат пиреноидов (т.е. проявляется закономерность, характерная для разных видов рода Stichococcus).

Уже давно удалось выделить виды этого рода в чистую культуру.

Близким к требуксии считается род париетохлорис (Parietochloris), отличающийся постенным хлоропластом.

Таллом у представителей рода микротамнион (Microthamnion) имеет вид сильно ветвящихся нитей; они образованы удлиненными клетками. Хлоропласты постенные, без пиреноидов. В вегетативных клетках образуются парами двуглутковые зооспоры.

Род десмококкус (Desmococcus)* представлен повсеместно распространенными во вневодных местообитаниях водорослями, образующими зеленый порошистый налет на коре деревьев в нижней части стволов, на старых досках заборов, на стенах, камнях и т.п. Налет состоит из одиночных или собранных в группы по две, три или более клеток (рис. 90). Плотная оболочка окружает протопласт без вакуолей, содержащий один париетальный хлоропласт без пиреноидов. В условиях повышенной влажности десмококк образует короткие нити с немногочисленными ветвями. Единственный способ размножения — вегетативное деление клеток.

* До сих пор этот широко известный род фигурирует в определителях как плеврококк (Pleurococcus).
Отдел зеленые водоросли (Chlorophyta)

Род празиола (Prasiola, рис. 91) характеризуется талломами в виде мелких однослоинных пластинок, прикрепленных к субстрату нитевидными ризоидами. Некоторые виды встречаются только в холодных быстротекущих горных водоемах; есть виды, обитающие на почве, в значительных количествах содержащих аммоний, и на помете птиц, оставленном на скалах. Известны празиолы, обитающие в экстремальных условиях по берегам Антарктики. Содержащиеся в них аминокислоты (например, пролин) служат при этом как криопротекторы. Наличие соединений, поглощающих ультрафиолет, возможно, помогает празиоле адаптироваться к сильной инсоляции во время антарктического лета. Клетки, явно сгруппированные по несколько, имеют один звездчатый центральный хлоропласт. Считается, что пластины празиолы диплоидны.

Для двух видов этого рода — P. meridionalis и P. stipitata — показана соматическая редукция. В верхней части диплоидных пластин клетки могут делиться мейотически, а потом митотически, так что возникают отдельные участки таллома с гаплоидными клетками. Обычно на таких участках возникают либо только антеридии, либо только оогонии, что считалось свидетельством генотипического определения пола при мейозе. Однако для P. meridionalis показано, что любая клетка, возникшая в результате мейоза, способна в дальнейшем дать начало как антеридиям, так и оогониям.

У пресноводного вида P. japonica установлена зиготическая редукция, а у морского вида P. calophylla — спорический жизненный цикл с гетероморфной сменой поколений. Детали жизненного цикла остальных видов нуждаются в уточнении.
Класс ульвовые
(Ulvophyceae)

Талломы у водорослей, объединяемых в класс ульвовые, могут быть нитча-
тыми, пластинчатыми, паренхиматозными или ценоцитными (сифоновыми)*.

Для этого класса характерен митоз с сохраняющимся телофазным верете-
ном. У более примитивных представителей клетка делится бороздой с участием
пузьрьков, образующихся от аппарата Гольджи. У более высокоорганизованных
представителей цитокинез с митозом непосредственно не связаны: ядра и клет-
ки делятся независимо, «сами по себе», или клетки вообще не делятся, а только
увеличиваются в размере. Известны смена гапло- и диплофазы, чередование
поколений и мейоз при образовании спор (кроме ульвовищевых встречающихся
у зеленых водорослей, по-видимому, еще только у Trentepohliophyceae и неко-
tорых Trebouxiophyceae). В отличие от других классов покоящиеся споры здесь
редки. Ориентация жгутиков «11/7». Одноклеточных (монадных и коккоидных)
представителей нет, самые примитивные формы состоят из нескольких клеток.
Ульвовые — в основном морские формы.

Здесь рассмотрены следующие порядки класса ульвовые: улотриксовые, ульво-
вые, бриопсидовые, базикладовые, сифонокладовые.

ПОРЯДОК УЛОТРИКСОВЫЕ
(ULOTHРИЧАЛЕС)

Порядок включает коккоидные, нитчатые или пластинчатые формы. Объеди-
няющая их особенность — наличие в полевом цикле Codium-стадии (раньше
она считалась самостоятельной водорослью) — одноклеточной структуры, в ко-
торую прорастает зигота и которая через некоторое время распадается на зооспоры,
дающие начало новому — коккоидному, нитчатому или пластинчатому таллому
соответственно. В жизненном цикле чередуются гаплофаза (более долговечная)
и диплофаза (Codium-стадия).

Улотриксовые обитают и в морях, и в пресных водах.

Представителем может служить род улотрикс (Ulothrix) с наиболее известным
видом U. zonata (рис. 92, А). Нить состоит из одного ряда клеток, одетых толстой
оболочкой, под которой находится постенная цитоплазма; она содержит плас-
tинчатый хлоропласт, опоясывающий клетку изнутри в виде незамкнутого коль-
ца. В хлоропласте находится несколько пиреноидов, в цитоплазме одно ядро,
центр клетки занят вакуолью. Все клетки нити одинаковые, за исключением
базальной, которая вытягивается в короткий ризоид и служит для прикрепления
нити к субстрату. Все клетки, за исключением базальной, могут образовывать
репродуктивные клетки и способны делиться; за счет деления таллом непрерыв-
но нарастает.

* В литературе, особенно неботанической, такие формы иногда называют одноклеточными
(например, часто говорят об одноклеточной водоросли ацетабулии).
Отдел зеленые водоросли (Chlorophyta)

При бесполом размножении во всех зеленых клетках могут развиваться от двух до 16 (32) четырехжгутиковых зооспор. Зооспоры бывают двух типов: крупные четырехжгутиковые макрозооспоры (рис. 92, Б), возникающие по 1—4 в клетке, и мелкие дву- или четырехжгутиковые микрозооспоры (рис. 92, B), возникающие в клетке в большем количестве. Обычно этот процесс начинается в апикальной (конечной) клетке и продвигается к основанию нити. Зооспоры, заключенные в слизистой обертке, освобождаются через боковое отверстие в клеточной стенке. Зооспоры несколько различаются по форме (от эллипсоидалных до шаровидных), содержат париетальный (присутствующий) хлоропласт, не заходящий в переднюю часть зооспоры, имеют заметный глазок и 1—7 пиреноидов. После периода движения (имеет место положительный фототаксис) зооспора останавливается, сбрасывая один за другим жгутики, прикрепляется боком к субстрату и прорастает в нить (рис. 92, Г).

При половом размножении в клетках возникают дву жгутиковые гаметы в числе (4)—8—32(64). Гаметы выходят из клетки заключенные в слизистый пузырь, в котором они двигаются, пока не освобождаются. Половой процесс изогамный. У U. zonata наблюдается гетероталлис, т.е. копулируют гаметы из разных нитей, отличающихся в половом отношении («+» и «—»). В результате копуляции образуется сначала подвижная четырехжгутиковая зигота (планозигота), обнаруживающая отрицательный фототаксис. После некоторого периода движения она прикрепляется к субстрату и округляется, втягивая один за другим жгутики. При определенных условиях зигота прорастает в одноклеточную спорофит — Codium-стадию (рис. 92, Д). Сначала формируется трубковидный вырост, в который переходит содержимое зиготы. Этот вырост позднее вздувается, а на его вершине образуются грушевидные или дубинкообразные спорофиты, содержимое которых при созревании распадается на 4—16 (большей частью 8) четырехжгутиковых зооспор. Выходя через отверстие, образующееся в результате ослизнения части стенки спорофита, они заключены еще в слизистую обертку, быстро исчезающую. Зооспоры оседают на субстрат и прорастают так же, как зооспоры, возникающие при бесполом размножении нитей улотрикса. В менее благоприятных условиях улотрикс размножается вегетативно посредством фрагментации нитей. Схематически цикл развития улотрикса представлен на рис. 93.

Другие виды улотрикса в неблагоприятных условиях переходят в пальмельлевидное состояние: клетки окружаются, их стенки ослизняются, клетки расходятся и в таком состоянии делятся. При наступлении благоприятных условий каждая клетка пальмельлевидной стадии может превращаться в зооспору.

Виды рода монострома (Monostroma) имеют пластинчатый таллом. Они отличаются большим сходством с водорослями рода ульва (Ulva, см. ниже), но пластинка состоит из одного, а не из двух слоев клеток, а жизненный цикл включает Codium-стадию. Это преимущественно морские формы. Таллом их первоначально прикреплен к субстрату, потом часто свободно плавает.
ПОРЯДОК УЛЬВОВЫЕ (ULVALES)

Для водорослей порядка ульвовые характерен пластинчатый или трубчатый таллом. На ранних стадиях развития таллом состоит из прикрепленной к субстрату нити, очень похожей на улотрикс, но рано или поздно в такой нити помимо поперечных делений клеток происходят продольные, ведущие к формированию однослоиной или двухслойной пластинки. Смена поколений изоморфная.

У рода ульва (Ulva, рис. 94) пластинка двухслойная. Оба слоя клеток остаются плотно сомкнутыми, таллом достигает крупных размеров (кити руки и даже несколько более), имеет гофрированные края и прикрепляется к субстрату суженным в короткий черешок основанием. Клетки одноядерные, с постенным хлоропластом.

Род ульвария (Ulvaria) представлен организмами, у которых пластинка однослойная (как у рода монострома). Это также морские формы.

У близкого к ульве рода энтероморфа (Enteromorpha) оба слоя клеток пластинки на ранней стадии разъединяются, и талломы, также крупные, принимают вид кишок или трубки с однослоиной стенкой. Отсюда и русское название этой водоросли — «кишечница» (рис. 95). Ульва и энтероморфа в основном
морские водоросли, обитающие в прибрежной (литоральной) зоне северных и южных морей. Многие виды обоих родов выносят заметное опреснение воды и часто поднимаются в устья рек, а некоторые виды энтероморфы обычны и в пресноводных водоемах: часто встречаются в реках и прудах в Москве и под Москвой. Крупные талломы энтероморфы, развиваясь иногда в массовых количествах, а затем, отмирая, делают воду непригодной для питья. Вегетативное размножение осуществляется отделявшимися участками таллома. Бесполое размножение — зооспорами, как правило, четырехглутиковыми, которые образуются путем последовательного деления протоплазма любой клетки на четыре — восемь частей. Половое размножение — двухглутиковыми гаметами. У разных видов обоих родов наблюдается изогамия или гетерогамия.

У водорослей обоих родов установлена изоморфная смена поколений. Одни растения — спорофиты — размножаются только зооспорами, другие — гаметофиты — продуцируют только гаметы. Зооспоры гаплоидны, так как при их формировании происходит мейоз. Прорастая, они дают гаплоидную генерацию — гаметофиты, продуцирующие гаметы. Получившаяся в результате копуляции гамет
зигота прорастает сразу (без периода покоя) в спорофит. Оба поколения отличаются только цитологически и органами размножения, которые на них развиваются. Внешне (морфологически) оба поколения друг от друга неотличимы.

И ульва, и энтероморфа — гетероталические формы; их гаметофиты различны в половом отношении: одни продуцируют гаметы со знаком «+», другие — со знаком «−». Копулация происходит, как и у ульвы, лишь при встрече гамет разного знака. У гетерогамных видов талломы разного знака можно различить и невооруженным глазом по окраске плодущих участков — желтоватой у мужских и темно-зеленой у женских.

ПОРЯДОК БРИОПСИДОВЫЕ
(BRYOPSIDALES)

Порядок объединяет зеленые водоросли с сифоновым типом строения таллома, не имеющие радиальной симметрии. Перегородки возникают, как правило, только в связи с размножением и при повреждении таллома. Облик таллома разнообразный, но в большинстве случаев они хотя бы частично выглядят как нити. В талломах цитоплазма находится в виде слоя между клеточной стенкой и непрерывной вакуолью с клеточным соком. В цитоплазме находится многочисленные дисковидные хлоропласты, которые наряду с обычными для зеленых водорослей пигментами содержат два особых ксантофилла: сифонеин и сифоноксантин. Под хлоропластами расположены многочисленные ядра.

Бесполое размножение встречается у сравнительно немногих представителей. В основном размножение половое — гетерогамное, реже изогамное. У некоторых бриопсидовых установлена своеобразная гетероморфная смена поколений.

Подавляющее большинство этих водорослей обитают в теплых морях. Например, они широко распространены в Средиземном море. Лишь сравнительно немногие виды растут в Черном море, в частности некоторые виды родов бриопсис (Bryopsis) и кодиум (Codium).

Род бриопсис (Bryopsis, рис. 96) широко распространен в Черном море. Водоросль растет на небольшой глубине, прикрепляясь к камням «ризоидами». Растение состоит из получего малоразветленного «корневища», прикрепленного к субстрату, от которого вертикально растут относительно толстые нити, в верхней части несущие перисто-расположенные боковые ветви. Они в свою очередь могут перисто ветвиться один или два раза, обычно в одной плоскости. У основания каждого «перышка» имеется заметная перетяжка, стенка в этом месте утолщена, но до момента образования репродуктивных органов настоящих поперечных перегородок не образуется, и все растение бриопсиса представляет собой одну громадную клетку с непрерывной вакуолью.

Рис. 96. Bryopsis — общий вид таллома
зигота прорастает сразу (без периода покоя) в спорофит. Оба поколения отличаются только цитологически и органами размножения, которые на них развиваются. Внешне (морфологически) оба поколения друг от друга неотличимы.

И ульва, и энтероморфа — гетерогамные формы; их гаметофиты различны в половом отношении: одни продуцируют гаметы со знаком «+»; другие — со знаком «−». Копуляция происходит, как и у улотрикс, лишь при встрече гамет разного знака. У гетерогамных видов талломы разного знака можно различить и невооруженным глазом по окраске плодущих участков — желтоватой у мужских и темно-зеленой у женских.

ПОРЯДОК БРИОПСИДОВЫЕ
(BRYOPSIDALES)

Порядок объединяет зеленые водоросли с сифоновым типом строения таллома, не имеющие радиальной симметрии. Перегородки возникают, как правило, только в связи с размножением и при повреждении таллома. Облик таллома разнообразный, но в большинстве случаев они хотя бы частично выглядят как нити. В талломах цитоплазма находится в виде слоя между клеточной стенкой и непрерывной вакуолью с клеточным соком. В цитоплазме находятся множество дисковидные хлоропласти, которые наряду с обычными для зеленых водорослей пигментами содержат два особьих ксантофилла: сифонеин и сифоноксантин. Под хлоропластами расположены многочисленные ядра.

Бесполое размножение встречается у сравнительно немногих представителей. В основном размножение половое — гетерогамное, реже изогамное. У некоторых бриоопсидовых установлена своеобразная гетероморфная смена поколений.

Подавляющее большинство этих водорослей обитают в теплых морях. Например, они широко распространены в Средиземном море. Лишь сравнительно немногие виды растут в Черном море, в частности некоторые виды родов бриопсис (Bryopsis) и кодиум (Codium).

Род бриопсис (Bryopsis, рис. 96) широко распространен в Черном море. Водоросль растет на небольшой глубине, прикрепляясь к камням «ризоидами». Растение состоит из полузгоющего малоразвитованного «корневища», прикрепленного к субстрату, от которого вертикально растут относительно толстые нити, в верхней части несущие перисто-расположенные боковые ветви. Они в свою очередь могут перисто ветвиться один или два раза, обычно в одной плоскости. У основания каждого «перышка» имеется заметная перетяжка, стенка в этом месте утолщена, но до момента образования репродуктивных органов настоящих поперечных перегородок не образуется, и все растение бриоопсиса представляет собой одну громадную клетку с непрерывной вакуолью.

Рис. 96. Bryopsis — общий вид таллома
Вегетативное размножение бриопсиса легко осуществляется посредством отделения «перышек», которые в месте отделения закупориваются и могут развивать базальные ризоиды даже до отделения от материнского таллома. Кроме того, участки протоплазмы, вытекающие из таллома при его повреждениях, округляются и в течение нескольких минут формируют новые стенки. Затем они развиваются в новые растения.

Помимо вегетативного размножения, играющего очень большую роль в распространении растений, бриопсис размножается половым путем. Половой процесс анизогамный (гетерогамный): мужские и женские гаметы заметно различаются по своей морфологии, окраске, размерам и поведению. Мужские гаметы светло-желтые, без глазка и мельче женских светло-зеленых гамет, имеющих заметный глазок. Женские гаметы подвижнее женских, чье движение нередко ограничивается лишь вращением вокруг собственной оси.

Одни виды бриопсиса (B. plumosa, B. halimeniae) двудомные: мужские и женские гаметы развиваются в разных гаметаниях, в которые превращаются «перышки». При этом у основания перышек появляются сложно устроенные поперечные перегородки, хотя иногда они и не образуются и гаметы формируются даже внутри главной оси. Другие виды (B. hypnoides) одноногие: мужские и женские гаметы развиваются в одном и том же гаметанги — мужские у конца гаметангия, а женские ближе к его основанию. Вышедшие из гаметангиев мужские и женские гаметы попарно копулируют. На процесс оплодотворения влияет температура: зиготы образовывались только при 18 и 24°C, но не при 10°C. Зигота немедленно прорастает, давая, однако, не гаметофит (растение бриопсиса), как считали ранее, а протонему — нитчатое малоразвитленное сифоновое растеньце, распространенное по субстрату. Протонема содержит одно гигантское ядро, по диаметру значительно (в 8—20 раз) превосходящее ядра гаметофита.

Через много недель или месяцев роста протонема может развиваться дальше двумя способами: 1) из нее непосредственно вырастает новое растение бриопсиса — гаметофит (однофазный цикл развития), 2) содержимое протонемы распадается на многочисленные, стефаноконтные (как у эдгониевых) зооспоры, которые уже после выхода через разрыв протонемы образуют таллом бриопсиса. Это двухфазный цикл развития с гетероморфной сменой генераций между перисторазвитленным талломом бриопсиса (гаметофит) и протонемой (сильно редуцированный спорофит). Оба типа развития протонемы наблюдаются у одного и того же вида (B. hypnoides). При этом известную роль играет географическое происхождение растений: так, в северных водах Европы (Северное, Балтийское моря) встречается только однофазный цикл, а на южных берегах Атлантики и в Средиземном море наряду с однофазным наблюдается и двухфазное развитие.

Гетероморфный двухфазный жизненный цикл с мейозом, предшествующим образованию стефаноконтных зооспор в микроскопическом распространите спорофите (протонеме), выявлен у B. plumosa.

У вида B. halimeniae зигота вырастает в развителенную нитчатую сифоновую водоросль, ранее известную под названием Derbesia neglecta. В спорангиях, развивающихся на нитях D. neglecta и отделяющихся от остального таллома перегородками, формируются стефаноконтные зооспоры, при прорастании которых

Рис. 97. Схема циклов развития *Bryopsis*.

A — однофазный цикл развития *B. hypnoides*; B — двухфазный цикл развития *B. hypnoides*; V — двухфазный цикл развития с чередованием *B. halimoniae* (гаметофита) и *Derbesia neglecta* (спорофита); 1 — проросток из зиготы (протонема); 2 — протонема, содержимое которой распалось на зооспоры; 3 — стефаноконтная зооспора; 4 — перисто-разветвленный таллом; 5 — гаметангий, содержащий мужские (в апикальной части) и женские (в базальной части) гаметы; 6 — мужской гаметангий; 7 — женский гаметангий; 8 — гаметы; 9 — зигота; 10 — *Derbesia neglecta* (спорофит); 11 — спорангий.

По-видимому, мейоз имеет место не перед образованием гамет, как считали раньше, а перед образованием стефаноконтных зооспор.

Некоторые виды рода дербеция (например, *D. tenuissima*) могут иметь гаметофит, относящийся к роду галицистис (*Halicystis*). Это шаровидный пузырь диаметром до 3 см, в нижней части переходящий в ризоид, глубоко погруженный в субстрат. Обитает он как эпифит на известковых красных водорослях (*Lithothamnion*, *Lithophyllum*). Пузырьевидная часть таллома каждую осень отмирает и сбрасывается, а ризоид зимует и затем развивает новый пузырь.

Как и бриопсис, галицистис может размножаться вегетативно: при мягком плазмолизе или разрыва клеточной стенки участки протоплазмы, вытекающие
из таллома, округляются и формируют новые стенки. Затем они развиваются в новые растения. Однако в отличие от бриопсиса, протопласты которого всегда развиваются в новые растения, развитие галицистиса зависит от условий освещения: длиный день обычно способствует преобразованию протопlastа в нормальное (пузырьковидное с ризоидом) или сферическое растение, а при коротком дне образуются нитчатые ризоидоподобные формы. Половой процесс анизогамный. Галицистис гетероталичен. Плодящие участки (гаметанги) отделяются от остальной вегетативной части пузыря только тонким слоем цитоплазмы. Образующиеся гаметы с силой выталкиваются через одну или несколько пор, возникающих в толстой стенке пузыря над плодящими участками. Содержимое вакуоли через эти поры не выходит, так как обертка опустевшего гаметангия (плодущего участка) прижимается к стенке и таким образом закупоривает пору. Освобожденная гамет проходит столь стремительно, что, например, в чашке Петри пузырь отбрасывается назад через всю чашку. Содержимое пузыря, не использованное на образование гамет, может снова продуцировать их через правильные двухнедельные интервалы.

Слоевище водорослей рода каулерпа (Caulerpa, рис. 98) напоминает высшие растения: от стелющегося по субстрату «корневища» отходят вниз, в глубь субстрата «корни» (rizoидальные выросты), а вверх — вертикальные ассимилирующие «побеги» в виде пластин на «черешке». Эти пластины бывают цепью-крайними (тогда они напоминают талломы ламинарий) или перисто-рассеченными. Центральная полость таллома пересекается многочисленными целлюлозными балками (рис. 98, B).

Широко распространено вегетативное размножение: при отмирании более старых частей «корневища» отдельные участки его с вертикальными «побегами» становятся независимыми растениями. Половой процесс — слабо выраженная гетерогамия или даже изогамия. Места формирования гамет не отделяются пе-регородками.

Виды рода каулерпа встречаются преимущественно в тропических морях. В Средиземном море обитает C. prolificer, в последнее время активно внедряется C. taxiformia.

У представителей рода кодиум (Codium) таллом шаровидный или в виде цилиндрических развитленных шнуров толщиной до 8 мм и длиной до 50 см, но может быть и значительно больше (рис. 99, A). Он имеет очень сложное строение: середина («сердцевина») образована пучком тонких нитей, тянущихся в продольном направлении. От них отходят нити, дающие по периферии крупные булавовидные ответвления, плотно смыкающиеся между собой и образующие таким путем коровый слой (рис. 99, B).

Размножение у кодиума вегетативное и половое. Гаметы формируются в специальных гаметангиях, возникающих в виде боковых выростов пузырей и отделяющихся от них перегородкой (рис. 99, B). Как и многие представители порядка, кодиум гетерогамен. В живом состоянии мужские и женские гаметанги можно различить еще до окончательного формирования гамет: как и у бриопсиса, мужские гаметанги золотисто-желтые, а женские — темно-зеленые. Получившаяся в результате слияния гамет зигота непосредственно прорастает в новое растение.
В Черном море на глубине 10 м и более встречается вид *C. tomentosum*, известный под народным названием «палцы мертвеца». Этот вид может быть как двудомным, так и однодомным, причем в последнем случае мужские и женские гаметанги возникают не только на одном и том же растении, но даже в одном и том же пузыре.

ПОРЯДОК ДАЗИКЛАДОВЫЕ
(DASYCLADALES)

Как и представители предыдущего порядка, дазикладовые имеют сифоновый тип строения таллома, но при этом он имеет радиальную симметрию. Ветви, отходящие от центральной оси, располагаются мутовками. Для талломов характерна также тенденция к более или менее полной инкрустации карбонатом кальция. Известны только морские формы. Представителями порядка могут служить роды дазикладус (*Dasycladus*) и ацетабулярия (*Acetabularia*).

Средиземноморская водоросль *D. clavaeformis* (рис. 100, A—B) образует густые заросли на небольшой глубине. Неразветвленная пузырьвидная главная ось, достигающая 5 см длины, прикрепляется к скалистому субстрату разветвленными ризоидами. На некотором расстоянии от основания центральный пузырь несет плотно расположенные чередующиеся мутовки из 10—15 боковых ветвей,
способных давать ветви второго и третьего порядка. Веточки отделены друг от друга и от главной оси заметными перетяжками, оставляющими очень узкое сообшение. Стенка центрального пузыря между местами отхода веточек первого порядка сильно утолщена, слоиста, а наружные слои ее импрегнированы (насыщены) карбонатом кальция. Сферические гаметанги образуются на верхушках веточек первого порядка и еще до отделения перегородкой вмещают большую часть зеленого содержимого соседних веточек. В результате гаметанги оказываются темно-зелеными, а окружающие части таллома — бледными. Оболочка гаметангиев у дазикладуса лишиена извести. Их содержимое непосредственно распадается на двужгутиковые изогаметы, которые попарно копулируют. Зигота без периода покоя вырастает в новую особь.

У ацетабурий (Acetabularia) вертикальная ось, часто называемая стебельком и достигающая 3—5 см (у некоторых видов до 18 см) в длину, прикрепляется к субстрату с помощью разветвленных выростов — так называемых лопастных ризоидов. На вершине оси сначала образуются мутовки стерильных веточек, а в конце цикла развития возникает плодущая мутовка, состоящая из гаметангиев. У средиземноморской A. mediterranea (рис. 100, Г—З) гаметанги срастаются.
своими боковыми поверхностями, формируя структуры, которые условно можно называть «шляпками» или «зонтиками». У другого вида — A. crenulata, встречающегося в Карибском море, зонтик состоит из долек (гаметангийев), имеющих форму банана и радиально расходящихся от верхушки стебелька. Лучи зонтика (шляпки) — гаметангиями — сначала сообщаются с полостью стебелька. До этой стадии ацетабулия не только одноклеточное, но и одноядерное (в отличие от большинства сифоновых водорослей) растение. Одно гигантское ядро находится в ризоиде. Только после того как сформировалась плодущая мутовка гаметангийев, ядро в ризоиде претерпевает мейоз. Затем происходит еще много митозов, и получается масса мелких ядер, которые с током цитоплазмы по стебельку переходят в гаметангии. Гаметангии отделяются от стебелька перегородкой, и их многоядерное содержимое распадается на шаровидные клетки. Одеваясь оболочкой, они превращаются в цисты. Позднее, после ряда ядерных делений, в цистах формируются двугутниковые изогаметы. Цисты вскрываются крышечкой, через которую выходит гамета. Зигота развивается в диплоидное растение.

На протяжении некоторой части жизненного цикла ацетабулия одноядерна, причем ядро локализовано в строго определенном, легко распознаваемом месте — ризоиде. Это обстоятельство сделала ее идеальным объектом для изучения взаимоотношений между ядром и цитоплазмой в живой клетке, чему благоприятствует также способность к быстрой регенерации и исключительная живучесть гигантского ядра ацетабулии. Его можно извлечь из клетки, отмыть в растворе сахарозы и снова имплантировать в клетку. Ниже приводятся результаты некоторых опытов с этим объектом.

Для получения безъядерной клетки ацетабулии достаточно отрезать ризоид. Оказалось, что лишенная ядра клетка оставалась живой и активной в течение нескольких месяцев, росла в длину и даже формировала зонтик, в котором, разумеется, цисты не развивались, так как не было ядер. Однако эта способность безъядерного фрагмента расти и формировать новые структуры обусловлена наполнением в нем длительно живущих молекул информационной (матричной) РНК (иРНК). Если после первого разреза сразу сделать второй, то полученный средний участок клетки к регенерации зонтика не способен. Если же второй разрез сделать через несколько дней, то средний участок, находившийся в контакте с ризоидом, содержащим ядро, способен сформировать зонтик. Что делать здесь именно в ядре, доказывалось и пересадкой в изолированный средний участок ядра, отмытого от цитоплазмы.

При введении ядра от одного вида в безъядерный участок другого вида образуется зонтик, характерный для вида, которому принадлежало ядро, т.е. диффундирующий из ядра фактор несет специфическую наследственную информацию. В других опытах было продемонстрировано влияние цитоплазмы на ядро: при пересадке зрелого зонтика на верхушку молодой клетки ее ядро начинало преждевременно делиться.

У ацетабулии, как и у других сифоновых водорослей, изучалось движение цитоплазмы: в частности выяснилось влияние АТФ на движение цитоплазмы.
ПОРЯДОК СИФОНОКЛАДОВЫЕ
(SIPHONOCLADALES)

Порядок характеризуется сифонокладальным типом организации таллома: таллом разделяется на клетки, каждая из которых содержит много ядер. Деление ядер и клеток происходит независимо друг от друга. Представители — в основном обитатели морей, но есть и пресноводные формы.

У видов рода валония (Valonia) молодые растения имеют типичное сифоновое строение. Они представляют собой макроскопически крупный пузырь, прикрепленный к субстрату выростом — «ризоидом». Позднее от поверхности пузыря в любом месте перегорожкой в виде часового стекла отчленяются маленькие линзовидные клетки, особенно мелкие у основания пузыря (рис. 101, Б). Эти маргинальные (краевые) клетки вырастают во вторичные ризоиды, часто имеющие лопастные окончания. У многих видов некоторые из более крупных маргинальных клеток на конце пузыря образуют ветви, повторяющие строение первично- го пузыря и могущие дать начало пузырям третьего порядка (рис. 101, Б, 1). Бесполое размножение зооспорами, половой процесс — гетерогамия; мейоз происходит перед образованием гамет.

Некоторые виды рода валония широко используются для биофизических исследований, для чего они культивируются.

Талломы всех видов рода кладофора (Cladophora) на ранних стадиях развития прикреплены к субстрату: камням, бетону, деревянным сваям и т.п., позднее многие отрываются от субстрата и свободно плавают, нередко в массовых количествах, в виде характерных скоплений темно-зеленой тины, не слизащей на ощупь.

Сильноветвящиеся нити кладофоры сложены из крупных цилиндрических клеток, обычно с толстой целлюлозой (с присутствием хитина) оболочкой, иногда слоистой и никогда не ослизняющейся (рис. 102). Хлоропласты неправильной формы, удлиненные, смыкающиеся концами в постенную сеть, так что выглядят как единая сетчатая пластинка с многочисленными пиреноидами. В постенном слое цитоплазмы, под хлоропластами, находится несколько довольно крупных ядер (размером больше пиреноидов), однако в живом состоянии, без окраски, они не видны.

При бесполом размножении в конечных клетках «ветвей», выделяющихся своим густо-зеленым цветом (рис. 102, Б), образуется масса мелких дву- или четырехуглутковых зооспор. Половое размножение изогамное, посредством двууглутиковых гамет. Смена ядерных фаз бывает разной. Так, у широко рас-
пространенного в пресных водах России вида *C. glomerata* смены поколений нет и имеет место гаметическая редукция (т.е. талломы диплоидны, а гаплоидны только гаметы). Обитающие в северных морях виды *C. fracta* и *C. rupestris* имеют изоморфную смену поколений, а некоторые североамериканские виды гаплоидны.

Большинство видов этого рода — обитатели морей, но некоторые широко распространены и в пресных водах.

У *C. sauteri* и ряда других видов (выделяемых иногда в особый род *Aegagropila*) нити срастаются, образуя зеленые шары, достигающие размера крупного апельсина. Такие шары лежат на дне водоемов либо всплывают на поверхность воды. Шары формируются из нитей, по-видимому, при поступательно-возвратном движении воды на мелководье, что наблюдается не только у кладофор, но и у других водорослей, например у *Caulerpa racemosa*. Такие компактные шары удалось получить экспериментально при культуре *Cladophora minima* на качалке, где с нитями двигалась от одного края Т-образного сосуда к другому. В спокойной среде водоросль росла в виде рыхло перепутанных пучков.
Род ризоклониум (Rhizoclonium) отличается от кладофоры очень слабым ветвлением, иногда талломы даже совсем не ветвятся; иногда имеются короткие одноклеточные выросты — ризоиды — у основания. Клетки длинные, цилиндрические, с немногочисленными ядрами (от 2 до 8 на клетку). В остальном строение клетки то же, что и у кладофоры.

Местообитания те же, что и у кладофор. Нередко ризоклониумы массами разводятся в аквариумах с хармами.

ПОДОТДЕЛ CHAROPHYTINA

У водорослей, входящих в подотдел Charophytina, митоз может различаться в деталях, но всегда открытый. Жгутики расположены сбоку или вблизи верхушки подвижной клетки (субапикальные) и направлены в одну сторону под прямым углом к ее оси. Почти исключительно пресноводные формы; есть также водоросли взвешенных местообитаний.

Класс трентеполиевые (Trentepohliophyceae)

Этот небольшой класс занимает довольно спорное положение в системе зеленых водорослей. Ориентация жгутиков, как у Ulvophyceae, «11/5», но по особенностям клеточного и ядерного деления трентеполиевые сходны с классом Charophyceae и высшими растениями. Таллом гетеротрихальный, но сильно редуцированный.

Класс включает один порядок — Trentepohliales с одним семейством, к которому относятся 4 рода и около 60 видов. Все они обитают вне воды — как эпифиты на коре деревьев, камнях и других предметах или как полупаразиты на листьях. Некоторые представители — фотобионты лишайников.

Виды рода трентеполия (Trentepohlia, рис. 103, 4) особенно широко распространены в тропиках и субтропиках, где растут на камнях, скалах, стволах деревьев и как эпифиты на листьях. Некоторые входят в состав лишайников. В России талломы трентеполии образуют кирпично-красные или желтые налеты на стволах деревьев. У большинства видов таллом гетеротрихальный, дифференцированный на нити, стеляющиеся по субстрату, и нити, отходящие от них в пространство; у остальных видов вторая система нитей развита слабо. Более или менее шаровидные клетки толстостенные, протопласт без вакуоли, содержит много дисковидных или лентовидных хлоропластов, зеленая окраска которых, как правило, маскируется желтыми или кирпично-красными каротиноидными пигментами, растворенными в каплях масла. Более старые клетки обычно многоганьедренные. Толстые слоистые стенки и обильное жира, окрашенного каротиноидами, — признаки покоящихся клеток (акинет, зигот) многих зеленых водорослей. У трентеполии эти признаки присутствуют самим вегетативным клеткам, что, несомненно, свидетельствует о наземных условиях существования, для которых характерна столь быстрая смена влажности и сухости, что водоросль не смогла бы реагировать на них образованием специальных покоящихся клеток. Вегетативное
У видов, входящих в состав лишайников, клетки чисто зеленого цвета, так как масло и каротиноиды там не накапливаются.

Основной способ размножения трентеполии — вегетативный: нити легко разламываются на отдельные участки или клетки, которые переносятся ветром на новый субстрат.

Четырехжгутиковые зооспоры образуются в специальных, отличающихся по форме от вегетативных клеток крючковидных спорангиях, сидящих на клеткахноожках (рис. 103, Б). Спорангии легко отделяются и разносятся ветром в целом виде. При созревании зооспорангии становятся многождерными. При попадании в каплю воды через несколько (3—5) минут их содержимое распадается на однождерные участки, которые вырабатывают жгутики и превращаются в зооспоры. В шаровидных сидящих гаметангиах, которые также разносятся ветром в целом виде, образуются (в присутствии воды) двуглутковые гаметы. Однако копуляция гамет наблюдается очень редко. Гаметы большей частью развиваются partenogenетически, прорастая, как и зооспоры, на влажной коре в новые нити.

Для некоторых видов трентеполии характерна изоморфная смена поколений.

Виды рода цефаляйрос (Cephalearus), отличающиеся тем, что зооспорангии у них собраны группами, — полупаразиты на листвьях высших растений, в том числе таких важных культур, как чайный куст и кофейное дерево. В некоторых местах Южной Америки поражение цефаляйросом, называемое там «красной водорослевой плесенью», наносит кофейному дереву довольно серьезный ущерб. Представители этого рода входят также в качестве фотообионтов в состав лишайников из рода стригула (Strigula).

Класс клебсормидиевые (Klebsormidiophyceae)

Представители класса — одноклеточные коккоидные, картоидные и нитча-тье (неквевшееся или ветвящиеся) формы. Имеющие жгутики клетки (зоиды) обычно покрыты ромбовидными чешуйками, сходными с чешуйками у клеток празинофитов. Деление клеток осуществляется впячиванием или путем образования клеточной пластинки, располагающейся во фрагмопласте.

Клетки одноядерные. Хлоропласт в каждой клетке один, постенный, в форме чаши или ленты.
У тех видов, для которых известен половой процесс, жизненный цикл гаплоидный, включающий стадию покоящихся, одетой толстой оболочкой зиготы (гипнозиготы).

Клебсормидиевые встречаются в пресных водах и во влажных наземных местообитаниях.

ПОРЯДОК КЛЕБСОРМИДИЕВЫЕ
(KLEBSORMIDIALES)

Порядок включает коккоидные и сарциноидные формы, а также неветвящиеся нити. Хлоропласт постенный, в виде ленты или чаши, обычно с одним пиренеидом.

Деление клеток осуществляется впячиванием. В поперечных перегородках плазмодесмы отсутствуют.

Виды рода клебсормидиум (Klebsormidium, рис. 104) представлены прикрепляющимися к субстрату нитями, имеющими закругленную конечную клетку. Хлоропласт имеет вид довольно тонкой постенной пластинки, занимающей меньше половины окружности (рис. 104, A). Нити легко распадаются на отдельные фрагменты, состоящие из одной или нескольких клеток. При бесполом размножении образуются крупные двужгутиковые зооспоры (рис. 104, B) — по одной в клетке. Они освобождаются через разрыв в клеточной стенке. Большинство видов этого рода живут во влажных внетрехных местобитаниях: на скалах, сырой земле, мокрой древесине, гидротехнических сооружениях и др.

Рис. 104. Klebsormidium flaccidum.
A — нить; B — зооспоры

ПОРЯДОК КОЛЕОХЕТОВЫЕ
(COLEOCHAETALES)

Таллом колеохетовых образуют ветвящиеся нити, у некоторых видов легко распадающиеся на отдельные клетки. Большинство клеток несет одну или несколько щетинок, куда заходит цитоплазма; в основании щетинок имеется обертка (воротничок). Хлоропласт постенный, в виде ленты или чаши, с одним пиренеидом.

Цитокинез осуществляется путем образования клеточной пластинки, которая состоит из пузырьков, возникающих от аппарата Гольдже и расположенных во фрагмопласте. Поперечная перегородка перфорирована плазмодесмами.

Виды рода колеохета (Coleochaete) — пресноводные эпифиты, обитающие главным образом на высших водных растениях. У одних видов типичный гетеротрихальный таллом, погруженный в слизь, образует полусферические подушечки.
У других видов произошла редукция восходящих нитей, так что таллом представлен только распространетой по субстрату системой нитей. Последняя в свою очередь может состоять из рыхло расположенных разветвленных нитей, нити могут также срастаться боками, формируя компактный диск (рис. 105, A). Одноядерные клетки, включающие крупный постенный хлоропласт с пиреноидом, обычно несут характерные образующие воротничок щетинки, которые появляются на клетке в виде выступа, покрытого сначала двухслойной стенкой. Затем наружный слой стенки разрывается и остается в виде воротничка у основания щетинки, в которую развивается выступ, одетый только внутренней стенкой. Бесполое размножение колеохете осуществляется двуугутиковыми зооспорами, образующимися по одной в клетке. Половой процесс оогамный. Оогонии и антеридии развиваются обычно на одном таллите, хотя есть и двудомные виды (рис. 105, B). Оогоний имеет форму бутыли с сильно расширенной нижней частью, содержащей хлоропласт, и узкой, вытянутой верхней частью — трихогиной с бесцветной цитоплазмой. В оогонии образуется одна яйцеклетка. В антеридиях — маленьких бесцветных клетках — формируется по одному бесцветному двуугутиковому сперматозоиду, содержащему очень маленький хлоропласт. После оплодотворения ооспора одевается толстой оболочкой, а соседние с оогонием клетки дают ветвящиеся нити, которые, переплетаясь, образуют вокруг оогония и ооспоры псевдопаренхиматозную однослоиную кору (рис. 105, B). Ооспора зимует и весной прорастает. При этом содержимое ее делится на 8—32 клетки, каждая из которых затем дает по одной зооспоре. Зооспора развивается в таллите. Первое деление комплационного ядра в прорастающей ооспоре носит редукционный характер. Таким образом, растение колеохете гаплоидное, диплоидна только покоящаяся ооспора.
Класс конъюгаты, или сцеплянки
(Zygnematophyceae, Conjugatophyceae)

Конъюгаты — одноклеточные или нитчатые неветвящиеся, обычно свободно плавающие формы. Жгутиковые стадии в жизненном цикле полностью отсутствуют. Клетки одноядерные. Хлоропласт самой разной формы. Для большинства конъюгат характерен центральный, осевой хлоропласт, а париетальный хлоропласт встречается реже.

Митоз полузакрытый, с сохраняющимся телофазным веретеном. Деление клеток осуществляется впячиванием, во многих случаях при этом имеется клеточная пластинка, образующаяся во фрагмопласте. Поперечная стенка складывается внутри клеточной пластинки. Плазмодесм нет.

Вегетативное размножение происходит путем деления клеток у одноклеточных форм и распада нитей у нитчатых форм. Половой процесс — конъюгация: сливаются две вегетативные клетки, не отличающиеся какой-либо специальной дифференциацией как обособленные гаметы. Образующаяся зигота одевается толстой оболочкой и претерпевает состояние покоя. При ее прорастании происходит мейоз, поэтому конъюгаты — гаплontы. Из зиготы у одних представителей развиваются 4 проростка, у других 2, у третьих всего один проросток.

Пресноводные формы — некоторые встречаются на почве или скалах. Совсем немногие виды обитают в очень слабосолоноватых водах.

Далее рассматриваются порядки зигнемовые и десмидиеевые.

ПОРЯДОК ЗИГНЕМОВЫЕ
(ZYGNEMATALES)

Зигнемовые водоросли до недавнего времени трактовали как два порядка: собственно зигнемовые — нитчатые формы и мезотениевые (Mesotaeniales) — одноклеточные формы. Однако данные молекулярной биологии свидетельствуют о том, что родство этих водорослей в наибольшей степени может отражать не строение таллома, а форма хлоропласта. Близкие пары родов со сходными хлоропластами приведены в табл. 3.
Близкие роды нитчатых и одноклеточных зигнемовых

<table>
<thead>
<tr>
<th>Форма хлоропласта</th>
<th>Род нитчатых водорослей</th>
<th>Род одноклеточных водорослей</th>
</tr>
</thead>
<tbody>
<tr>
<td>Постенный, в виде спиральных лент</td>
<td>Spirogyra</td>
<td>Spirotaenia</td>
</tr>
<tr>
<td>Центральный, звездчатый, в числе двух на клетку</td>
<td>Zygnema</td>
<td>Cylindrocystis</td>
</tr>
<tr>
<td>Осевая пластинка</td>
<td>Mougeotia</td>
<td>Mesotaenium</td>
</tr>
</tbody>
</table>

Почему рассматривать нитчатые и одноклеточные формы в качестве какихлибо таксонов не имеет смысла. Однако из практических соображений мы рассмотрим их отдельно.

У видов рода неотенеум (Mesotaenium) хлоропласт имеет форму осевой пластинки и содержит один или несколько пиредионидов. В зависимости от положения клетки хлоропласт можно видеть или с его широкой стороны, или «в профиль» (рис. 106).

Клетки водорослей родов цилиндрикоцистис (Cylindrocystis) и нетриум (Netrium) имеют по два центральных звездчатых хлоропластов, состоящих из массивной осевой части, где находится пиредионид, и расходящихся по радиусам пластинок; у нетриума пластинки сильно изрезаны по краям (рис. 107).

Наиболее часто встречающийся вид рода Netrium — N. digitus, крупная водоросль (до 400 мкм в длину). Клетки ее веретеновидные, с широко закругленными концами. Оболочка гладкая, несегментированная, без пор. В бесцветном поперечном цитоплазматическом мостике в плоскости симметрии находится крупное ядро, видимое нередко без окраски. По обе стороны от него располагается по одному хлоропласту в виде осевого стержня с радиально расходящимися от него продольными пластинками с городчатыми краями и отвернутыми вправо и влево лопастями. В осевом стержне каждого хлоропlastа имеется один центральный палочковидный большой пиредионид, без окрашивания не видимый.

Для рода спиротеня (Spirotaenia) характерны париетальные хлоропласты, в виде спиральных лент с пиредионидами (рис. 108).

Вегетативное размножение одноклеточных зигнемовых происходит путем деления клеток в поперечной плоскости. При половом процессе конъюгирующие клетки, обычно погруженные в общую слизь, располагаются своими длинными осами или параллельно друг другу, или под прямым углом и в месте контакта образуют навстречу друг другу отростки. По мере удлинения отростков конъюгирующие индивиды несколько раздвигаются (рис. 109, Б). При растворении стенок в месте стыка отростков возникает конъюгационный канал, внутри которого встречаются и сливаются протопласты конъюгирующих клеток (рис. 109, В). Зигота одевается толстой многослойной оболочкой и переходит в состояние покоя. При прорастании зиготы, как правило, все четыре гаплоидные ядра, возникшие в результате мейоза, остаются жизнеспособны. Соответственно формируется четыре новых индивида. У нетриума из четырех гаплоидных ядер обычно остаются жизнеспособными только два, и соответственно при прорастании зиготы развиваются только два п о остка (еже четыре).
Одноклеточные зигнемовые распространены в торфяных болотах, некоторые виды родов мезотениум (Mesotaenium) и цилиндроцистис (Cylindrocystis) встречаются на сырой земле, образуя слизистые скопления.

Нитчатые зигнемовые — строго неветвящиеся формы. Таллом состоит из одного ряда цилиндрических клеток, одетых целой оболочкой без пор и слизистым чехлом. Зигота прорастает одним проростком. Это самые обычные нитчатые пресноводные водоросли.

Благодаря чехлу нити зигнемовых и их скопления слизистые на ощупь, в отличие от скоплений (тины), образованных другими нитчатками, например кладофорой. Центр клетки занят крупной вакуолью, цитоплазма занимает постенное положение. У рода мужчия (Mougeotia, рис. 109) хлоропласт имеет вид плоской осевой пластинки, содержит несколько пиrenоидов. Своей широкой стороной он обращен к свету, при чрезмерном освещении пластинка может повернуться на 90° и стать к свету в профиль. Такой поворот занимает около 30 мин.
У рода зигнема наблюдаются два осевых звездчатых хлоропластов, каждый с крупным центральным пиреноидом (Zygnema, рис. 110). Хлоропласты в виде одной или многих лент, расположенных в постенной цитоплазме и опоясывающих клетку по спирали, характерны для видов наиболее широко распространенного рода спирогира (Spirogyra, рис. 111). Лентовидные хлоропласты спирогиры обычно имеют нервные городчатые края, и у многих видов вдоль ленты посередине проходит гребень в виде темной полосы, вдающийся внутрь клетки. По средней линии хлоропласта расположены пиреноиды, окруженные крахмальными зернами.

Одно ядро всегда расположено в центре клетки: у мужества оно прижато к одной стороне хлоропласта (см. рис. 109, A), у зигнемы находится между двумя хлоропластами (см. рис. 110, A). У спирогиры ядро, окруженное слоем цитоплазмы, подвешено на цитоплазматических тяжах, отходящих от постенной цитоплазмы, в центре вакуоли (рис. 111, A). Любая клетка нити способна к росту и делению. После деления ядра образуется поперечная перегородка, разрезаящая хлоропласты спирогиры пополам, у мужеств и зигнемы деление хлоропластов предшествует формированию поперечной перегородки.

Вегетативное размножение осуществляется благодаря разрыву нитей на отдельные фрагменты в результате отмирания промежуточных клеток, и даже отдельные клетки могут вырасти в новые нити.
Рис. 110. Zygnema.
A — строение клетки; B — конъюгация; В — прорастание зиготы

Рис. 111. Spirogyra.
A — строение клетки; B — конъюгация лестничная; В — конъюгация боковая; Г — прорастание зиготы; жг — женская гамета, мг — мужская гамета; 1 — хлоропласт; 2 — ядро; 3 — сократительные вакуоли; 4 — центральная вакуоль

Половой процесс — конъюгация — может различаться в некоторых деталях. Наиболее обычная так называемая лестничная конъюгация, которая происходит между клетками двух нитей. Нити располагаются параллельно друг другу и вначале склеиваются слизью. Затем противолежащие клетки, предварительно поделенные на две, образуют навстречу друг другу выросты, которые соприкасаются и срастаются своими концами. Удлиняясь, выросты постепенно раздвигают нити,
ВОДОРОСЛИ

tак что возникает фигура в виде лестницы (см. рис. 109, Б; 110, Б; 111, Б). Стенки на соприкасающихся концах отростков растворяются, и возникает узкий канал, соединяющий полости коньюгирующих клеток. Оба протопласта, втянувшиеся в отростки, после растворения смежных стенок вступают в контакт. У всех видов спирогир и у многих видов зигнемы протопласт одной из коньюгирующих клеток (отдающей) сокращается, отстает от стенок и постепенно проталкивается через канал в другую (воспринимающую) клетку, где и сливается с ее содержимым, образуя зиготу (см. рис. 110, Б; 111, Б, Б). Сокращение протопласта обусловлено, по-видимому, тем, что жидкость из центральной вакуоли диффундирует в многочисленные пульсирующие вакуоли, появляющиеся в цитоплазме, которые вырабатывают ее в пространство между протопластом и клеточной стенкой (см. рис. 111, Б). Появление сократительных вакуолей и отставание протопласта от стенки наблюдается и в воспринимающей клетке, но значительно позднее, чем в клетке, отдающей свое содержимое.

Поскольку поведение коньюгирующих клеток у спирогир и многих зигнем несколько различно (воспринимающие клетки, более пассивные, можно назвать «женскими», отдающие клетки, более активные, — «мужскими»), полововой процесс в этих случаях можно определить как физиологически анисогамный, хотя морфологически он изогамен: коньюгирующие клетки морфологически одинаковы. У других видов зигнем и у всех видов мужской сливание протопластов и образование зиготы происходит в коньюгационном канале (см. рис. 109, Б), как у одноклеточных зигнемовых. Здесь имеет место физиологическая изогамия, которая, как правило, сопровождается морфологической изогамией. Описан лишь один вид мужской, где коньюгирующие клетки и нити различались морфологически, т.е. наблюдалась морфологическая анисогамия, и у этого вида зигота всегда формировалась в коньюгационном канале.

Помимо лестничной у тех же видов можно наблюдать иной тип коньюгации — боковой. При боковой коньюгации отростки, а затем канал возникают между соседними клетками одной и той же нити (см. рис. 109, Б; 111, Б).

Образовавшаяся в результате слияния протопластов коньюгирующих клеток зигота окружается, выделяя толстую трехслойную оболочку и переходит в состояние покоя. В молодой зиготе еще можно различить хлоропласти обоих слившихся протопластов, позднее, в случае физиологической анисогамии, мужские хлоропласы разрушаются — остаются одни женские; при физиологической изогамии сохраняются все хлороплазы. Ядра сливаются незадолго до прорастания зиготы. При прорастании зигот нитчатых зигнемовых из четырех гаплоидных ядер остается жизнеспособным только одно, соответственно развивается только один проросток (см. рис. 110, Б; 111, Б).

ПОРядок десмидиевые
(DESIDIales)

Порядок, десмидие́вые, насчитывающий до нескольких тысяч видов, включает одноклеточные, реже — нитчатые водоросли (последние можно трактовать как нитевидные колонии, поскольку они возникают в результате деления отдельных клеток на две и нерасхождения дочерних клеток). Клетки всегда состоя-
Отдел зеленые водоросли (Chlorophyta)

является более или менее заметной перетяжкой, исключение составляют род клюстериум и некоторые виды рода пениум. Полуклетки могут быть самой разнообразной формы: цилиндрические с заостренными (Closterium — рис. 112), закругленными (Penium) или срезанными (Pleurotaenium) концами, а также уплощенные (Cosmarium, Euastrum) или даже дисковидные (Micrasterias). В разных положениях клетки выглядят неодинаково (см. далее рис. 113, 115, 117). Полуклетки часто разделены более или менее глубокими вырезами на симметрично расположенные лопасти, их углы могут нести различные выросты. Оптический микроскоп позволяет видеть двухслойную стенку; ее наружный слой часто импрегнирован соединениями железа, имеет желтоватую окраску и может нести шипы, бородавочки и другие выросты, расположенные определенным образом. Стенка пронизана сложно устроенными порами, часто группирующимися вокруг основания шипов, бородавок и других выростов стенки. Через поры выделяется слизь. Находясь в контакте с субстратом, десмидиевые способны к слабому движению. Движение обусловлено местным выделением слизи через специальные крупные поры на концах клетки. В течение часа могут выделяться неправильные червеобразные массы слизи, в два-три раза превышающие длину индивида (рис. 112, B).

Одно ядро находится в цитоплазме в области перешейка, соединяющего две полуклетки. Хлоропласты в большинстве случаев осевые, по одному в каждой клетке, хотя у многих видов космариум и некоторых других родов в каждой полуклетке может быть по два хлороплastos. Осевые хлороплastosы состоят из центральной, осевой части, от которой по радиусам расходятся ряд пластинок или отростков. Пиреноиды обычно располагаются в центральной части хлороплastos.

Рис. 112. Closterium.
A — вид клетки сбоку; B — поперечный разрез клетки; V — выделение масс слизи с концов клетки; Г — коньюгация; D, E — коньюгация с образованием двойных зигот
Реже хлоропласты постенные — парietальные; по-видимому, они произошли от центральных при расширении концов радиально расходящихся отростков в парietальные лопастные пластинки и при редукции осевой части хлороплазта. У форм с массивными осевыми хлоропластами вакуоли небольших размеров. У клостерииума и плеуротениума на концах клетки имеются терминальные вакуоли с кристаллами гипса, совершаемыми броуновское движение.

Вегетативное размножение осуществляется делением клетки в поперечной плоскости (плоскости симметрии) на две. Дочерние индивиды получают одну полу-клетку от материнской клетки, а недостающую достраивают заново (рис. 113, B, Г).

При полувом процессе — конъюгации — две клетки сближаются и одеваются общей слизью. У некоторых, например у клостерииума, в области симметрии от каждой конъюгирующей клетки развиваются отростки; они соединяются, образуя конъюгационный канал, внутри которого сливаются протоплазмы конъюгирующих клеток (см. рис. 112, Г). У многих десмиевых половинки оболочек конъюгирующих клеток расходятся, протоплазмы освобождаются и сливаются (конъюгационный канал здесь не образуется). У некоторых видов (Closterium lineatum и др.) протопласт каждой конъюгирующей клетки предварительно делится, формируя ве гаметы, которые освобождаются и попарно сливаются. Таким образом, возникают «двойные» зиготы (см. рис. 112, D, E). Зрелые зиготы обычно отходят трехслойной оболочкой. При прорастании зиготы куполовидное ядро редукционно делится. Из четырех гаплоидных ядер, как правило, жизнеспособными остаются два. Таким образом, у десмиевых из зиготы образуются два проростка, хотя есть и исключения (у гиалотеки только один проросток).

Представителями не образующих колонии десмиевых могут служить роды клостерииум (Closterium), космариум (Cosmarium), микрастриас (Micrasterias), стаураструм (Stauastrum) и эуаструм (Euastrum).

У видов рода клостерииум (см. рис. 112) клетки веретеновидные, относительно прямые либо в большей или меньшей степени изогнутые (обычно одна сторона несколько более выпуклая, чем другая). В отличие от подавляющего большинства десминдовых перетяжка в плоскости симметрии отсутствует. Стенка состоит из двух половинок, спаянных в плоскости симметрии. В стенке имеются поры, особенно крупные на концах клетки. Через них выделяется слизь; она приподнимает конец клетки; он перекидывается вниз, и слизь начинает выделяться с другого конца клетки (клетка, таким образом, «кувьркается») (см. рис. 112, B). В плоскости симметрии клетки, куда обычно не заходит хлоропласт, находится одно крупное ядро, часто различимое даже в живом состоянии. Каждая полу-клетка содержит по одному крупному центральному хлоропласту, состоящему из осевого стержня, от которого по радиусам расходится несколько пластин. На поперечном разрезе хлоропласт имеет звездчатую форму (см. рис. 112, B). На концах клетки находится по одной вакуоли с кристаллами гипса.

У видов рода космариум (Cosmarium — см. рис. 113, A, Б) клетки с глубокой перетяжкой, полуклетки разнообразной формы: округльные, пирамидальные, многоугольные. При рассмотривании сверху клетки имеют эллиптические очертания, чем отличаются от клеток рода стаураструм (Stauastrum), которые сверху выглядят треугольниками или многоугольниками (рис. 114).
У видов рода микрастерииас (Micrasterias) клетки плоские, с глубокой перетяжкой. Каждая полуклетка разделена на две боковые и одну полярную (срединную) лопасти. Боковые лопасти, как правило, глубоко надрезаны (рис. 115).

У видов рода эуаструм (Euastrum) клетки большей частью удлиненной формы, с глубокой перетяжкой, полуклетка с широко округлыми лопастями, имеет на конце выемку (рис. 116).
Примерами нитчатых десмидиевых, у которых клетки при делении не разъединяются, а остаются плотно соединенными, могут служить водоросли родов десмидиум (Desmidium) и гиалотека (Hyalotheca). Их клетки, как и у одноклеточнных десмидиевых, состоят из двух симметричных полуклеток, в плоскости симметрии имеется неглубокая перетяжка. Нити обычно скручены по спирали и одеты более или менее мощным слизистым чехлом. У разных видов десмидиумов клетки при рассматривании сверху имеют овальные (D. cylindricum) или треугольные (D. swartzi) очертания. Таким образом, у D. swartzi нить имеет форму трехгранной призмы, а у D. cylindricum — эллиптического цилиндра. Поскольку нити скручены, выдающиеся ребра клеток у D. swartzi выглядят в виде темно-зеленной полосы, идущей косо вдоль нити (рис. 117, A). У D. cylindricum скручивание нити выражается в периодическом расширении и сужении ее в зависимости от того, широкой или узкой стороной повернута она к наблюдателю (рис. 117, Г). У гиалотеки (Hyalotheca) нить цилиндрическая, клетки при рассматривании сверху имеют округле очертания и отличаются очень слабой перетяжкой. Нить окружена мощным слизистым чехлом (рис. 118, A). У большинства нитчатых форм до коньюгации нить распадается на отдельные клетки (рис. 118, Б), однако у D. swartzi коньюгируют клетки, соединенные в нить. При коньюгации образуется коньюгационный канал (рис. 117, В).

Рис. 117. Desmidium.
A—B — D. swartzi (A — нить, B — вид клетки сверху, В — коньюгация); Г, Д — D. cylindricum (Г — нить, Д — вид клетки сверху)

Рис. 118. Hyalotheca.
A — нить; B — коньюгация
Представители порядка относятся к железолюбивым формам и предпочитают воду с кислой реакцией, бедную кальцием. Поэтому наиболее разнообразно и обильно они представлены в торфяных болотах, заболевшихся озерах и других водоемах дистрофного типа. Они удерживаются между листочками мха во взвешенном состоянии или прикрепляясь к ним слизью. Нередко они в огромных количествах развиваются в неглубоких лужах торфяников, зарастающих болотными растениями.

Класс харовые (Charophyceae)

К классу харовые относятся наиболее высокоорганизованные зеленые водоросли (а по некоторым параметрам и наиболее высокоорганизованные водоросли вообще). Они характеризуются сложно построенным талломом (усложненный вариант гетеротрихального типа) и многоклеточными половыми органами.

Талломы харовых, всегда вертикально стоящие, имеют строго верхушечный рост и состоят из осей неограниченного роста («стеблей») и отходящих от них мутовками осей ограниченного роста («листьев»). Мутовчатое ветвление придает харовым некоторое сходство с хвощами (рис. 119). Высота талломов бывает обычно около 20—30 см, но иногда достигает метра и более. Как стебли, так и листья дифференцированы на закономерно чередующиеся узлы и междоузлия.

Рост у этих водорослей строго апикальный (верхушечный). Куполообразная апикальная (верхушечная) клетка (рис. 120, A, 1) поочередно отклоняет перегородкой, параллельной ее плоскому основанию, клетки-сегменты (рис. 120, A, 2). Каждый сегмент делится на двояковогнутую верхнюю клетку (рис. 120, A, 3) и двояковыпуклую нижнюю клетку (рис. 120, A, 4). Двояковогнутая клетка превращается в узел: она делится пополам продольной перегородкой, после чего ряд изогнутых перегородок отделяет серию периферических клеток от двух центральных, позднее претерпевающих еще несколько делений (рис. 120, Б). Двояковыпуклые клетки не способны к делению, они только растут в длину, образуя междоузлия. От периферических

Рис. 119. Chara — общий вид таллома
клеток узла стебля отделяются верхушечные клетки боковых ветвей ограниченного роста — листьев, благодаря этому расположенных всегда мутовками. Листья растут таким же способом, как стебли, но клетки междоузлий у них обычно остаются довольно короткими, а апикальная клетка сравнительно рано прекращает делиться, принимая вытянутую заостренную форму. От периферических клеток узлов «стебля», расположенных у основания «листьев» (в «пазухах листьев»), возникают ветви неограниченного роста следующего порядка — стебель ветвится.

Рис. 120. Chara.
A — продольный разрез конуса нарастания; B — молодой узел в поперечном сечении; В — лопасти коры на молодом междоузлии стебля, состоящие из чередующихся узлов и междоузлий.
1 — верхушечная клетка, 2 — клетка-сегмент, 3, 7 — узлы, 4, 6 — междоузлия, 5 — листья

У многих представителей харовых от узлов осей идут еще вверх и вниз нити, одевающие снаружи клетку междоузлия и образующие так называемую «кору». «Коровые» нити плотно прилегают к клетке междоузлия и растут с той же скоростью, так что клетка с самого начала покрыта корой. Растущая вверх нить одного узла встречается с нитью, растущей вниз от вышерасположенного узла (рис. 120, B).

Нити коры, одевающие стеблевые междоузлия, имеют те же строение и способ роста, что и другие ветви растения, т. е. у них наблюдаются расчленение на узлы и междоузлия и апикальный рост (рис. 120, B). Узлы делятся двумя радиальными стенками на медианную и две латеральные клетки. Медианная клетка делится тангенциальной стенкой на более мелкую внутреннюю и более крупную наружную клетки. Наружная может или дать только маленький выступ, или развититься в шип; иногда она делится на ряд клеток. У многих видов хары листья также одеты корой, нити которой, однако, не дифференцированы на узлы и междоузлия (рис. 121, A).
Прикрепляются талломы посредством ризоидов, возникающих из периферических клеток нижнего узла главной оси. Они состоят из одного ряда клеток, обычно разветвленных.

Молодые клетки одноядерные, с возрастом они становятся многоядерными. Клетки одеты целлюлозной оболочкой, в наружных слоях которой отлагается карбонат кальция. В постенной цитоплазме находятся многочисленные мелкие дисковидные хлоропласты, лишенные пиреноидов. В удлиненных клетках междоузлий хлоропласты расположены хорошо заметными продольными рядами в самом наружном слое цитоплазмы.

В более глубоком слое цитоплазмы, граничащем с громадной вакуолью, происходит интенсивное движение: с одной стороны клетки — восходящий ток цитоплазмы, с другой — нисходящий. Линия раздела заметна по бокам клетки по бесцветной полосе, где нарушено плотное расположение хлоропластов и стенка образует гребень, вдающийся внутрь клетки. Все клетки, способные к делению (т.е. апикальные, клетки-сегменты и клетки узлов), одноядерные, ядра делятся митотически. Неспособные делиться клетки междоузлиев во взрослом состоянии многоядерные, содержат крупные ядра лопастной формы, размножающиеся амитотически.

Митоз открытый, с сохраняющимся телофазным веретеном, цитокинез идет посредством образования клеточной пластинки, возникающей из пузырьков
от аппарата Гольджи и расположенной во фрагмопласте. Поперечные перегородки пронизаны плазмодесмами.

Бесполого размножения у харовых нет. Вегетативное размножение осуществляется с помощью клубеньков, возникающих из нижних стеблевых узлов. Половой процесс оогамный. Половые органы имеют сложное строение. Как правило, ооогонии и антеридии развиваются в непосредственной близости друг от друга, однако есть и двудомные виды.

Оба вида половых органов формируются на вторичных боковых ветвях ограниченного роста, вырастающих из верхних узлов «листьев».

При развитии антеридия боковая ветвь образует базальный узел, после чего апикальная клетка делится, формируя антеридий. Клетка базального узла антеридия на стороне, обращенной к оси, у однодомных форм хары дает начало ооогонию. Таким образом, у хары ооогоний направлен вверх, а антеридий — вниз (рис. 121, A), у однодомных видов нителлы ооогоний образуется под антеридием. Апикальная клетка боковой ветви, из которой развивается антеридий, отклоняет одну или две дисковидные клетки у своего основания, принимает сферическую форму и делится двумя продольными и одной поперечной перегородками, образуя восемь клеток-октантов. Затем в каждом октанте последовательно возникают по две параллельные перегородки, так что получаются восемь диагональных рядов, каждый из трех клеток (рис. 121, B, V). Восемь периферических клеток претерпевают плоскопластичную рост и развиваются в плоские изогнутые клетки — щитки, выпуклой стороной обращенные кнаружи. Их стенки имеют радиально расходящиеся складки, а содержимое в зернах состоят оранжево-красного цвета. Щитки составляют стенку шаровидного антеридия, которая у основания замыкается одной из дисковидных клеток, отклонившейся вначале и обычно вдающейся в полость антеридия (рис. 121, Г). Средние клетки значительно удлиняются и направлены в радиальном направлении, каждая образует клетку-руковатку, которая таким образом отходит от центра щитка и несет на внутреннем конце шаровидную клетку — головку, развившуюся из самой внутренней клетки первоначального диагонального ряда. Каждая клетка-головка дает начало шести вторичным головкам, на которых развиваются длинные нити, обычно дважды раздвоенные у основания. Эти сперматогенные нити заполняют полость антеридия плотным клубком. Каждая нить состоит из 100—200 дисковидных клеток, в которых образуется по одному спирально изогнутому двуугутиковому сперматозоиду. Сперматозоиды освобождаются при расхождении щитков антеридиальной стенки и ослеплении стенок клеток сперматогенных нитей (рис. 121, D, E).

Клетка базального узла антеридия, которая развивается в ооогоний, претерпевает два поперечных деления с образованием ряда из трех клеток. Самая верхняя из них дает ооогоний, при этом она сильно увеличивается, самая нижняя — одноклеточную ножку, а средняя образует узел, который делится на центральную и пять периферических клеток. Последние вырастают в пять коровых нитей, которые уже на ранних стадиях окружают ооогоний и вскоре отклоняют на своих концах одну (у хары) или две (у нителлы) клетки коронки. При дальнейшем развитии нити, не делясь, удлиняются и располагаются спирально. Клетки коронки мелкие, вертикально стоящие (рис. 121, A). В ооогонии формируется одна яйце-
Отдел зеленые водоросли (Chlorophyta)

клетка. Под коронкой, клетки которой плотно соединены, нити слегка разъединяются, так что образуется щель, через которую проникает сперматозоид. Верхушка оогониальной стенки осыпается, и сперматозоид оплодотворяет яйцеклетку.

Вокруг оплодотворенной яйцеклетки выделяется целлюлозная оболочка, кнаружи находится стенка оогония и коровье нити. Внутренние стенки нитей утолщаются, опробковевают, в них может откладываться кремнезем, а в полостях коровых нитей — обычно еще и извест. Таким образом, вокруг ооспоры образуется очень твердая обвертка, и ооспоры переходят в состояние покоя. При прорастании ооспоры купуляционное ядро редукционно делится, формируются четыре гаплоидных ядра и появляется перегородка, делящая ооспору на две неравные части: верхняя клетка получает одно из четырех гаплоидных ядер, а три остальных ядра оказываются в нижней клетке, богатой запасными веществами. Эти три ядра затем дегенерируют. Стенка ооспоры разрывается на верхушке, и верхняя клетка продолжает делиться. Получившиеся две клетки растут в противоположных направлениях, образуя первый ризоид и вертикальную нить — предросток, или пронотему, на которой в дальнейшем развивается нормальный побег.

Харовые водоросли распространены преимущественно в пресных водах, хотя некоторые виды встречаются и в солоноватых водоемах. Обычно они предпочитают водоемы, где нет сильных движений воды и где имеется песчаный или иллистый грунт, в котором закрепляются ризоиды. В неприкрепленном виде харовые, в отличие от многих других водорослей, жить не могут. Они легко вытесняются высшими водными растениями, особенно элодеей.

Харовые водоросли представляют немальный теоретический интерес: на них издавна изучали движение цитоплазмы. Кроме того, крупные клетки междоузлей, в которых цитоплазма ограничена постенным слоем, а центр клетки занят громадной вакуолью, служат объектами для исследования биоэлектрических явлений. Пользуясь в основном теми же методами и инструментами, которые применяли при изучении гигантского аксона кальмара, в клетке харовых водорослей удалось измерить разность потенциалов и сопротивление цитоплазматической мембраны. В состоянии покоя содержимое клетки заряжено отрицательно в основном за счет «хлорного насоса», который накачивает отрицательно заряженные ионы хлора из окружающей среды в центральную вакуоль. Мембрана в состоянии покоя относительно непроницаема для ионов кальция. Если раздражать клетку электрическим током, химическими веществами, уколом, то при раздражении, превышающем некоторый порог, мембрана в возбужденной области становится проницаемой для положительно заряженных ионов кальция; в результате их мгновенного поступления внутрь клетки мембрана разрывается. Электрический ток, возникший на этом участке, поднимает потенциал соседней области мембраны выше порогового, вызывая в ней такие же электрические изменения, которые распространяются, подобно волне, вдоль всей поверхности клетки. Таким образом, волну возбуждения, распространяющуюся по растительной клетке, можно вполне описать как потенциал действия и отнести ее к той же категории явлений, что и нервный импульс. Правда, имеются и различия: во-первых, растительная клетка реагирует медленнее, чем нервная, а во-вторых,
мембра́на нервной клетки деполяризуется за счет мгновенного поступления внутрь клетки ионов натрия, а не кальция.

Довольно обширный (свыше 150 видов) род нителла (Nitella) отличается тем, что коровые клетки отсутствуют. Листья чаще всего по 6—8 в мутовке, правильно однократно или многократно вильчатые, реже простые. Антеридии развиваются на вершине членников в развитках листа, оогонии — сбоку, у одноядерных видов под антеридиями. Оогонии с коронками из 10 клеток, расположенных в два яруса.

У видов рода хара (Chara) стебли и листья чаще всего покрыты корой (иногда кора развивается только на стеблях), придающей стеблям большую жесткость. У однодомных видов оогоний с коронкой из 5 клеток обычно расположен над антеридием. Виды этого рода встречаются в основном в пресных водах, однако C. baltica обитает преимущественно в солоноватых водах морских побережий, где часто образует густые заросли.

ОТДЕЛ ОХРОФИТЫ (OCHROPHYTA)

Охрофитовые водоросли — это разнообразная группа, включающая почти все типы дифференциации таллома (за исключением сифонокладального) — от однаклеточных монадных представителей до гиганских водорослей с тканевым типом дифференциации таллома. Монадные клетки в типе имеют два жгутика — длинный и короткий. Длинный жгутик покрыт двумя рядами трехчастных мас- тигонем (состоят из трех частей: короткой базальной части, длинного полого стержня и верхней части из одного или нескольких филamentos). Короткий жгутик гладкий, часто с базальным вздутием, принимающим участие в фототаксисе (у синоофитов вздутия имеются на обоих жгутиках). В переходной зоне жгутиков обычно имеется спиральная структура (отсутствует у бурых, диатомовых, диктиоховых и некоторых других). Митохондрии с трубчатыми кристами.

Оболочка хлоропластов образована четырьмя мембранами — две собственно мембраны хлоропласта и две мембраны хлоропластной эндоцитоплазматической сети. Чаще всего хлоропласт расположен рядом с ядром, то наружная мембрана хлоропластной эндоцитоплазматической сети продолжается в наружную мембрану ядра. Между двумя парами мембран имеется периплазматическое пространство, в котором содержится периплазматическая сеть из анастомозирующих каналов, функция которой, возможно, состоит в транспорте белков, кодируемых ядерным геномом, через периплазматическое пространство в хлоропласт. Ламеллы трехтилакоидные. У большинства представителей имеется опоясывающая ламелла. Из пигментов присутствуют хлорофи́лы a и c, хлорофилл b отсутствует. Хлорофи́лы c трех типов в различной комбинации могут быть представлены в разных классах охро- фитов, но только у эустигматофициевых хлорофи́лл c отсутствует. Главные дополнительные пигменты у большинства охрофитовых — фукоксантины, у желтозеленых, эустигматофициевых, некоторых рафидофициевых — вошериаксантины. У боль-
шницества представителей хлоропластная ДНК собрана в кольцо, расположенное под опоясывающей ламеллой.

Пиреноиды могут быть, могут отсутствовать. Запасной продукт хризоламинарин формируется вне хлоропласта, в вакуолях в цитоплазме. Глазок, за редким исключением, расположен в хлоропласте. Он состоит из ряда липидных глобул с каротиноидными пигментами.

Класс золотистые водоросли (Chrysophyceae)

Класс представлен микроскопическими водорослями золотисто-желтого цвета, среди которых встречаются одноклеточные, колониальные и многоклеточные организмы. У монадных представителей и стадий два (один иногда редуцирован) апикальные жгутики, которые имеют типичное строение для охрофитовых водорослей: они разной длины, на длинном жгутике в два ряда идут трехчастные мастигонемы. У золотистых водорослей на мастигонемах располагаются латеральные (боковые) волоски (рис. 122, А). Такие волоски на мастигонемах имеются еще только у синуровых. На коротком жгутике расположено параflagеллярное вздутие, которое вместе с глазком отвечает за фоторецепцию (рис. 122, Б).

Содержимое клетки включает цитоплазму, одно ядро, хлоропласти (один или несколько), содержащие хлорофильы а и с и имеющие золотисто-желтый цвет от присутствия дополнительных пигментов, из которых наиболее важные фукоксантин и виолаксантин. Хлоропласти имеют типичное строение для охрофитовых водорослей. Стигма состоит из одного ряда липидных глобул и расположена в хлоропласте. Запасные продукты — хризоламинарин и липиды — откладываются в цитоплазме вне пластид. На переднем конце клетки у пресноводных представителей расположены одна или две сократительные вакуоли (рис. 122, Б).

Митоз открытый, центром организации микrottрубочек выступает ризопласт (поперечно исчерченный фибрилярный корешок, идущий от базального тела длинного жгутика). Размножение вегетативное (продольное деление клетки, распад колонии или многоклеточного таллома на части) или бесполое (зооспорами, амёбOIDными клетками, апланоспорами), половиной процесс известен для немногих видов. Жизненный цикл, возможно, гаплобионтный с зиготической редукцией. Для золотистых водорослей характерно образование стоматоцист — специальных покоящихся стадий, формирующихся эндогенно, стенка которых состоит из кремнезема. Цисты образуются в результате полового процесса и в неблагоприятных условиях, они имеют толстую оболочку, в которой находится отверстие (или пора), закрученное особой пробочной.

Клетки чаще всего покрыты лишь плазмалеммой, поверх которой могут располагаться органические или кремнеземные чешуйки. У некоторых представителей клетки заключены в домики, через отверстия которых выходят жгутики или псевдоподии (у некоторых видов).

По способу питания среди золотистых водорослей встречаются автотрофные, миксотрофные и гетеротрофные (осмотротофы и фаготрофы) формы.
Рис. 122. А — строение клетки золотистой водоросли (по: Hoek van den et al., 1995).
1 — базальное тело, 2 — базальное вздутие, 3 — короткий жгутик, 4 — глазок, 5 — ризопласт, 6 — ядро, 7 — ядерная мембрана, 8 — ядрышко, 9 — митохондрия, 10 — вакуоли с хризоламинарином, 11 — слизь, 12 — плазмалемма, 13 — везикулы, 14 — слизистое тело, 15 — липиды, 16 — хлоро-пласт, 17 — аппарат Гольджи, 18 — пульсирующая вакуоль.

Б — трехчастная мастигонема.
1 — терминальный филамент, 2 — трубчатая часть мастигонемы, 3 — длинный латеральный филамент, 4 — короткий латеральный филамент

Обитают золотистые водоросли преимущественно в пресных водах, особенно они характерны для пресных чистых водоемов, где скапливаются в массовых количествах в планктоне обычно в холодное время года (ранней весной или поздней осенью и зимой), так как в иное время не выдерживают конкуренции с другими организмами.
Объем золотистых водорослей и их систематика в последнее время постоянно пересматриваются, что связано с накоплением новых данных по цитологии, биохимии, физиологии и молекулярной биологии.
Далее рассмотрены следующие порядки, входящие в класс золотистых водорослей: хромулиновые, хиббердиевые, гидрурусовые.

ПОРЯДОК ХРОМУЛИНОВЫЕ
(CHROMULINALES)

Хромулиновые — это центральный порядок класса. К нему относятся представители с монадным, пальмелоидным и амбоидным типами дифференциации таллома. Клетки обычно голые, но есть представители с прозрачными органическими чешуйками.

В планктоне торфяных болот и других пресных водоемов со стойкой водой, в гиалиновых клетках мха сфагнума встречаются виды рода хризамёба (Chrysmatomaeba) — водоросли с амбоидным типом дифференциации таллома (рис. 123, A). У некоторых представителей кроме псевдоподий имеется короткий и малоподвижный жгутик. Хризамёба питается автотрофно и гетеротрофно, захватывая твердые частицы пищи. Размножается вегетативно путем деления клетки надвое.

В планктоне прудов нередко встречаются представители рода охромонас (Ochromonas) в виде округлой или овальной клетки, способной образовывать псевдоподии. На переднем конце клетки имеются два жгутика неравной длины. Длинный жгутик — перистый, более короткий — гладкий (рис. 123, B). В клетке находятся один или два хлоропластов, одна—три пульсирующие вакуоли, хризоламинарин в виде крупного образования в нижней части клетки и у многих видов глазки. Хотя представители рода предпочитают олиготрофные пресные воды, некоторые встречаются в морях.

В пресных водах и морях обитают виды рода хромулина (Chromulina, рис. 123, B). Их округлое или веретеновидное тело способно изменять форму (метаболировать) и иногда образовывать псевдоподии. В оптическом микроскопе виден один жгутик, а крошечный второй обнаруживается только с помощью электронного микроскопа. У некоторых видов подвижная стадия сильно сокращена, и они существуют в виде неправильных скоплений неподвижных клеток в слизи (пальмелоидное состояние).

На поверхности мелких лесных прудов или луж часто можно наблюдать мутовко—золотистую пленку, образованную огромным количеством цист хромулины (до 40 000 на 1 мм² поверхности), которые высвиваются над поверхностью воды благодаря несмачиваемости оболочек и погружены в воду только нижней частью, где находится пора. При прорастании цисты из нее через пору выходит несколько подвижных особей. Интересно, что хлороплазмы в цисте перемешиваются и располагаются перпендикулярно к направлению падающего света (рис. 123, B, 1—3).

Виды рода динобрион (Dinobryon) образуют подвижные колонии в пресных водоемах. Клетки колонии прикреплены внутри бокаловидных прозрачных целлюлозных домиков при помощи сократительных стебельков. Из широкого устья домика выставляются два жгутика неравной длины. Клетка содержит один или два хлоропластов, на ее переднем конце видны глазок и две сократительные вакуоли, на заднем конце клетки в вакуоли находится хризоламинарин.
При размножении дочерние клетки выполняют из домика (одна или обе), прикрепляются к его поверхности и вырабатывают новый домик. Так образуются нежные древовидные колонии (рис. 123, Г). Половой процесс — хологамия. Зигота превращается в стоматоциту. Ряд видов может переходить на миксотрофное питание.

ПОРЯДОК ХИББЕРДИЕВЫЕ (HIBBERDIALES)

От других золотистых водорослей хибердиевые отличаются некоторыми особенностями корешковой системы и тем, что помимо фукоксантина содержат еще один дополнительный светособирающий каротиноид — антераксантин. Род хибердия — монотипический. Включенные в него водоросли Hibberdia magna (= Chrysosphaera magna) имеют две стадии в жизненном цикле: колониальную пальмелоидную неподвижную и одноклеточную монадную подвижную. Первая встречается в виде небольших групп овальных клеток на поверхности различных нитчатых водорослей (рис. 124, А).
Рис. 124. А — Chrysosphaera на нитчатой водоросли (1 — сбоку, 2 — сверху); Б — Hydrurus foetidus (1 — общий вид колонии, 2 — кончик ветви, 3 — зооспора)

ПОРЯДОК ГИДРУРУСОВЫЕ
(HYDRURALES)

К порядку гидрурусовые относятся представители с пальмелоидным и псевдопаренхиматозным типами дифференциации таллома. Для этого порядка характерно наличие уникальных зооспор тетраэдальной формы. Форма зооспор поддерживается скелетом из микротрубочек, производных микротрубочкового корешка. На длинном жгутике отсутствуют трехчастные мантигенемы, а короткий задний лишен пары центральных микротрубочек. Фоторецептор отсутствует.

Особенно известен род гидрурус (Hydrurus, рис. 124, Б) с единственным видом H. foetidus, встречающимся в быстро текущих горных ручьях с холодной и жесткой водой или в тальных чистых водах. Он прикрепляется к камням, бревнам, мхам и по внешнему виду напоминает нитчатую бурую водоросль. На самом же деле это колония в виде ветвящихся шнуров до 30 см длиной. В ней можно
ВОДОРОСЛИ

различить главный ствол и боковые ответвления. Остов колонии образован слизью, издающей неприятный запах, в которую вкраплены клетки с крупным хлоропластом; пиреноид один. Клетки располагаются более плотно по периферии шнуров таллома и более рыхло в центре. Рост таллома верхушечный. Делятся только клетки, находящиеся на концах шнуров. При бесполом размножении из слизи выходят зооспоры, образующиеся из клеток боковых ветвей. Они имеют характерную форму тетраэдра и покидают слизь, давая начало новым молодым колониям. Иногда образуются шаровидные цисты, также только в слизи конечных разветвлений (рис. 124, Б).

Как фототрофные организмы золотистые водоросли участвуют в создании первичной продукции в водоемах и так же, как другие планктонные организмы, служат пищей для планктонных животных, являясь, таким образом, началом пищевой цепи. При массовом развитии эти водоросли могут загрязнять воду, в то же время многие из них считаются индикаторами чистой воды.

Класс синуровые (Synurophyceae)

По особенностям общей морфологии синуровые очень близки к золотистым водорослям, но отличаются рядом особенностей: оба жгутика направлены вперед, отличаются строение переходной зоны и корешковой системы жгутиков, жгутиковые клетки имеют базальные вздутия часто на каждом жгутике, глазок отсутствует. Их пластиды похожи на пластиды золотистых водорослей, но в них отсутствует хлорофилл c2. Связь между наружной ядерной мембраной и наружной мембраной хлоропластной эндоплазматической сети имеется только у рода мальмонеас. Среди синуровых не известно ни одного фаготрофного представителя. Поверхность их клеток обычно покрыта панцирем из кремнеземных чешуек.

Все представители класса — пресноводные одноклеточные или колониальные монанные фототрофы, при определенных условиях могут формировать пальмеливидное состояние. Наибольшего обилия и разнообразия они достигают в водах с нейтральным или слегка кислым значением pH. Обитают в планктоне, являются важным компонентом пищевых цепей, могут вызывать цветение воды, при этом массовое развитие синуры придает воде неприятный запах.

Кремнеземные чешуйки синуровых сохраняются в озерных отложениях и могут быть использованы в палеолимнологических реконструкциях состояния окружающей среды в прошлом.

Все представители класса относятся к единственно порядку синуровых — Synurales. Объем класса насчитывает 6 родов, два из которых объединяют одноклеточные представители, четыре колониальные.

Весной и осенью в планктоне стоячих и текущих водоемов встречается свободноглядующая колония представителей рода синура (Synura, рис. 125, A). Составляющие ее клетки соединены в центре колонии задними оттянутыми концами, а по едными, несущими по два жгутива не авной длины, об ашены кнаружи.
Более длинный жгутик направлен вперед, более короткий — вперед и назад, он менее подвижен. Сверху каждая клетка покрыта панцирем, состоящим из мелких кремниевых чешуек, располагающихся черепицеобразно и по спирали.

В пределах колонии клетки размножаются продольным делением. Старые колонии, распадаясь, дают начало другим колониям. Отдельные клетки также могут покидать колонию и образовывать новую. Часто во всех клетках колонии возникают цисты. Сообщения о половом процессе есть для некоторых представителей рода.

В искусственных водоемах, например в резервуарах для питьевой воды, синура может размножаться в таких количествах, что вода приобретет неприятный запах. Во избежание этого применяют различные химические препараты — алгициды.

Для планктона чистых холодных вод (озер, прудов) довольно типичны виды рода мальломонас (Mallomonas, рис. 125, Б) — одноклеточной водоросли с панцирем из окремневших чешуек, расположенных также черепицеобразно и по спирали. У многих видов чешуйки несут длинные кремниевые иглы или щетинки. Обычно виден лишь один жгутик, второй не выходит из протоплазма (редуцирован). У некоторых видов описан половой процесс — хологамия.

Класс феотамниевые
(Phaeothamniophyceae)

Феотамниевые включают одноклеточных, колониальных и многоклеточных представителей с коккоидным, пальмелоидным и нитчатым типами дифференциации таллома. Жгутиковые стадии имеют два боковых не авных по длине
и морфологии жгутика. Длинный жгутик несет два ряда мастигонем, на которых отсутствуют латеральные волоски. Хлоропласты имеют строение, типичное для охрофит. Пигменты — хлорофиллы а и с, присутствуют β-каротин, фукоксан
тин, диадиноксантин, диатоксантин и гетероксантин. Природа запасного про
дукта неизвестна, но полагают, что это β-1,3-глюкан. Клеточная стенка имеется у всех представителей. Размножение вегетативное и бесполое (автоспоры, зоо
споры), половое размножение неизвестно.

Класс был выделен в 1998 г. на основании анализа последовательности нук
леотидного состава гена rbcL, пигментного состава (хлорофиллы а и с, уникальная для водорослей комбинация фукоксантана с гетероксантином), особенностей строения клетки (например, отсутствие вакуолей с хризоламинарином), отсутст
вие эндогенных цист с кремнеземными стенками. Представителей этого класса ранее относили к желтозеленым и золотистым водорослям. Описано 14 родов с 26 видами, относящимися к двум порядкам.

ПОРЯДОК ФЕОТАМНИЕВЫЕ
(PHAEOathamniales)

Включает роды водорослей, ранее относимые к золотистым водорослям. В качестве примера можно привести виды рода тетраспоропсис (Tetraspo
ropsis), очень похожие на зеленую водоросль тетраспора. В озерах и болотах как эпифит на других водорослях, мхах и высших водных растениях встре
чается феотамнин (Phaeothamnion) в виде ветви
щегося прямостоячего кустика до 1 см в высоту. По периферии клетки под плазмалеммой, как и у ряда других представителей класса, имеются вези
кулы, напоминающие физоды бурых водорослей. Клетки содержат от одной до нескольких пластид, окрашенных в оливково-буруй цвет. При размно
жении любая клетка нити может образовывать че
тыре—восемь зооспор. Могут образовывать цисты, в стенках которых отсутствует кремний. Клеточные стенки легко ослабляются, и тогда клетки теряют правильное расположение (рис. 126). При этом обычно изменяются количество хлоропластов и их местоположение. В культуре удалось наблюдать пере
ход из одной формы роста в другую.

Класс диктиоховые, или силикофлагелляты
(Dictyochophyceae, Silicoflagellata)

Класс представлен одноклеточными монадными организмами с внутренним кремниевым скелетом. Длинный жгутик имеет трехчастные мастигонемы, втор
рой жгутик сильно редуцирован. В переходной зоне отсутствует переходная
спираль, но присутствует пластинка. Хлоропласты имеют характерные особенности охрофитов (четыре мембраны в оболочке, трехтилакоидные ламеллы, опоясывающая ламелла), но хлоропластная ДНК собрана в нуклеиды, разбросанные в строме хлоропласта, и отсутствует соединение наружной мембраны ядра с наружной мембраной хлоропластной эндоплазматической сети. Присутствуют хлорофиллы \(a \) и \(c \), имеется фукоксантин. Глазок отсутствует. Запасной продукт — хризоламинарин. Клетки покрыты только плазмалеммой. Половой процесс неизвестен.

Все представители обитают в морском планктоне, более обильны в холодных водах, иногда вызывают их цветение. Исследуемые кремниевые скелеты диктиоховых используются как микропалеоонтологические индикаторы древних температурных изменений. Все виды относятся к одному порядку.

ПОРЯДОК ДИКТИОХОВЫЕ

(DICTYOCHALES)

Среди современных представителей известен только род *Dictyocha*, остальные представители (около 100 видов) — исключаемые формы, известные из отложений мелового периода (120 млн лет назад), наибольшего расцвета достигали в миоцене.

Dictyocha (Dictyocha) представлена четырьмя стадиями в жизненном цикле: одноядерная голяя, скелетная, многоядерная и амёбоидная стадии. Одноядерная голяя стадия — это клетки 15—20 мкм в диаметре, почти сферической формы, несущие несколько щупалец на заднем конце. От апикального углубления отходят один видимый перистый жгутик. Второй жгутик короткий. Хлоропласты многочисленные (30—50 на клетку), мелкие, часто выпячивают плазмалемму. В центре клетки находится одно ядро. Аппарат Гольджи в виде 5 диктиосом окаймляет переднюю часть ядра. Митохондрии многочисленные, содержат длинные трубчатые кристи с включениями, неизвестными у других охрофитов. В цитоплазме обычно содержатся эндосимбиотические бактерии.

Основной широко распространенной формой в природе является скелетосодержащая стадия. На вид массивный, а на самом деле легкий полый скелет этой водоросли состоит из базального кольца, от которого отходят радиально идущие ветвистые выросты (рис. 127). Цитоплазма заполняет всю скелетную камеру, хлоропласты многочисленные. Жгутик отходит возле одного из ветвей. Имеются и тонкие псевдоподии. Строение длинного жгутика почти такое же, как на голове стадии. Короткий жгутик представлен лишь базальным телом. Аппарат Гольджи состоит из 72 диктиосом, окружающих ядро. Хлоропласт, пиреноид и мито-

Рис. 127. Dictyocha — кремниевый скелет: вид сверху (A) и сбоку (B)
ВОДОРОСЛИ

ходрии аналогичны этим структурам голой формы. В цитоплазме имеются также симбиотические бактерии.
Значительно реже наблюдаются амёбоидная и многоядерные стадии.

Класс диатомовые, или бациллярные, водоросли (Diatomophyceae, Bacillariophyceae)

Диатомовые водоросли — обширный класс охрофитовых водорослей, чрезвычайно богатый видами. Это одноклеточные или колониальные коккоидные организмы. Жгутиковые клетки в жизненном цикле диатомей представлены только сперматозоидами, у которых сильно редуцирован жгутиковый аппарат. Единственный жгутик несет трехчастные мастигонемы, но у него отсутствуют переходная спираль, центральная пара микротрубочек, микротрубочковые корешки, связанные с базальными телами. Базальные тела состоят из дуплетов микротрубочек, а не триплетов, как у большинства эукариот.

Пластиды имеют особенности, характерные для охрофитов (две мембраны хлоропластной эндоплазматической сети, наружная из которых переходит в наружную мембрану ядра, наличие перипластидного ретикулума, трехтилакоидные ламеллы, наличие опоясывающей ламеллы, ДНК собрана в кольцо). Они окрашены в желтый или желто-бурый цвет, так как хлорофиллы a и c маскируются каротиноидами, из которых наиболее важны фукоксантин, неофукоксантин, диадиноксантин, диатоксантин.

Продукты ассимиляции — хризоламинарин, масло, волютин.

Поверх плазмалеммы у диатомовых формируется особый клеточный покров — панцирь, в химическом отношении состоящий из аморфного кремнезема, сходного по составу с опалом. Помимо кремнезема в состав панцира входит примесь органических соединений и некоторых металлов (железо, алюминий, магний). Панцирь изнутри и снаружи покрыт тонким органическим слоем, состоящим из пектиновых веществ. Он состоит из двух половинок, надевающихся друг на друга, как крышечка на коробочку, — верхней, большей, эпитети, и нижней, меньшей, гипотеки (рис. 128). Каждая половина в свою очередь состоит из так называемой створки и пояскового кольца. Два поясковых кольца, накладываясь друг на друга, образуют поясок. Створка обычно плоская, ее загнутые края называют загибом створки. Он может быть низким или высоким. У некоторых родов, например у мелозиры (Melosira), створки панцира смыкаются непосредственно краями загибов створок, поясок у них образуется во время деления клетки.

Очерчения клетки зависят от ее положения, т.е. клетка может быть видна со створки, когда она лежит плашмя, или с пояска (в профиль), когда видно, как пояски находят друг на друга.

Рис. 128. Строение панцира диатомий.
1 — эпитечная; 2 — эпивальва; 3 — эпицингилюм; 4 — гипотека; 5 — гипоцингилюм; 6 — гиповальва
У некоторых диатомей в течение жизни образуются дополнительные поясковые кольца или вставочные ободки между створкой и пояском. На них часто развиваются септы, или неполные перегородки, разделяющие клетку на сообщающиеся между собой камеры. Различают два основных типа створок: актиноморфные, через которые можно провести три и более осей симметрии (такие створки встречаются у центрических диатомовых), и зигоморфные, через которые можно провести не более двух осей симметрии (такие створки встречаются у пеннатных диатомовых). Большая часть зигоморфных створок имеет одинаковые концы, это — изопольные створки. Створки с разными концами называют гетеропольными. Концы створок также имеют разнообразную форму.

Панцирь диатомовых пронизан перфорациями, которые служат для сообщения протопласта клетки с внешней средой. Общая площадь перфораций на створке занимает 10—75% ее площади. Различают два основных типа перфораций — поры и ареолы. Поры — наиболее мелкие отверстия, пронизывающие стенку однослоиного панциря, они могут быть полностью открыты или полузатянуты мембраной различного типа. Ареолы образуются только в двухслойных стенках створок. С внутренней или с внешней стороны, иногда и с обеих сторон ареола может быть закрыта тонкой перфорированной кремнеземной пленкой. Перфорации могут складываться в ряды, которые видны под микроскопом как штрихи.

Электронно-микроскопические исследования открыли разнообразные выросты панциря, соединяющие протопласт с внешней средой. Так, многие центрические диатомовые и бесшовные пеннатные формируют римопортулы (двугубые выросты, лабиатные выросты) — трубчатые структуры, конец внутренней части которых сплющен или трубка укорочена до щели, имеющей валикообразные угольщения («губы») (рис. 129, A). Римопортул может быть несколько сотен на клетку, они принимают участие в выделении слизи. Другой тип трубчатых структур — фултопортулы (выросты с опорами) — известны только у ряда центрических диатомей. Фултопортул — это трубка, окруженная 2—5 камерами или сопутствующими порами, изолированными изогнутыми опорами (рис. 129, B). Фултопортулы связывают с выделением хитиновых фибрилл, которые играют роль в формировании колоний, увеличивая плавучесть клеток, защищают их от выедания животными.

Рис. 129. A — римопортула (1 — вид сбоку, 2 — вид снизу); B — фултопортула (1 — вид сбоку, 2 — вид сверху) (по Round et al., 1990)
Многие диатомовые на поверхности створки образуют шипы, щетинки, выступы, шипики — эти структуры участвуют в образовании колоний (см. далее рис. 131, Д).

Некоторые диатомеи способны к активному движению. Их содержимое сообщается с внешней средой продольной щелью или швом, проходящим непосредственно по створковой стороне или по особым выростам панциря — килам, расположенным вблизи длинной оси створки или по краю ее. Шов может быть щелевидным, в виде узкой короткой или длинной щели, прорезывающей стенку створки, или более сложным — каналовидным, расположенным в выросте стенки створки (в киле, крыле). С внешней средой он сообщается щелью, а в полость клетки открывается рядом отверстий с окремельными перегородками. Швы могут располагаться на обеих створках или только на одной. С движением связаны и так называемые узелки — внутренние утолщения стенок створки, видимые под световым микроскопом как три небольшие круглые выпуклости: одна в центре и по одной на концах створковой стороны панциря (см. далее рис. 134, А, Б).

Движение диатомей — сложный процесс. Некоторые центральные диатомеи медленно передвигаются, выделяя слизь через римпопорты. Диатомеи, имеющие шов, способны к активному скользящему движению, которое осуществляется со скоростью 0,2—25 мкм/с. Существует ряд гипотез относительно механизма движения. Одна из них связывает движение диатомей с освобождением слизи, состоящей из фибриллярных полисахаридов, через шов. Эти полисахариды гидратируются, превращаются в тяжи, которые выбрасываются вперед по субстрату, приводя к движению диатомей. Считают, что, вероятно, такие белки, как кинезин и/или линеин, являются движущей силой, которая приводит к выбрасыванию этих тяжей. Участие слизи в движении диатомей подтверждается тем, что растровые изображения ее вещества, такие, как эфедрин, изопренелен и др., нарушают и останавливают движение диатомей.

Большая часть клетки диатомовых занята вакуолью, цитоплазма располагается тонким постенным слоем, а у некоторых и в середине клетки, где помещается ядро. Ядро одно, крупное, содержит 1—8 ядрышек, которые исчезают во время митоза. Митоз открытый, без центриолей. Роль центра организации микротрубочек играют полярные пластины, расположенные на полях веретена. Цитокинез осуществляется за счет впячивания клеточной мембраны и завершается вместе с формированием оболочек дочерних ядер.

Размножаются диатомеи, во-первых, вегетативным делением клеток, особенно интенсивным весной и в начале лета. Во-вторых, у них есть половой процесс (рис. 130). При вегетативных делениях масса протопласта увеличивается, вследствие чего обе половинки панциря отодвигаются друг от друга. Ядро митотически делится, затем протопласт разделяется пополам в плоскости, параллельной створкам. Каждый новый протопласт наследует половинку панциря, а вторая образуется заново, причем у обеих дочерних клеток она будет меньшей, т.е. гитоплекой (см. рис. 131; 134, Д). После цитокинеза центр организации микротрубочек мигрирует в положение между ядром и силикаеммой — так называют мембрану, ограничивающую плоский пузырь, в котором отлагается кремнезем и который формируется за счет слизания везикул аппарата Гольджи. Полагают, что центр...
Рис. 130. Схема полового процесса и образования ауксоспор пеннатных диатомей на примере *Gomphonema* (A) и центрических диатомей на примере *Melosira* (B).
1 — развитие сперматозоидов; 2 — развитие яйцеклетки; 3 — оплодотворение; 4 — образование ауксоспор
организации микротрубочек и связанные с ним микротрубочки и микрофила-
менты играют роль в процессе образования новых створок, контролируя отло-
жение кремния в силикалемме. Каждый индивидуальный кремнеземный элемент
панциря формируется в собственной силикалемме. После завершения форми-
рования гипотеки обращенная внутрь часть силикалеммы становится новой
пластинчатой. Оставшаяся часть цитоплазмы может стать частью органического
покрытия над кремнеземным панцирем. После вегетативного размножения две
очередные клетки у одиночно живущих форм расходятся, а у колониальных оста-
ются соединенными своими створками. Так как окремневшие панцири клеток не
способы растироваться, то при каждом делении одна из дочерних клеток равна
материнской (ее эпитец переходит от материнской клетки), а другая становится
меньше (ее эпитец служит гипотека материнской клетки). В результате последе-
ующих делений размеры клеток в популяции прогрессивно уменьшаются.

Измельчение клеток приостанавливается различными путями. Так, у не-
которых форм с толстыми панцирями, например у видов рода Melosira, можно
наблюдать повторное деление более крупных дочерних клеток, в то время как
меньшие не делятся. У некоторых диатомовых пояски панциря более эластичны,
так что разница в величине эпитец и гипотеки становится едва различимой.
Электронно-микроскопическое изучение панцирей некоторых диатомей пока-
зало, что некоторые части панциря не срастаются, а соединяются между собой
подвижным механизмом, напоминающим сустав. Это делает возможным раздви-
гание частей панциря и выравнивание разницы в размерах эпитец и гипотеки.

Обычно уменьшению размеров клеток диатомей в ходе последовательных
dелений противостоится их увеличение в результате полового процесса.
Однако этот процесс проходит и у неизмельчавших клеток, поэтому можно
предположить, что половой процесс зависит не только от уменьшения размеров
клеток, но и от каких-то других факторов.

У большинства пеннатных диатомей половой процесс изогамный, но у га-
мет отсутствуют жгутики. Он напоминает коньюгацию у зеленых водорослей
(рис. 130, A; 132), но в отличие от последних у диатомей перед половым про-
цессом происходит мейоз, в результате чего формируются гаплоидные гаметы.
Они образуются по одной или по две в клетке, так как три или два гаплоидных
ядра дегенерируют, в первом случае формируется одна, а во втором — две гаме-
ты. Слияние происходит таким образом, что створки клеток расходятся и гамета
одной из клеток, двигаясь амебообразно, переползает к гамете другой клетки,
остающейся на месте. В случае формирования каждой клеткой двух гамет одна
из них переходит в клетку-партнера, а другая остается на месте и сливаются
с гаметой, переползаящей от клетки-партнера. У некоторых диатомей клетки,
лежащие далеко друг от друга, могут образовывать слизистые каналы для про-
хождения гамет. Подвижные гаметы можно рассматривать как мужские, а ос-
тавшиеся на месте — как женские. Таким образом, при полом процессе этого
tипа можно говорить о физиологической анизогамии.

В результате полового процесса, проходящего очень быстро (в течение не-
скольких минут), развиваются одна или две зиготы, которые увеличиваются
в размерах и превращаются в так называемые ауксоспоры от греч. «ауксо» —
увеличиваю, расту). Зрелые ауккоспоры одеваются оболочкой, постепенно приобретающей характерную для данного вида структуру, и превращаются в вегетативные клетки. Образование каждой из двух половинок панциря связано с митотическими делениями ядра, в результате которых одно из дочерних ядер погибает. Первое из таких ядерных делений связано с формированием эпитехи, второй митоз с генерацией одного из ядер приводит к формированию гипотеки. У некоторых диатомей ауккоспоры могут возникать в пределах одной клетки. При этом или материнская клетка образует две гаметы, копулирующие друг с другом, или в ее неподелившемся протопласте сливаются два ядра (автогамия). У некоторых имеет место диплоидный partenогенез, т. е. без всякого слияния клеток или ядер из вегетативной клетки формируется зигота, превращающаяся в ауккоспору.

Оогамный половой процесс характерен для центрических диатомей и только для одного рода пеннатных. Сперматозоид имеет один непарный жгутик с трехчастными мастигонемами; у сперматозоидов рабдонемы жгутик отсутствует, и они передвигаются с помощью тонких псевдоподий. Жгутиковый аппарат сперматозоидов сильно редуцирован (нет центральной пары микротрубочек, нет корешковой системы, базальные тела состоят из дуплетов микротрубочек). Сперматозоидов образуется от 4 до 128 на клетку вследствие многочисленных митозов, которые следуют за мейозом. Формируются две или одна яйцеклетки на клетку (два или три ядра, из образовавшихся в результате мейоза, погибают). После оплодотворения формируется диплоидная зигота, которая развивается в растущую ауккоспору (см. рис. 130, Б).

Как видно из обзора полового процесса диатомей, вегетативные особи представляют собой диплоидные организмы, а гаметы — гаплоиды, таким образом, жизненный цикл у них гаметический.

При наступлении неблагоприятных условий диатомовые могут формировать споры и покоящиеся клетки. Они богаты запасными продуктами, которые требуются при их прорастании. Покоящиеся клетки морфологически близки к вегетативным клеткам, в то время как панцирь спор становится более толстым, окруженным, изменяется его орнаментация. Покоящиеся клетки формируют чаще пресноводные центрические и пеннатные диатомеи, в то время как споры формируют центрические морские диатомовые. И покоящиеся клетки, и споры могут выживать десятилетиями. При их прорастании для формирования нормального панциря требуются два митоза с генерацией ядер.

Диатомовые широко распространены в бентосе и планктоне как морей и океанов, так и пресных вод с разным химическим составом и температурой. Некоторые виды обитают в верхних слоях почвы, на влажных скалах, в горячих источниках, на снегу и во льдах полярных областей. Могут обитать как эпизооны (на животных — от ракообразных до китов), так и эндобионты (например, в фораминиферах). В прибрежных водах, развиваясь в массе, могут вызывать цветение воды.

Створки диатомовых водорослей не растворяются в большинстве природных вод, поэтому они осаждаются на протяжении последних 150 млн лет, начиная с раннего мелового периода. Таким образом, считается, что диатомеи произошли
ранее этого периода. Наиболее древние ископаемые диатомеи были центрическими, в то время как наиболее древние пеннатные были бесшовными. Шовные диатомеи появились позднее.

К классу диатомей относится около 300 родов и 10—12 тыс. видов. Однако некоторые авторы отстаивают другую точку зрения, согласно которой истинное количество видов диатомей может достигать 1 млн. В большинстве работ, которые касаются изучения флор диатомей, класс диатомей понимают в ранге отдела, и тогда в нем выделяют два (Centrophyceae и Pennatophyceae) или три класса (Coscinophyceae, Fragilariophyceae, Bacillariophyceae). В данном учебнике диатомовые рассматриваются в ранге класса. Далее описаны только некоторые порядки.

Центрические диатомовые водоросли

Виды центрических диатомовых водорослей особенно широко представлены в планктоне морей и океанов как один из главных продуцентов органических веществ. Это одноклеточные и колониальные формы, через створку которых можно провести три и более осей симметрии. У них отсутствует активная подвижность (не имеют шва на панцире) и имеется огромный половой процесс.

ПОРЯДОК ТАЛАССИОЗИРОВЫЕ

(THALASSIOSIRALES)

К порядку относят одноклеточных и колониальных представителей с круглыми, реже эллиптическими створками. Двугубые выросты, обычно немногочисленные, по-разному расположены на лицевой стороне створки. Выrostы с опорами, как правило многочисленные, расположены в прикраевой и/или центральной части створки.

В планктоне и на дне пресных водоемов обитают виды рода циклотелла (Cyclotella, рис. 131, A), иногда образующие колонии в форме непрочных целочек. Клетки похожи на круглую невысокую коробочку. Краевая зона створки несет радиальные штрихи или ребрышки, а центральная часть более выпуклая и у большинства видов беструктурная. Многочисленные хлоропласты в виде мелких пластинок находятся по створковым сторонам. Футорпортулы располагаются в виде кольца по краю створки, иногда на ее поверхности. Некоторые клетки могут образовывать хитиновые нити длиной около 150 мкм, которые, как полагают, придают лучущую плавучесть клеткам, а также препятствуют поеданию этих клеток зоопланктоном.

ПОРЯДОК КОСЦИНОДИСКОВЫЕ

(COSCINODISCALAE)

Представители порядка имеют круглые створки, реже эллиптические или многоугольные. Двугубые выросты образуют кольцо по краю створки, иногда дополнительно присутствуют в центре клетки, реже — по всей поверхности створки. Виды морские, реже пресноводные.
Сходный внешний вид с циклотеллой имеют представители рода косцинодискус (Coscinodiscus), встречающиеся в тех же местообитаниях. Но на их створковых сторонах радиальными или тангентальными рядами, реже — беспорядочно располагаются точки или ареолы, а по краю створки у некоторых видов имеются шипики (рис. 131, Б). Римопорты располагаются или беспорядочно по всей поверхности створки или образуют краевое кольцо.

ПОРЯДОК МЕЛОЗИРОВЫЕ (MELOSIRALES)

Мелозировые представляют собой колониальные формы, реже одиночные. Панцирь шаровидный или цилиндрический. Створки круглые, плоские или выпуклые. Двуугубые выросты расположены по всей поверхности створки. Подавляющее большинство видов — морские.

Клетки в форме цилиндрических или бочкообразных коробочек характерны для рода мелозира (Melosira), обитающего преимущественно в планктоне и бентосе пресных и соленых водоемов. Клетки соединены створками в плотные нити (колонии) при помощи слизи, а у некоторых видов — и при помощи шипиков. Створки всегда круглые, покрытые нежными или грубыми точками (порами), часто образующими радиальные ряды. Римопорты у видов рода мелозира располагаются по всей поверхности створки и у края образуют кольцо.
Многочисленные хлоропласты имеют вид дисков или лопастных образований (рис. 131, В). Из этого рода были выделены виды, относящиеся к роду аулакозира (Aulacoseira, рис. 131, Г) и порядку аулакозировых (Aulacoseirales). Клетки в колонии аулакозира соединены с помощью соединительных шипов, римопортулы располагаются на загибе створки. Виды рода аулакозира встречаются только в пресных водах.

ПОРЯДОК ХЕТОЦЕРОТОВЫЕ (CHAETOCCEROTALES)

Клетки хетоцеротовых соединены в колонии, реже встречаются одиночные. Панцирь цилиндрический. Створки эллиптические или почти круглые, с длинными полярными выростами, с помощью которых клетки соединены в колонии. Римопортулы расположены в центральной части створки, реже отсутствуют. Виды морские, реже пресноводные.

У видов рода хетоцерос (Chaetoceros) клетки иногда имеют вставочные ободок. Особенно же типичны для них длинные полые прямые или изогнутые щетинки (шипы) на каждом из полюсов их эллиптических створок. Этими шипами они обычно соединяются в длинные цепочки, при этом шипы соседних клеток перекрещиваются и иногда срастаются в основании (рис. 131, Д). Для видов характерно наличие обычно одной (в основном) римопортулы в центре створки. Виды рода хетоцерос почти исключительно морские, планктонные.

Пепнатные диатомовые водоросли

Одноклеточные и колониальные представители, через створку которых можно провести две и меньше осей симметрии. Клетки линейные или ланцетовидные, реже эллиптические или округлые. Среди них есть подвижные (со швом) и неподвижные. Половой процесс — своеобразная изогамия, у одного рода — оогамия.

Из неподвижных пепнатных диатомей чаще других встречаются виды родов синедра (Synedra), фрагилия (Fragilaria), табеллия (Tabellaria) и астеронелла (Asterionella).

ПОРЯДОК ФРАГИЛАРИЕВЫЕ (FRAGILARIALES)

Представители фрагиларийевых — одиночные или собраны в колонии. Клетки удлиненные, эллиптические. Римопортулы располагаются на концах створки. Септы и шов отсутствуют. Встречаются в пресных и морских водоемах.

Виды синедры обитают в литорали или обрастаниях пресных, солоноватых и морских вод (очень редки типичные планктонные формы). Они живут одиночно в виде либо пучковидно-всеровидных, либо звездчатых колоний, прикрепленных к субстрату или свободноживущих. Клетки палочковидные, на концах заострены или закруглены и со стороны створок несут нежную поперечную штриховку. Шва у них нет. С пояски панцирь имеет прямоугольные очертания (рис. 132, А). Хлоропласты (два) располагаются в плоскости створок.
Рис. 132. Бесшовные пеннатные диатомеи.

А — Synedra: 1 — панцирь со створки, 2 — панцирь с пояска; Б — Fragilaria: 1 — колония, 2 — панцирь со створки; В — Tabellaria, общий вид колонии; Г — Asterionella: 1 — панцирь со створки, 2 — общий вид колонии

У видов фрагилярии клетки очень напоминают клетки видов синедры, но соединяются в длинные лентообразные колонии (рис. 132, Б), обитающие преимущественно в литорали, реже в планктоне пресных и солоноватых вод. В каждой клетке имеются два пластинчатых хлоропластов. На одном конце каждой створки имеется по единственной римопортуле.

Колонии видов рода астерионелла, обитающие в планктоне пресных водоемов и морей, похожи на изящную звездочку с лучами (клетками), расположенными в разных плоскостях. Каждая клетка имеет вид тонкой палочки со слегка расширенными концами, причем свободные концы несколько уже, чем концы, которыми клетки соединяются в центре звездочки (рис. 132, Г). Римопортулы расположены на обоих концах створок. Хлоропласты в клетках имеют вид мелких зерен.

ПОРЯДОК ТАБЕЛЛАРИЕВЫЕ
(TABELLARIALES)

Клетки табеллариевых прямоугольные с пояски, эллиптические до удлиненно линейных со створки. Имеются вставочные ободки с септами. Римопортулы расположены в центре клетки. Шов отсутствует. Большинство представителей — пресноводные эпифиты.
Клетки видов рода табеллария имеют форму табличек (с пояска), снабжены вставочными ободками и септами и соединяются в колонии в виде зигзагообразных цепочек (реже колонии звездчатые). При этом клетки обращены друг к другу створками и соединяются своими уголками (слизью). Имеется единственная римпопортула на створку, расположенная около ее центральной расширенной части. Характерные обитатели литорали и планктона пресных вод (рис. 132, В).

Из порядков, представители которых имеют щелевидный шов, мы рассмотрим только три: ахнантовые, цимбелловые, навикиоловые.

ПОРЯДОК АХНАНТОВЫЕ
(ACHNANTHALES)

Порядок объединяет одноклеточные и колониальные водоросли со щелевидным швом только на одной створке.

В обрастаниях водорослей из родов кладофора и вошерия или высших рас- тений в пресных и морских водах обычно присутствуют виды рода кокконеис (Cocconeis). Клетки их имеют очертания эллипса и прикрепляются к субстрату всей плоскостью нижней створки, снабженной швом, а на верхней створке шов отсутствует (рис. 133, А). Хлоропласт в виде подковообразно согнутой пластинки располагается на верхней стороне.

ПОРЯДОК ЦИМБЕЛЛОВЫЕ
(CYMBELLALES)

Клетки цимбелловых водорослей одиночные или собраны в колонии. Створ- ки изо- или гетеропольные, могут быть полулунные. Щелевидный шов на обеих створках хорошо развит или на одной — зачаточный.

На дне литоральной зоны главным образом пресных водоемов и в обраста- ниях широко распространены виды рода цимбела (Cymbella). Створки их в ос- новном полулуной формы, с прямым или вогнутым брюшным и выпуклым спинным краями. Щелевидный шов обычно эксцентрический, более или менее приближенный к брюшному краю. Хлоропласт один, расположен с поясковой стороны. Иногда клетки прикрепляются к субстрату слизистой ножкой, образующейся на одном из концов (рис. 133, Б). Слизь для ножки выделяется через апикальные поры. Формы, образующие студенистые трубки, сейчас относят к роду энционема (Encyonema) (рис. 133, В).

В подобных местообитаниях встречаются виды рода гомфонема (Gomphonema), в поперечной плоскости имеющие несимметричную форму (один конец клетки уже другого). Со створки клетка напоминает наконечник молотка, а с пояска клинообразна. Шов проходит посередине. Два хлороплазта расположены по поясковым сторонам. У этих диатомей также может вырабатываться слизистая ножка, и этим возникают ветвистые колонии рис. 133, Г.
ПОРЯДОК НАВИКУЛОВЫЕ
(NAVICULALES)

Представители порядка — одноклеточные водоросли; клетки одиночные; створки изолюльные с хорошо развитым щелевидным швом.

Широко распространены представители рода пиннулярия (Pinnularia), встречающиеся на дне или в обрастаниях у берегов в различных, преимуше-
ственно пресных водоемах. Предпочитают воды, бедные иными. Со створки
эти одноклеточные водоросли имеют вид вытянутого эллипса. Вдоль створко-
вой стороны посередине проходит щелевидный шов в виде тонкой, слегка изо-
гнутой линии. На обоих концах клетки и в середине находятся терминальные и
центральный узелки. Края створки имеют четкий рисунок из параллельных
ребрышек, не доходящих до линии шва, — это перегородки узких поперечных
камер на внутренней стороне створки. Вдоль обоих краев створки видны в про-
филь так как размещаются на поясковых сторонах) крупные пластинчатые
Водоросли

хлоропласты в виде двух узких полосок желто-бурого цвета. В центре клетки находится цитоплазменный мостик с ядром. По обе стороны от мостика лежат вакуоли, капли масла и зерна волютина.

С пояска клетка имеет вид продолговатого прямоугольника и вся окрашена в желто-бурый цвет. В этом положении в ней видны все указанные органеллы и включения, но пояса панциря не несут никаких скульптурных утолщений, и на загибе створки видны только конечные участки перегородок между камерами. Узелки имеют вид сосочкообразных утолщений панциря (рис. 134, A—Г).

Размножаются вегетативным делением. Половой процесс изогамный.

Рис. 134. *Pinnularia.*

A — панцирь со створки; B — панцирь с пояска; V — клетка со створки; Г — клетка с пояска;
D — деление клетки (две дочерние клетки с пояска)

Виды рода навикула (*Navicula*, рис. 135, A), одного из самых богатых видами родов диатомовых водорослей, встречаются в тех же местообитаниях, что и пиннуллярия, но чаще, чем она, в солоноватых и морских водах. Многие из них очень похожи на виды пиннуллярии (щелевой шов также расположен посередине створки) и отличаются от них главным образом отсутствием камер в створках. Кроме того, у многих видов концы клеток сузены, так что они по форме напоминают лодочку.

Эпифитные виды рода навикула часто удерживаются на поверхности водорослей или высших растений, образуя полые слизистые трубки. Здесь они свободно передвигаются и таким образом выносятся над субстратом в более благоприятные условия освещения.
Виды сходных родов гиросигма \((\text{Gyrosigma})\) из пресных и плевросигма \((\text{Pleurosigma})\) из морских водоемов имеют створки, согнутые в виде буквы \(S\), и отличаются друг от друга штриховкой панциря (рис. 135, \(B, B\)).

Среди представителей с каналоидным швом широко распространены представители родов нишия и сурирелла.

ПОРЯДОК БАЦИЛЛЯРИЕВЫЕ

\((\text{BACILLARIALES})\)

Бациллярные — одноклеточные водоросли; клетки одиночные, реже собраны в колонии; створки изопольные, с каналоидным швом, расположенным в киле.

Из подвижных бентосных форм широко распространены в различных местообитаниях виды рода нишия \((\text{Nitzschia})\), рис. 136, \(A\). Клетки имеют палочковидные очертания, концы их заострены, на каждой створке имеется киль с каналоидным швом, идущий вдоль одного из краев створки (на противоположных сторонах у эпитеции и гипотеки, т.е. кили расположены по диагонали). На створках располагаются параллельные линейные штрихи, состоящие из маленьких пор.

ПОРЯДОК СУРИРЕЛЛОВЫЕ

\((\text{SURIRELLALES})\)

Порядок представлен одноклеточными организмами; клетки одиночные с изо- или гетеропольными створками; каналоидный шов расположен в крыловидном выросте.

Виды рода сурирелла \((\text{Surirella})\), обитатели бентоса пресных, солоноватых и морских водоемов, отличаются очень массивным и сложным панцирем. Со створки очертания ее эллиптические, яйцевидные, у некоторых гитаровидные, а с пояска клиновидные (рис. 136, \(B\)). Вдоль каждой створки по краям проходят два гребня, или киля, с каналоидным швом. Таким образом, клетка имеет всего четыре шва.
Наличие трехчастных мастиго-нем на жгутике, строение хлоропластов, пигментные системы, трубчатые митохондрии, запасные продукты несомненно подтверждают принадлежность диатомовых водорослей к группе острофитов. Но внутри этой группы наличие таких особенностей, как кремневый панцирь, диплобионтный жизненный цикл, редукция жгутикового аппарата, особенности карино- и цитокинеза, значительно отличает диагомей от других представителей. Полагали, что предками диагомей могли быть какие-то древние синуровые водоросли, и некоторые авторы даже рассматривали синуровых как "жгутиковых диагомей". На роль ближайших родственников предлагали и желтозеленые водоросли, которые формируют кремнеземные цисты. Однако данные молекулярной филогении показали, что диатомовые хотя и относятся к стратонопилам, но образуют достаточно обособленную группу и ближе всего к ним стоит описанная в недавнее время группа билидациферов водорослей.

Многие диагомеи можно использовать как индикаторы состояния водоема, а некоторые — даже как индикаторы морских течений. Так, в течении Гольфстрим доминирует один из видов центрической диатомовой водоросли — планктониелла (Planktoniella sol).

В природе особенно большое значение имеют планктонные диатомовые. Составляя основную массу растительного планктона, они являются началом пищевой цепи. Их поедают беспозвоночные животные, также обитающие в планктоне, в свою очередь поглощает рыбная молодь — корм более крупных рыб и других животных. Некоторые взрослые рыбы (сельдь, хамса, сардина и др.) и молодь питаются непосредственно диатомеями. Следовательно, мощное развитие диатомовых водорослей в планктоне имеет большое хозяйственное значение, так как фактически определяет богатство водоема рыбой. В литературе отмечается, например, что улов сардин на побережье Индийского океана зависит от развития одного из видов фрагиляриопсиса (Fragilariopsis oceanica). Аналогичное значение могут иметь и бентосные диатомеи. Установлено, что
некоторые мелкие животные специализировались на питании определенными видами диатомей. Например, инфузории родов хилодон, острихия и др. питаются главным образом видами навикула и нишция, потребляя по 30—40 экземпляров ежедневно. Обилием диатомей определяется и развитие личинок хирономид.

Вместе с тем массовое развитие некоторых диатомовых водорослей может иметь и отрицательное значение. Некоторые из них в больших количествах попадают в заборы и каналы, вызывая их забивание. Описан случай массового вымирания культивируемых в морской бухте Японии моллюсков, заглатывающих диатомовую водоросль талассиозира (Thalassiosira decipiens). Иногда это водоросли затрудняют лов рыбы, запутываясь в рыболовных сетях, — подобное явление имело место на Волге около Астрахани при массовом развитии мелозиро. То же наблюдалось у побережья Швеции, где в огромном количестве развивалась диатомия дидимосфения (Didymosphaenia geminata).

Большое практическое значение имеет горная мука кизельгур, или диатомит, на 50—80% состоящая из панцирей ископаемых диатомей, которые известны из отложений юрского периода. В палеогене, неогене и антропогенном периоде панцири планктонных диатомей, отлагавшиеся после отмирания водорослей на дне мелководных морских и пресноводных бассейнов, образовали мощные образования. Вынесенные на поверхность земли последующими горнообразовательными процессами, они и сформировали эту горную породу. Диатомит представляет собой массу белого или светло-серого цвета, очень легкую, пористую и твердую. Применяется как полировочный или шлифовальный материал, для тепловой и звуковой изоляции, как фильтрующее вещество в пищевой, медицинской и химической промышленности; ранее использовался как связующая масса или наполнитель при изготовлении динами. Знание ископаемых диатомовых водорослей помогает определить происхождение и возраст различных осадочных пород (так называемый диатомовый анализ).

Класс трибофициевые, или желтоzelеные, водоросли (Tribophyceae, Xanthophyceae)

В классе трибофициевые (желтоzelеные) водоросли выражены различные типы организации: монадная, амфобная или ризоподиальная, пальмелоидная, коккоидная, нитчатая, разноклетчатая, псевдопаренхиматозная, паренхиматозная и сифональная. Интересно отметить, что только у представителей этого класса и у зеленых водорослей таллом сифонального типа организации. Многие из трибофициевых по внешнему виду очень сходны с зелеными водорослями и одно время даже относились к этому отделу. Желтоzelенные отличаются от зеленных водорослей весьма важными признаками: подвижные формы и стадии имеют два жгутика неравной длины и разного строения (более длинный с трех-частными мастигонемами, короткий — гладкий), отсутствует хлорофилл b, имеются различия в запасных продуктах и в строении хлоропластов.
У более примитивных форм клетки лишены жесткой клеточной стенки («голье»), у большинства других имеется пектиновая или целлюлозная стенка. Клеточная стенка может состоять из двух частей и быть пропитанной кремнеземом. В прозрачной цитоплазме клеток содержатся мелкие ядра (одно или много); дисковидные, корытоидные, пластинчатые, реже лентовидные, звездчатые или чашевидные хлоропласты, иногда с пиреноидом, содержащие хлорофиллы a и c, α- и β-каротины и различные кантофиллы, из которых основное значение имеют вощериксантин. Комбинации этих пигментов придают клетке чаще светло- или темно-желтую окраску, реже зеленую и у некоторых голубую. Строение хлоропластов типично для охрофитовых водорослей (хлоропласт покрыт четырьмя мембранами, наружная мембрана хлоропластной эндоплазматической сети переходит в наружную мембрану ядра, ламеллы трехликойдные, опоясывающая ламелла имеется, хлоропластная ДНК в виде единого кольца). Крахмала нет, в клетках накапливается масло и у некоторых видов еще хризоламинарин и волютин. У подвижных форм имеется красный глазок, расположенный у переднего конца хлороплазта. У некоторых монадных форм также в переднем конце клетки есть одна или две пульсирующие вакуоли.

Вегетативное размножение осуществляется продольным делением клетки, бесполое — зооспорами или апланоспорами. Половой процесс известен у немногих (изо-, гетеро- или оогамии). При неблагоприятных условиях образуются эндогенные цисты со слабоокрашенной оболочкой, состоящей из двух неравных частей.

Представители класса широко распространены в различных местообитаниях, особенно в чистых пресных водоемах и почвах, реже обитают в наземных условиях, солоноватоводных и морских водоемах. Они встречаются на всех континентах земного шара (в том числе и в Антарктике). Трибофицевые водоросли занимают различные экологические ниши — планктон, перифитон и бентос. Подавляющее большинство из них — свободноживущие представители, но встречаются и внутриклеточные симбионты — зооксантеллы в клетках простейших.

Класс трибофицевых сравнительно небольшой и включает 90 родов и более 600 видов водорослей. Ниже рассмотрены порядки: хлорамёбовые, ризохлоридовые, гетероглейные, мишококковые, трибонемовые, ботридиевые, вошериевые.

ПОРЯДОК ХЛОРАМЁБОВЫЕ (ГЕТЕРОХЛОРИДОВЫЕ) (CHLORAMOEBALES, ИЛИ HETEROCYCHLIDALES)

Представители порядка — одноклеточные водоросли, встречающиеся в соленой и пресной воде, все редкие виды. Они движутся при помощи двух неравных жгутиков, расположенных на переднем конце тела. У некоторых один из жгутиков редуцируется.

Типичный представитель — гетерохлорис (Heterochloris, рис. 137, A). Как видно из рисунка, он может менять форму, образуя псевдоподии. Это присуще многим хлорамёбовым, так же как тенденция к животному способу питания. В клетке гетерохлориса имеются несколько хлоропластов, пульсирующие вакуоли (в переднем конце тела), капли масла и хризоламинарин, одно ядро (в центре клетки). Размножается гетерохлорис вегетативно продольным делением клетки.
Рис. 137. A — Heterochloris (1 — внешний вид, 2 — образование псевдоподий); Б — Rhizochloris (в клетке заметны кристаллы); B — Myxochloris sphagnicola (1 — два маленьких плазмодий в клетке листа сфагнума, 2 — большой плазмодий с многочисленными хлоропластами, ядрами и пульсирующими вакуолями)

ПОРЯДОК РИЗОХЛОРИДОВЫЕ (RHIZOCHLORIDALES)

Ризохlorидовые — одноклеточные или колониальные организмы, свободноживущие или прикрепленные к нитчатым водорослям, обитающие главным образом в пресных водоемах. Для них характерны псевдоподии, при помощи которых они захватывают твердые пищевые частицы. У некоторых видов клетки соединяются цитоплазматическими тяжами в более или менее сложные сети. Другие очень сходны со слизевиками, так как их вегетативное тело представляет собой плазмодий, образующийся путем слияния более мелких амёбонд.

В прудах встречаются виды рода ризохlorис (Rhizochloris) с нитевидными псевдоподиями (рис. 137, Б). При размножении (продольное деление) дочерние клетки не расходятся и образуют группы, соединенные псевдоподиями.

В клетках листьев сфагновых мхов живет миксокlorис (Myxochloris) в виде крупного многоядерного плазмодия (рис. 137, Б). Осенью он образует цисты, которые прорастают весной. Из них выходит зооспоры или амёбы, проникающие в пустые клетки листьев и сливающиеся там в плазмодий.
ПОРЯДОК ГЕТЕРОГЛЕЙНЫЕ
(HETEROGLOEALES)

Гетероглейные встречаются сравнительно редко, преимущественно в пресных, немногие — в соленых водах. Для них характерен пальмелоидный тип организации. У некоторых видов есть клеточная стенка, у других она отсутствует, тогда клетки погружены в слизь. Они располагаются в толще слизи беспорядочно или (у некоторых видов) по ее периферии в определенном порядке. В клетках имеются 1—2 сократительные вакуоли, иногда они отсутствуют. Стигма наблюдается редко. Пальмелоидные колонии могут сидеть на слизистых ножках. В пределах слизи клетки размножаются делением, за счет чего колония увеличивается в размерах. Новые колонии образуются при распаде старой на части или же возникают из зооспор, в которые превращаются клетки колонии, покидающие слизь.

Типичный представитель порядка — гельминтоглея (Helminthogloeas), обитающая в солоноватых водах (рис. 138, А). Эта колония, сидящая на расширенном основании, состоит из ветвящихся тяжей. В их слизи беспорядочно располагаются протопласты, каждый из которых имеет собственную слизистую обертку.

Шаровидные или эллипсоидные колонии другого вида — глоеохлориса планктонного (Gloeochloris planctonica, рис. 138, Б) — встречаются обычно ранней весной в ямках с холодной талой водой. У него известны цисты с оболочкой, состоящей из двух частей.

Рис. 138. A — Helminthogloeas ramosa, молодая колония; B — Gloeochloris planctonica (1 — край колонии, 2 — зооспора, 3 — циста); B — Botrydiopsis (1 — вегетативная клетка, 2 — образование зооспор, 3 — апланоспоры); Γ — Mischococcus confervicola (1 — внешний вид, 2 — зооспор а)
ПОРЯДОК МИСХОКОККОВЫЕ
(MISCHOCOCCALES)

Одноклеточные, реже колониальные представители этого порядка с коккоидным типом дифференциации таллома очень разнообразны по внешнему виду и характеризуются прежде всего твердой клеточной стенкой. У некоторых она пропитана кремнеземом, гладкая или скульптурированная, и состоит иногда из двух частей. Размножаются вегетативным делением, зооспорами, способными давать псевдоподии и двигаться амёбообразно, и автоспорами.

Некоторые из них очень похожи на зеленые водоросли, например на хлореллу, харациум, лесмидиеевые и др., есть виды, напоминающие диатомеи.

В небольших пресных водоемах (прудах, канавах и т.п.) и в почве широко распространены виды рода ботридиопсис (Botryidiopsis, рис. 138, B). Эта шаровидная водоросль с многочисленными постенными зернистыми хлоропластами и одним центральным ядром. При размножении в клетке образуется более десяти зооспор. Они поднимаются на поверхность воды, превращаются в вегетативные клетки и образуют пленку ярко-зеленого цвета. Это часто происходит в аквариумах и других сосудах с водой.

В сфагновых болотах обычен мишкококкус (Mischococcus), обитающий в основном на нитях водорослей эдгониум или трибонема. Это колония из клеток, одетых твердыми оболочками, но сидящих на слизистых ножках. Вся колония представляет собой целую систему таких ножек, или тяжей, на верхушках которых располагаются сами клетки (рис. 138, Г). При размножении клетка делится вегетативно на две, и каждая снова выделяет слизистую ножку.

ПОРЯДОК ТРИБОНЕМОВЫЕ
(TRIBONEMATALES)

Трибонемовые характеризуются нитчатым, разнозиготым, ложнотканевым и тканевым типами дифференциации таллома. Они довольно часто встречаются в пресных водоемах, особенно при пониженных температурах.

Наиболее типичный вид — трибонема зеленая (Tribonema viridis), образующая иногда большие скопления. Неветвящиеся нити таллома вначале прикрепляются к какому-либо субстрату с помощью базальной клетки. Затем вследствие отмирания базальной клетки они всплывают на поверхность и встречаются уже как свободнаплавающие, часто сплетаются в тину. Нити сложены из ряда цилиндрических или бочкообразных клеток, каждая с одним ядром и несколькими желто-зелеными хлоропластами, расположенными постенно (рис. 139, A).

Клеточные стенки своеобразны: они состоят из двух половинок, находящихся краями друг на друга посередине клетки, и промежуточного кольца, прилегающего в этом месте к краям с внутренней стороны. При действии на нити крепкой хромовой кислоты, а иногда при надавливании на препарат промежуточное кольцо растворяется или разрушается, створки расходятся и лежат в препарате в виде Н-образных фигур. Каждая из них представляет собой половину оболочки одной клетки и половину другой, соседней с ней. Они соединены потому, что
при вегетативном делении клетки перегородка появляется в месте расположения поясковидного кольца и срастается с ним. Таким образом, поясковое кольцо становится створками двух дочерних клеток, вырабатывающих затем новые промежуточные кольца.

При размножении в клетках образуется одна или две зооспоры, при выходе которых створки расходятся и нить распадается на N-образные фигуры. Бесполое размножение может происходить и с помощью апланоспор. При неблагоприятных условиях формируются акинеты с толстой клеточной стенкой.

ПОРЯДОК БОТРИДИЕВЫЕ
(BOTRYDIALES)

К порядку ботридиевые относятся водоросли с сифональным типом дифференциации таллома, у которых отсутствует оогамный половой процесс.

Таллом представляет собой пузыревидное, мешковидное или нитчатое образование, одетое оболочкой из целлюлозы и пектиновых веществ, с многочисленными хлоропластами и ядрами.

Летом влажная почва у берегов водоемов, по краям засыхающих луж, по колеям проселочных и лесных дорог иногда буквально усыпана видимыми простым глазом
темно-зелеными блестящими пузырьками ботридиум (Botryidium), напоминающими рассыпанный бисер. Пузырек, или клетка, имеет примерно 1 мм в диаметре и до 2 мм в высоту, книзу постепенно сужается и переходит в ветвящиеся бесцветные ризоиды, погруженные в почву (рис. 139, Б). Внутри клетки имеется вакуоль, а в тонком пустотном слое цитоплазмы содержатся многочисленные дискообразные хлоропласти, мелкие ядра и капли масла. Во время дождя, когда ботридиум заливается водой, внутри пузыря образуются многочисленные зооспоры, выходящие из отверстия в верхней части. Эта замечательная картина выхода зооспор напоминает извержение вулкана. Зооспоры расселяются в воде, оседают на подсыхающей почве и развиваются в новые талломы. Когда долго нет осадков и почва пересыхает, содержимое наземной части ботридиума образует апланоспоры или переливается в ризоиды и там распадается на цисты или гипноспоры (последнее происходит в конце вегетационного периода). При увлажнении цисты прорастают непосредственно в новые особи или формируются зооспоры. Половой процесс изогамный или гетерогамный. Специальные половье органы, как у вощерии, не образуются.

ПОРЯДОК ВОШЕРИЕВЫЕ (VAUCHERIALES)

Вошерииевые имеют сифональный тип дифференциации таллома, оогамный половой процесс и синзооспоры при бесполом размножении.

Виды рода вощерия (Vaucheria) встречаются в пресных водоемах и морях или на влажной почве, часто образуя бархатистые дерновинки. Некоторые из них (истинные галофилы) служат индикаторами на соленость воды. Толстые нити вощерий, достигающей иногда нескольких сантиметров в длину, слабо ветвятся и прикрепляются к субстрату бесцветными лапчатыми ризоидами (рис. 140, A). В нитях хорошо заметны многочисленные постенные зернистые или веретено-видные хлоропласти без пиренойд и капли масла. Таллом многоядерный, причем мелкие ядра располагаются в цитоплазме глубже хлоропластов. На протяжении таллома можно обнаружить перегородки, отделяющие поврежденные участки. При бесполом размножении в верхней части боковой ветви, отделяющейся перегородкой, формируется одна крупная зоосpora. При этом ядра и хлоропласти перемещаются: ядра занимают постенное положение, хлоропласти располагаются глубже, а на поверхности зооспоры соответственно над каждым ядром образуется пара жгутиков. Наверху зооспорангия возникает отверстие, через которое начинает протискиваться зооспора (рис. 140, Б). Этот процесс вначале идет довольно медленно, так как образовавшееся отверстие не соответствует крупным размерам зооспоры. Она «отдыхает», раскачивается и вдруг выскальзывает; освободившись, начинает быстро плавать при помощи своих многочисленных жгутиков, пока не оседает и не прорастет в новый таллом. Своедобные зооспоры вошерии соответствуют комплексу зооспор и представляют собой так называемые синзооспоры. У наземных форм вместо спорангиеев с зооспорами часто образуются неподвижные апланоспоры и акинеты с толстой клеточной оболочкой.
Половой процесс оогамный. При этом пресноводные виды большей частью однодомные, некоторые морские — двудомные. У пресноводной *V. dichotoma* существуют как однодомные, так и двудомные расы.

Оогоний представляет собой округлый или овальный крупный вырост на поверхности таллома. Он отделяется от таллома перегородкой, образующейся в его основании, и содержит одну яйцеклетку. У однодомных форм рядом с ним (иногда по обе стороны от него) образуются антеридиальные выросты, загибающиеся наподобие бараньего рога. Собственно антеридий представляет собой верхнюю часть этого выроста (рис. 140, *B*). В антеридии формируется множество сперматозоидов, каждый с двумя жгутиками неравной длины. Созревание половых продуктов в половых органах, находящихся рядом на талломе, происходит не одновременно, так что яйцеклетка оогония оплодотворяется сперматозоидом, образовавшимся в удалённом от неё антеридии. При созревании яйцеклетки из носика оогония выступает капелька бесцветного содержимого, привлекающего сперматозоиды. Один из них внедряется в оогоний через образовавшееся отверстие и оплодотворяет яйцеклетку. Зигота покрывается толстой многослойной оболочкой. После периода покоя она прорастает в новую особь. Полагают, что место редукционного деления у вошерии связано с образованием гамет.
Отдел охрофиты (Ochrophyta)

Уже А. Пашер включил желтоцелевые водоросли в один эволюционный ряд с золотистыми и диатомовыми. Эта точка зрения в дальнейшем нашла подтверждение в исследованиях на цитологическом, биохимическом, физиологическом и молекулярном уровне. На основании строения жгутиковых стадий, наличия хлорофиллов a и c, но не b, строения хлоропласта, наличия запасных продуктов их рассматривают как класс среди охрофитовых. Из трибофициев были выделены эвстигмафоциевые в ранге класса, но которые, как оказалось, в эволюционном плане далеко стоят друг от друга. В филогенетических деревьях охрофитов, построенных на анализе 16S rРНК, трибофициевые стоят значительно ближе к бурым водорослям, чем к золотистым, диатомовым и синуровым.

Практическое значение трибофициев определяется их участием (наравне со многими другими водорослями) в создании первичной продукции, в цепи питания обитателей воды, в образовании сапропеля в водоемах, а в почве — в накоплении органических веществ. Некоторые из них используются как индикаторы санитарного состояния воды.

Класс бурь, или фукосовые, водоросли (Phaeophyceae, Fucophyceae)

К классу бурь водоросли относят многоклеточных представителей с разнонитчатым, псевдопаренхиматозным и паренхиматозным талломом, обычно макроскопические. Среди них не известны ни одноклеточные, ни колониальные формы, ни талломы в виде простой неразветвленной нити. Таллом самых простейших из ныне живущих бурых водорослей гетеротрихальный, у громадного же большинства талломы крупные, компактные ложно- или истиннотканевого строения.

Жгутиковые стадии (зооспоры и гаметы) имеют, как правило, два жгутика (у диктиотовых — один), прикрепленных латерально (сбоку). Передний длинный жгутик несет два ряда трехчастных мастигонем, задний — короткий гладкий; его основание, прилегающее к глазку, несет базальное вздутие. В переходной зоне отсутствует переходная спираль. Оба жгутика могут заканчиваться акроневой — длинным, часто спирально закрученным терминальным придатком, в который из стержня жгута переходят только две центральные микротрубочки. С помощью акрона переднего жгута мужской гаметы осуществляется начальный контакт ее с останавлившейся и втягивающей свои жгутики женской гаметой.

Хлоропласты имеют типичные для охрофитовых водорослей особенности: наличие мембранны хлоропластной эндоплазматической сети; там, где хлоропласт расположен рядом с ядром, его наружная мембрана хлоропластной эндоплазматической сети переходит в наружную мембрану ядра; трехтилакоидные ламеллы; имеется опоясывающая ламелла; хлоропластная ДНК в виде кольца находится под опоясывающей ламеллой. Хлоропласты окрашены в бурый цвет благодаря тому, что хлорофиллы a, c_1 и c_2 маскируются дополнительными каротиноидами, из которых преобладает фукоксантин. Свободный от тилакоидов пиреноид выступает из хлоропласта в виде почки.
ВОДОРОСЛИ

Глазок (отсутствует у ламинариев) у жгутиковых стадий состоит из 40—80 липидных гольбук, собранных в один слой, расположен в хлоропласте и ориентирован на базальное вздутие. Глазок у бурных водорослей выполняет функцию линзы, фокусирующей свет на жгутиковое вздутие, которое и является собственным фоторецептором.

Запасной продукт полисахарид ламинарин откладывается вне хлоропласта в цитоплазме. Другие запасные продукты (наряду с ламинарином) — шеститатомный спирт маннит и липиды. Маннит выполняет резервную и осморегуляторную функции. Его концентрация внутри клетки зависит от изменения солености воды. В цитоплазме клеток бурых водорослей расположены особые везикулы — физоды, содержащие феофизиновые танины (флюротанины). Флюротанины известны только у бурных водорослей. Функция их, возможно, связана с защитой от выведения животными, например такими, как гастроподы. Они, возможно, ингибируют поселение на поверхности таллома эпифитных водорослей и животных. Предполагают также, что флюротанины участвуют в защите от радиационного повреждения и в накоплении тяжелых металлов. Бесцветные флюротанины на воздухе окисляются с образованием бурого или темного пигмента фикофена, придающего высушенным бурым водорослям их характерную темную окраску.

Клеточная стенка состоит из трех компонентов: целлюлозы, альгиновой кислоты и ее солей, сульфатированных полисахаридов. Альгиновая кислота — это полимер, построенный из двух мономеров D-маннуроновой и L-глюроновой кислот, соединенных β-1,4-связями. При взаимодействии с катионами она образует соли, причем альгинаты одновалентных металлов, например альгинат натрия, хорошо растворимы в воде, в то время как сама альгиновая кислота и ее кальциевая соль не растворимы. Растворимые альгинаты входят в состав матрикса клеточной стенки, иногда на их долю приходится до 35% сухого веса таллома. Фуканы (фукоиданы, или аскофилланы) — полимеры L-фукозы и сульфатированных сахаров. Их функция до конца не выяснена.

Ядро в клетке чаще всего одно, но у некоторых представителей и с возрастом клетки иногда бывают многоядерными. Митоз полузакрытый (ядерная мембрана исчезает к анафазе), с центриолами. Цитокинез у большинства бурых водорослей происходит путем впачивания мембраны. У фукуса и аскофиллума в центре клетки при делении формируется пластинка, которая растет от центра к периферии, как у зеленых растений. Плазмодесмы встречаются, вероятно, в попереочных перегородках всех бурых водорослей, даже тех, у которых перегорodka образуется за счет впачивания мембраны.

Размножение вегетативное, бесполое и половое. Вегетативное размножение осуществляется участками таллома. У некоторых представителей имеются специализированные веточки (выходные почки), у фукуса на подошве располагается группа клеток, способных к дифференцировке в новый таллом. Бесполое размножение у большинства бурых водорослей происходит посредством зооспор, образующихся в одногнездных или однокамерных спорантиях, которые развиваются на диплоидных спорофитах и в которых перед формированием зооспор ядро редукционно делится. У представителей порядка дикитотыхов (Dictyotales) в одногнездных спорантиях (тетраспорангиях) вместо зооспор так-
Отдел охрофиты (Ochrophyta)

же после редукционного деления образуются четыре неподвижные апланоспоры — тетраспоры. Гаплоидные зооспоры и тетраспоры прорастают в гаплоидные гаметофиты, на которых образуются половые органы. У простейших бурых водорослей половой процесс изогамный, гаметы развиваются в многогнездных или многокамерных спорангиях (гаметангиях), состоящих из большого числа (до нескольких сотен) мелких кубических клеток. Протопласт каждой клетки превращается в одну гамету. У ряда бурых водорослей наблюдается гетерогамия, причем гаметы также образуются в многокамерных спорангиях (гаметангиях). Спорангии (гаметангии) двух видов: одни состоят из большого числа мелких клеток, другие — из меньшего количества более крупных клеток. Соответственно в первых формируются мелкие микрогаметы, а во вторых — крупные макрогаметы.

У наиболее высоко организованных бурых водорослей половой процесс оогамный. В оогониях и антеридах, как правило, образуется по одной гамете (яйцеклетке и сперматозоиду соответственно), в то же время у фукусовых в антеридах формируются 64 сперматозоида, а оогонии у некоторых родов содержат более одной (две, четыре, восемь) яйцеклетки. Антеридии диктиотных имеют вид многокамерных спорангий (гаметангiev), в каждой камере развивается по одному сперматозоиду, снабженному, в отличие от монадных клеток всех остальных бурых водорослей, только одним жгутиком. Яйцеклетка оплодотворяется вне оогония. Зигота без периода покоя прорастает в диплоидное растение.

Для бурых водорослей известны половые феромоны, исследование которых активно проводится с 80-х г. XX в. Половые феромоны — это растворимые вещества, которые координируют активность клеток при половым размножении. Феромоны бурых водорослей могут или привлекать мужские гаметы к женским, или стимулировать раскрытие антеридах. Известно по крайней мере десяток феромонов у бурых водорослей, первым из которых был эктокарпен (эктокарпин, сиренеин). Феромоны активны при концентрации 10^-7 моль/л. Полагают, что они продуцируются большинством, если не всеми бурыми водорослями, имеющими половое размножение.

У бурых водорослей известны два основных типа жизненных циклов. Один — гапло-диплообионтный, со спорической редукцией с изо- или гетерорморфной сменой форм развития. Споры бесполого размножения формируются на диплоидных спорофитах; в многогнездных спорангиях при их формировании происходит мейоз. Гаплоидные зооспоры и тетраспоры прорастают в гаплоидный гаметофит, на котором в многогнездных гаметангиях формируются гаметы. После слияния гамет диплоидная зигота прорастает в диплоидный спорофит. Другой тип жизненного цикла — диплообионтный, с гаметической редукцией; редукционное деление происходит при образовании гамет. У бурых водорослей место мейоза доказано цитологически по наличию в пахитене синаптонемного комплекса.

Бурые водоросли широко распространены во всех морях нашей планеты. Наибольшего развития они достигают в морях умеренных и приполярных широт. В тропиках массовое развитие бурых водорослей приурочено к зимним месяцам, когда понижается температура воды, в морях же умеренных и приполярных широт бурный рост талломов начинается весной и достигает максимума в летние
месяцы. Ламинариевые водоросли могут формировать гигантские подводные леса, например такие, как вдоль тихоокеанского побережья Северной Америки. Некоторые небольшие бурые водоросли живут внутри тканей других водорослей, как эндофиты. В пресных водах встречается только около 10 видов.

Ископаемые остатки бурых водорослей известны с силура и девона.

Класс бурье водоросли содержит около 265 родов и 1500—2000 видов. Тип организации таллома, способ роста, тип полового размножения (изогамия, гетерогамия, оогамия) и жизненного цикла традиционно используют для выделения порядков у бурых водорослей. В разных системах выделяют от 7 и более порядков. Далее рассмотрены принадлежащие к классу порядки: эктокарповые, сфациелариевые, кутилериеевые, диктиотовые, ламинариевые, фукусовые.

ПОРЯДОК ЭКТОКАРПОВЫЕ (ECTOCARPALES)

Эктокарповые в традиционном понимании включают представителей с гетеротрихальным типом дифференциации таллома, имеющим вид ветвящихся или неветвящихся нитей, которые отходят часто от базальных нитей или корочек. Рост обычно диффузный, у большинства представителей отсутствует хорошо выраженная меристема. Половое размножение изо- или гетерогамия, жизненный цикл с изоморфной (или слегка гетероморфной) сменой генераций.

Представителем порядка может служить род эктокарпус (Ectocarpus, рис. 141). Его многочисленные виды широко распространены во всех морях, особенно холодных, и растут на подводных предметах и других более крупных водорослях.

Рис. 141. Ectocarpus.

A — общий вид; *B* — зооспорангий (одногнездный спорангий) с зооспорами; *V* — гаметангий (многогнездный спорангий и гаметы; *Г* — оплодотворение
Отдел охрофиты (Ochrophyta)

Таллом (как спорофита, так и гаметофита) имеет вид желтовато-бурых кустиков, достигающих в длину нескольких сантиметров. Он состоит из стеляющихся по су不让руту нитей, от которых отходят вертикальные нити из одного ряда клеток, обычно ветвящиеся. Ветви вертикальных нитей часто оканчиваются многоклеточными бесцветными волосками. У стеляющихся по су不让руту нитей рост верхушечный. Рост вертикальных нитей у большинства видов диффузный, лишь у некоторых видов у основания волосков дифференцируется ясно выраженная интеркалярная (вставочная) меристема, еще реже встречается верхушечный рост. Клетки нитей содержат несколько удлиненных хлоропластов, каждый с несколькими пиреноидами.

Бесполое размножение — зооспорами. Они развиваются на диплоидных спорофитах в одногнездных спорангиях — конечных клетках коротких боковых ветвей. Содержимое их распадается на ряд гольых зооспор, которые выходят через разрыв стенки спорангиума. Обычно 32 зооспоры выходят в желатинообраз матриксе и редко сохраняют подвижность более чем в течение 30 мин. Образование зооспор предшествует редукционное деление ядра, и гаплоидные зооспоры вырываются в гаплоидные гаметофи́ты, размножающиеся половым путем. Гаметы формируются в многоугольных спорангиях — измененных боковых ветвях. Они имеют вид кукурузных початков и могут состоять из 660 кубических клеток, в каждой из них формируется по одной гамете. Хотя гаметы внешне одинаковы и половой процесс у эктотаксуса изоморфный, по поведению различают женские и мужские гаметы. Первые быстро теряют подвижность, вторые могут оставаться подвижными до 24 ч. Остановившаяся женская гамета выделяет пахучее, сильнолетучее вещество — углеводород эктотаксен (C₁₁H₁₆), привлекающий мужские гаметы (эктотаксус — первый род водорослей для которого определены половой феромон). Они роем окружают женскую гамету и прочно прикрепляются к ее мембране с помощью акронемы переднего жгутика. Затем передний жгутик одной из мужских гамет сокращается, сближаясь с женской гаметой, и сливается с ней. Остальные мужские гаметы уплывают. Слияние происходит задними концами клеток. Зигота без периода покоя прорастает в диплоидный спорофит.

Таким образом, эктотаксус обнаруживает изоморфную смену генераций; в зависимости от климатических условий в ней могут быть отклонения. Так, в некоторых местообитаниях на спорофитах эктотаксуса помимо одногнездных спорангиев наблюдаются многогнездные — нейтральные спорангии. В отличие от многогнездных спорангиев, развивающихся на гаметофитах и являющихся гаметангиями, они образуют в своих клетках зооспоры — нейтральные споры. Эти споры диплоидные, так как перед их формированием редукционное деление ядра не происходит. Нейтральные споры прорастают в диплоидный спорофит, таким образом, спорофит может сам себя воспроизводить. Гаметофит также может сам себя воспроизводить, когда в многогнездных спорангиях формируются гаплоидные зооспоры, из которых развиваются гаплоидные гаметофиты (рис. 142).
У эктокарпуса имеются и дополнительные пути развития, причем гаметофиты могут быть гаплоидными и диплоидными, а спорофиты — гаплоидными, диплоидными и тетраплоидными. Так, из зооспор, возникающих в результате мейоза, могут развиваться не только гаплоидные гаметофиты, но и гаплоидные спорофиты. Это явление называется гетеробластия. На гаплоидных спорофитах могут формироваться как нейтральные многогнездные зооспорангии, так и одногнездные зооспорангии, в которых формируются гаплоидные зооспоры, прорастающие или в гаметофит, или опять в спорофит. В потомстве наблюдаются и небольшой процент диплоидных спорофитов, которые, как полагают, возникают в результате спонтанной диплоидизации. Партеногенетическое развитие гамет приводит исключительно к развитию гаплоидных спорофитов. Иногда из зооспор многогнездных спорангий этих спорофитов могут спонтанно развиваться тетраплоидные спорофиты; зооспоры их одногнездных зооспорангий могут прорастать как в диплоидные спорофиты, так и в диплоидные гаметофиты (рис. 143).

ПОРЯДОК СФАЦЕЛАРИЕВЫЕ (SPHACELARIALES)

Бурые водоросли, относящиеся к этому порядку, имеют ветвящийся многоосевой таллом, рост которого происходит за счет апикальной клетки. В результате специфического деления таллом приобретает паренхиматозное строение.

Рис. 142. *Ectocarpus* — цикл развития. На спорофите (1) могут возникать как одногнездные (2), так и многогнездные (3) зооспорангии. В первых после мейоза образуются гаплоидные (n) зооспоры, во вторых — диплоидные (2n) зооспоры (нейтральные споры), гаплоидные зооспоры прорастают в гаметофиты (4), носущие многогнездные спорангии (5). Гаметы (6) копулируют, зигота (7) прорастает в диплоидный спорофит (1). Диплоидные (нейтральные) зооспоры сразу прорастают с образованием диплоидного спорофита (1).
ВОДОРОСЛИ

Клетки имеют многочисленные хлоропласты без видимых пиrenoидов. Жизненный цикл проходит с изоморфной сменой поколений с изо-, гетеро- и оогамным половым процессом.

Род сфациелария (Sphacelaria), как и эктотокарпус, широко распространен во всех морях и имеет небольшие ветвящиеся талломы, достигающие 0,5—3 см в высоту. Однако рост как распространяется, так и вертикальных нитей в таллуме сфациеларии строго верхушечный. Апикальная (верхушечная) клетка делится поперечною перегородкой и последовательно отделяет вниз клетки-сегменты. Они в свою очередь делятся: один раз поперечно, и каждая из двух дочерних клеток в свою очередь делится радиальными и тангентальными продольными перегородками. В результате делений более старые части таллома приобретают паренхиматозное строение (рис. 144, A). На поперечном разрезе через нижерасположенные части таллома в середине находится группа более крупных, бедных содержимым клеток, которые окружены корой из одного слоя мелких, богатых хлоропластами клеток. Некоторые более крупные клетки коры образуют выступ, который отклоняется перегородкой и начинает функционировать в качестве верхушечной клетки боковой ветви. Так происходит ветвление таллома.

Все сказанное относительно размножения и цикла развития эктотокарпуса в полной мере приложимо к сфациеларии. Диплоидные беспольые растения некоторых видов сфациеларии на одном и том же индивиде могут образовывать как одно-гнездные, так и многогнездные (нейтральные) спорангии. При морфологической изотамии сфациеларии ее гаметы различаются по поведению: мужские дольше остаются подвижными, и копуляция происходит только после того, как женские гаметы остановились. Женские гаметы выделяют феромоны эктотокарпен и (в больших количествах) мультифиден. Вегетативное размножение сфациеларии осуществляется с помощью специализированных, часто трехлучевых выводковых веточек, которые отрывают и прорастают в новые талломы (рис. 144, Б).

У рода хетоптерис (Chaetopteris, рис. 145), который, как и все сфациеларцевые, характеризуется строго верхушечным ростом, в старых частях вертикальных нитей некоторые клетки первичной коры образуют выросты. Они разрастаются в много-клеточного нити, оплетающие плотным и толстым слоем основную ось. Боковые ветви, отходящие от клеток первичной коры, проходят сквозь эту вторичную кору.

Наиболее крупный представитель сфациеларцевых — род кладостефус (Cladostephus), талломы которого достигают 20 см в высоту; часто встречается в Черном море. На развивленных основных осах, увенчанных верхушечными клетками, мутовками, располагаются укороченные ветви более простого строения. В длинных осах, как и у хетоптериса, образуется вторичная кора.

ПОРЯДОК КУТЛЕРИЕВЫЕ
(CUTLERIALES)

Порядок объединяет водоросли с паренхиматозным типом дифференциации таллома. Спорофит обладает апикальным ростом, более крупный гаметофор — трихоталлическим. Жизненный цикл гапло-диплобионтный с гетероморфной или изомо фной сменой генераций, половой процесс — гета огамия.
Порядок включает два рода: кутлерия (Cutleria) и занардиния (Zanardinia). Кутлерия распространена по всему побережью Европы, занардиния — преимущественно в Средиземном море, а также в Черном. Для обоих родов характерно чередование поколений: у кутлерии смена генераций гетероморфная, у занардинии — изоморфная.

Гаплоидные гаметофиты кутлерии (Cutleria multifida, рис. 146, A) вертикально стоящие, высотой около 20 см, прикрепляются с помощью ризоидов, отходящих от базальных клеток. Они повторно дихотомически ветвятся, и лентовидные ветви заканчиваются пучками волосков, клетки которых содержат многочисленные хлоропласти. У основания волосков располагается интеркалярная меристема. Ее клетки, делясь, отчленяют сегменты в двух направлениях: книзу, дистально (эти сегменты обусловливают рост в длину волосков) и внутрь, проксимально (эти сегменты способствуют росту собственно таллома). Такой тип роста называется трихоталлическим. Отчленяющиеся проксимально сегменты плотно соединяются боками и претерпевают как поперечные, так и продольные деления. В результате получается компактный паренхиматозный таллом, в более старых частях дифференцированный на наружную мелкоклеточную кору из клеток, богатых хлоропластами, и внутреннюю крупноклеточную сердцевину. На поверхности уплощенного таллома кутлерии возникают пучки разветвленных нитей, на которых латерально образуются многогнездные споранги, или гаметанги (рис. 146, B, V). Для кутлерии характерна анизогамия: гаметанги двух видов развиваются на разных особях (двудомность), женские гаметанги состоят из небольшого числа крупных камер, мужские образованы гораздо большим числом мелких клеток. Первые дают макрогаметы (женские), вторые — микрогаметы (мужские). Женские гаметы содержат больше хлоропластов и имеют более короткий период подвижности, чем мужские. Оплодотворение обычно
ВОДОРОСЛИ

Рис. 146. Cutleria.

A — внешний вид таллома; Б — женские гаметангии; V — мужские гаметангии

происходит после прекращения движения макрогаметы. У кутлерии макрогаметы выделяют очень летучее низкомолекулярное соединение (феромон мультифиден), вызывающее положительный хемотаксис микрогамет и таким образом участвующее в половой реакции.

Зигота сразу прораставает в кокковидный таллом, достигающий размеров человеческой ладони. Он выглядит совершенно иначе, чем описанный выше таллом кутлерии. Долгое время кокковидный таллом рассматривался как самостоятельный род аглаозония (Aglaozonia, рис. 147, Б). Аглаозония — стадия кутлерии — размножается только бесполым путем. На ее поверхности образуются группы — сорусы одногнездных спорангийев, в которых после мейоза формируются от 4 до 32 гаплоидных зооспор (рис. 147, В, Г). Побывав некоторое время, они выращивают в гаплоидное растение кутлерии с половым органами. Таким образом, здесь имеет место чередование поколений — полового и бесполого, — внешне различных. Цитологическое изучение показало, что у кутлерии (половое поколение) ядра при митозах содержат 24 хромосомы, у аглаозонии (спорофит) — 48 хромосом. При развитии в одногнездных спорангиях зооспор первое деление ядра носит редукционный характер, и получающиеся зооспоры содержат в ядрах по 24 хромосомы; прораставая, они дают гаплоидные 24-хромосомные растения кутлерии.

По мнению ряда авторов, первоначально у кутлерии наблюдалось чередование поколений, имеющих гетеротрихальное строение. В обеих генерациях таллом состоял из распространенной аглаозониеподобной системы и вертикальной
кутleriеподобной части. В процессе эволюции половые индивиды утратили распространную систему, а бесполые — вертикальную. Это подтверждается тем, что в онтогенезе аглаозонии (спорофита) имеет место явная гетеротрихальность: зигота, прорастая, дает вертикальную нить, клетки которой продольно делятся, образуя так называемую колонку (рис. 147, A). Колонка дальше не развивается, а из ее основания вырастает крупный корковидный таллом аглаозонии. Иногда гаплоидные зооспоры вырастают в индивиды с признаками обеих генераций. Наконец, наблюдались случаи, когда растения кутleriей развивались вегетативно на аглаозонии; таким образом, один индивид совмещал обе части гетеротрихального таллома. Такие случаи, по-видимому, воссоздают картину предкового состояния, когда у кутleriей оба поколения были внешне одинаковы (имели гетеротрихальное строение).

У рода занардиния (Zanardinia) гаметофит и спорофит внешне не отличимы. Они имеют форму кожистого диска диаметром до 20 см, по краю которого располагаются волоски; у основания волосок находится меристема. Рост таллома такой же, как у половой генерации кутleriей. На гаметофите (n = 22) на одном и том же индивиде (однодомность) образуются гаметанги (многокамерные спорангии), на спорофите (n = 44) — одногнездные спорангии.
ПОРЯДОК ДИКТИОТОВЫЕ (DICTYOTALES)

Для диктиотовых характерны: изоморфная смена генераций, апикальный рост, дихотомическое ветвление, образование тканей, клетки с многочисленными дисковидными хлоропластами без пиrenoидов. Вместе с тем бесплодное размножение осуществляется с помощью неподвижных спор, и сперматозоид имеет единственный жгутик — перистый и направленный вперед. Большинство представителей порядка встречаются в морях тропических и субтропических широт, реже в умеренных.

В Атлантическом океане по берегам Европы распространен род диктиота (Dictyota, рис. 148, 1, 4). Таллом у водорослей этого вида лентовидный, до 20 см высотой, дихотомически разветвленный, ветви обычно располагаются в одной плоскости. Он развивается из цилиндрического «корневища», прикрепленного к субстрату ризоидами. Каждое лентовидное разветвление таллома заканчивается одной верхушечной клеткой, которая делится поперечными перегородками, отклоняя сегменты. Сегменты делятся двумя перегородками, параллельными поверхности таллома, образуя внутреннюю первичную сердцевинную клетку и по одной кортикальной клетке с каждой стороны. Эти клетки затем делятся продольными перегородками, перпендикулярными к поверхности, причем в кортикальных клетках делений больше, чем в сердцевинных. Таким способом таллом нарастает в ширину. Зрелый таллом диктиоты состоит только из трех слоев клеток: средний слой из крупных бесцветных или с немногочисленными хлоропластами клеток с обеих сторон (вверху и снизу) окружен слоем мелких клеток с многочисленными хлоропластами. От клеток коры отходят пучки бесцветных волосков с базальной мерistemой, рассеянных по поверхности таллома.

Диктиота — классический пример водоросли с дихотомическим ветвлением. Дихотомия начинается с того, что апикальная клетка делится вертикальной перегородкой на две дочерние. Последние путем обычных поперечных делений делятся дивергирующими выступами, которые развиваются в ветви. На спорофитах на поверхности коровых клеток развиваются только одногнездные спорангии — тетраспорангии, в которых образуется по четыре неподвижные тетраспоры (рис. 148, 2, 3). Тетраспоры прорастают в гаметофи́ты. Диктиота — двудомная водоросль: имеются мужские гамето́фиты, несущие антери́диев (лунки), содержащие одножгутиковые сперматозоиды (хотя жгутик один, но в клетках сперматозоидов имеется второе базальное тело), и женские гамето́фиты, на поверхности которых группами (сорусами) развиваются оогонии (рис. 148, 5, 6), и в каждом из них образуется по одной

Рис. 148. Dictyota.

Цикл развития: на спорофите (1) развиваются одногнездные спорангии — тетраспорангии (2), в которых после редукционного деления образуются тетраспоры (3). Тетраспоры прорастают в гаплоидные гамето́фиты (4) — женские, образующие сорусы оогониев (5), и мужские с сорусами антери́диев (6). Одножгутиковые сперматозоиды (7) оплодотворяют яйцеклетки (8), зигота (9) вырастает в диплоидный спорофит (1). Рост спорофита и гамето́фита строго верхушечный: a — верхушка таллома в плане, b — в продольном разрезе
Яйцеклетке. Для привлечения сперматозоидов яйцеклетки выделяют феромон диктиоптерен. После оплодотворения ооспоры сразу прорастают, образуя спорофиты. Неоплодотворенные яйцеклетки могут развиваться партеногенетически, но редко образуют нормальный таллом и вскоре отмирают.

К диктиоте очень близок род дилофус (Dilophus), широко распространенный в Черном море, у которого имеется не один, а несколько слоев сердцевинных клеток. Рост вертвей дилофуса, как и диктиоты, осуществляется за счет деятельности одной верхушечной клетки. У ряда других родов из порядка диктиотовых рост таллома, по крайней мере во взрослом состоянии, происходит за счет деятельности многих инициальных клеток. Например, у рода падина (Padina), обычного в Черном море, веерообразные плоские талломы (рис. 149) отличаются краевым ростом. Падина — однодомная водоросль. Хотя в типе для рода известно изоморфное чередование поколений, имеются сообщения о прямом развитии новых спорофитов непосредственно из спор. Падина — редкий пример буровой водоросли, таллом которой может сильно и легко инкрустироваться карбонатом кальция.

ПОРЯДОК ЛАМИНАРИЕВЫЕ
(LAMINARIALES)

Представители этого порядка имеют паренхиматозный тип дифференциации таллома у спорофита. Его рост осуществляется за счет вставочной меристемы, расположенной между стволом и пластинкой. Жизненный цикл с гетероморфной сменой форм развития, с крупным (у некоторых представителей до 60 м и более) спорофитом и микроскопическим гаметофитом. Половой процесс оогамный; в каждом оогонии образуется по одной яйцеклетке, в каждом антеридии по одному сперматозоиду. За исключением хорды (Chorda) и саккокриз (Saccorhiza), у подвижных стадий ламинариевых отсутствуют глазок и базальное вздутие на жгутике.

Гаметофиты всех представителей порядка мало различаются между собой и представлены микроскопическими ветвящимися одноосевыми нитями с апикальным ростом. Нити несут половые органы (рис. 150). Часто они редуцированы до нескольких клеток. На мужских гаметофитах образуются антеридии в виде мелких клеток, на женских — оогонии. Яйцеклетка выходит из оогония, но ос-
Цикл развития: на спорофиле (7) развиваются сорусы зооспорангиев (2), в которых последовательного деления образуются зооспоры (3). Они вырастают в микроскопические гаметофитные мужские с антеридиями (5) и женские с ооцистыями (6). Оплодотворенная сперматозоидом яйцеклетка (8) немедленно прорастает с образованием спорофита.
тается прикрепленной к его краям. Известны половые феромоны, основной из них ламоксерен. После оплодотворения зигота покрывается оболочкой и сразу прорастает в спорофит (рис. 150). Если яйцеклетка оторвётся от оболочки оогония, при ее прорастании нарушаются процессы дифференцировки; она не развивается в нормальный таллом, который в скором времени погибает. Женский гаметофит не предоставляет никаких питательных веществ развивающимся спорофитам, но обеспечивает им место для прикрепления на субстрате.

Спорофиты разных родов резко отличаются по внешнему виду друг от друга. В большинстве случаев спорофиты ламинариевых расчленяются на листовидную пластинку, «ствол» и ризоиды, с помощью которых все растение прикрепляется к подводным камням и скалам. В месте перехода «листовой» пластинки в стволик находится интеркалярная меристема, за счет деятельности которой нарастает как пластинка, так и ствол. У многолетних представителей зимует ствол с ризоидами, а «листовая» пластинка ежегодно отмирает и заменяется новой. В истинной ткани, образующей спорофиты ламинариевых, можно различить мелкоклеточную наружную кору, от которой вниз располагается крупноклеточная внутренняя кора, граничащая изнутри с сердцевиной. Сердцевина образована главным образом рыхлым сплетением нитей (рис. 151, A, B). В коре многих ламинариевых имеются особые сизовидные трубки с поперечными перегородками, пронизанными многочисленными отверстиями. Они, несомненно,
выполняют проводящую функцию. Наличие хорошо развитых проводящих элеменов позволяет обеспечивать транспортировку органических веществ от верхней части пластины, где идет интенсивный фотосинтез, к ее основанию.

На поверхности спорофитов ламинариевых образуются одногнездные зооспорангии, собранные в группы — сорусы (рис. 151, B). Помимо зооспорангииев в сорусах имеются стерильные клетки — парафизы. Число зооспор в спорангиях колеблется от 16 до 128; перед их образованием первое деление ядра — редукционное. После выхода зооспор спороносная часть пластины разрушается, в ней появляются дыры. Зооспоры обладают положительным хемотаксисом и могут проплывать несколько километров до питательных веществ. После оседания на субстрат зооспоры прорастают в гаметофит.

В северных морях широко распространены водоросли рода ламинария (Laminaria). Таллом спорофита, достигающий нескольких метров в длину (до 20 м), расчленен на «листовую» пластинку, ствол и ризоиды (см. рис. 150, I; 152, A). Ствол и ризоиды многолетние, возраст некоторых видов насчитывает 11—18 лет. «Листовая» пластинка меняется ежегодно. При размножении на поверхности «листовой» пластинки из коровых клеток группами (сорусами) образуются одно- гнездные спорангии, в которых развиваются зооспоры (см. рис. 150, 2, 3; 151, В). Они прорастают в микроскопически мелкие заростки (гаметофиты).

Из более крупных представителей порядка можно назвать роды макроцистис (Macrocystis) и нереоцистис (Nereocystis). Талломы макроцистиса, распространенного в Южном полушарии, достигают в длину 60 м, имеют длинный тонкий (до 1 см в диаметре) ствол, который в нижней части голый, а в верхней односторонне образует «листья» (их длина 1—1,5 м), снабженные каждый в основании воздушным пузьрем (рис. 152, B).

Рис. 152. Ламинариевые.
Спорофиты: A — Laminaria; B — Macrocystis; В — Nereocystis; Г — Alaria
У нереоцистика (рис. 152, B) длинный (до 25 м) и сравнительно тонкий первичный ствол на верхушке вздувается в крупный воздушный пузырь. От него отходят «листовые» пластинки (до 5 м длиной), каждая с коротким вторичным стебельком.

У макроцистика, нереоцистика, как и у ламинарии, зооспорангии располагаются в сосудах на «листовых» пластинках. В отличие от них у рода алария (Alaria) сосуды зооспорангий развиваются на специальных однолетних листочках — спорофилах. Таллом аларии длиной от нескольких до 40 м расчленен на ствол с ризоидами и «листовую» пластинку с хорошо заметной срединной жилкой. От ствола отходят многочисленные спорофили (рис. 152, Г).

ПОРЯДОК ФУКУСОВЫЕ (FUCALES)

Водоросли с апикальным ростом, тканевым талломом; жизненный цикл диплобионтный с гаметической редукцией. Половой процесс оогамный. Половые органы располагаются в углублениях таллома — концептакулах, или скафидиях. Слой клеток, выстилающий концептакул и несущий гаметангию (оогонии, антеридии), развивается из одной инициальной клетки, которую некоторые авторы называют проспорой, а развивающийся из нее выстилающий слой концептакула считают гаметоцитом. В зависимости от видовой принадлежности в концептакулах могут содержаться как оба типа гамет — яйцеклетки и сперматозоиды, так и только один из них. У некоторых видов мужские и женские скафидии могут располагаться на одном талломе, у других — на разных. Первое же деление ядра в гаметангии — мейотическое. Фукусовые водоросли отличаются по количеству яйцеклеток в оогонии — от одной до восьми: так, например, у Ficus в оогонии содержится 8 яйцеклеток, у Cystoseira — одна крупная яйцеклетка, вокруг которой расположены семь дегенерирующих ядер, и т.д. В антеридиях формируется по 64 сперматозоида. Для сперматозоидов фукусовых водорослей характерно наличие хоботка и более длинного заднего гладкого жгутика.

Не достигая, как правило, таких больших размеров, как представители ламинариевых, фукусовые вполне могут соперничать с ними по степени дифференцировки таллома. Наиболее сложное морфологическое расчленение таллома наблюдается у рода саргассум (Sargassum), широко распространенного в Южном полушарии, особенно в теплых морях (рис. 153, A). Стволик, прикрепленный к субстрату подошвой, моноподиально ветвится и несет уплощенные листовидные образования, шаровидные воздушные пузыри на специальных стебельках и особые разветвленные плодовые веточки — рецептукулы, на которых располагаются половые органы. Последние погружены в грушевидные углубления — концептакулы (скафидии), сообщающиеся с наружной средой через узкое отверстие. В оогонии образуется одна яйцеклетка, а в антеридии — 64 сперматозоида. Формированию половых клеток предшествует редукционное деление ядра. При созревании окруженные спермой половые клетки выходят из отверстия скафидии, и оплодотворение яйцеклетки происходит в окружающей воде. Зигота немедленно растет в диплоидный таллом. Как и у всех фовых, бесполое
размножение у саргассума отсутствует. Имеется вегетативное размножение, приводящее в некоторых участках океана к образованию громадных скоплений талломов саргассума (примером может служить Саргассово море).

В северных морях широко распространен род фукс (Fucus) — основной обитатель береговой зоны (рис. 154, A). Плюсский, ремневидный, дихотомически разветвленный таллом темно-бурого цвета достигает 2 м в длину. Вдоль лопастей таллома с гладкими или зазубренными краями проходит срединная жилка, в нижней части переходящая в черешок, который прикрепляется к субстрату расширенным основанием. У некоторых видов фукса по бокам от срединной жилки расположены воздухя, наполненные воздухом, — воздушные пузыри, у других они могут отсутствовать. Таллом нарастает благодаря деятельности верхушечных клеток, расположенных на концах плоских разветвлений. При размножении концы таллома вздуваются, принимают более светлую желто-оранжевую окраску и превращаются в рецепакулы, на которых образуются концепкулы — скафидии (рис. 154). В оогонии фукса формируются восемь яйцеклеток, в антеридиях — 64 сперматозоида. Яйцеклетки фукса, как и женские гаметы эктоарипуса, кутлери и ламинарии, выделяют летучее вещество, привлекающее сперматозоиды. Это вещество (его формула C_8H_{12}) названо фукосерратеном.
В Чёрном море распространен род цистозейра (Cystoseira) (см. рис. 153, Б) с крупным (до 2 м высоты) моноподиально разветвленным талломом, прикрепленным к камням подошвой. На таллому располагаются веретеновидные рецептаулы и однокамерные воздушные пузыри, одиночные или собранные в цепочки. Рецептаулы обоеполые, в оогонии формируется по одной яйцеклетке.
Отдел гаптофиты, или примнезиофиты (Haptophyta, Prymnesiophyta)

По ряду особенностей бурые водоросли долгое время считали наиболее близкими к золотистым и диатомовым водорослям. В настоящее время эта точка зрения не является общепризнанной. По последовательностям гена 16S рибосомальной РНК бурые водоросли ближе всего стоят к трибофициевым (желтозеленым). Считают, что бурые вместе с желтозелеными водорослями выделились из общего дерева охрофитов достаточно давно, еще до потери фукоксантина желтозелеными водорослями.

Крупные бурые водоросли находят большое применение в хозяйстве человека. Из них добывают альгин — kleящее вещество, использующееся в текстильной, пищевой и ряде других отраслей промышленности. В приморских странах выбирают морских водорослей, богатые калием и азотом, употребляют в качестве удобрения, а также используют на корм скоту. Некоторые, например ламарии, съедобны.

ОТДЕЛ ГАПТОФИТЫ, ИЛИ ПРИМНЕЗИОФИТЫ
(HAERTOPHYTA, PRYMNESIOPHYTA)

Подавляющее большинство представителей гаптофитовых водорослей — одноклеточные жгутиконосцы, но у некоторых присутствуют амёбидные, коккоидные, пальмелоидные или нитчатые стадии, — их описывали иногда как самостоятельные виды. Идентичность гаптофитовых с монадными формами в ряде случаев доказана непосредственно в условиях культивирования. Схема строения клетки гаптофитовых водорослей представлена на рис. 155. Монадные клетки имеют два равных или неравных жгутика, на которых отсутствуют трехчастные мастигонемы. Если жгутики сильно отличаются по длине, то длинный жгутик покрыт нетрубчатыми волосками. Жгутики прикрепляются вверху или сбоку клетки. Между ними располагается нитевидный придаток — гаптонема. Она по строению отличается от жгутика (под цитоплазматической мембраной находятся 6 или 7 микротрубочек, а между ними и цитоплазматической мембраной — эндоплазматический ретикулум). Микротрубочки отходят от одного из базальных тел жгутика. У гаптонемы обнаружены собственные фибриллярные корешки. У некоторых видов гаптонема может быть покрыта мелкими органическими чешуйками. Ее длина может варьировать: у одних представителей она достигает 160 мкм, как у хризохромолины (Chrysochromulina camella), у других — нескольких микрометров, например у видов фоецитис (Phaeocystis) и примнезиум (Prymnesium), у третьих отсутствует, как у эмиланиа (Emiliania huxleyi). Гаптонема у примнезифитовых принимает участие в прикреплении клеток к субстрату и фаготропии.

В клетках имеется обычно 1—2 хлоропласта. Хлоропласт покрыт дополнительными мембранами хлоропластной эндоламазматической сети, наружная мембрана которой переходит в наружную мембрану ядра. Между хлоропластной эндоламазматической сетью и собственно мембранами хлоропласта имеется
Рис. 155. Строение клетки гаптофитов (по: Hoek van den et al., 1995).

А — Chrysochromulina; Б — Pavlova, 1 — гаптонема; 2 — эндоплазматический ретикулум внутри гаптонемы; 3 — плазмалемма; 4 — жгутик; 5 — аксонема; 6 — базальное тело на поперечном разрезе; 7 — эндоплазматический ретикулум; 8 — хлоропластный эндоплазматический ретикулум; 9 — периферический эндоплазматический ретикулум; 10 — оболочка хлоропласта; 11 — митохондрия; 12 — слизистое тело; 13 — органические чешуйки; 14 — вакуоль с хризоламинарином; 15 — ядро; 16 — ламелла, состоящая из трех тилакоидов; 17 — аппарат Гольджи; 18 — чешуйки, транспортировные в везиках аппарата Гольджи на поверхность клетки; 19 — пиреноид; 20 — вакуоль, содержащая парамилон или полифосфаты; 21 — филамент; 22 — парамилон; 23 — полифосфаты; 24 — клеточный покров
периопластидный ретикулум. Ламеллы трехтилакоидные, опоясывающая ламелла отсутствует. Часто имеется пиреноид, в который заходит ламелла с двумя тилакоидами. Хлоропласт содержит хлорофиллы а и с. Из дополнительных пигментов наиболее важен фукоксантин и его производные; присутствуют также β-каротин, диадиноксантин и диатоксантин. Хлоропластная ДНК в строе хлоропласта имеет вид отдельных гранул. Если имеется глазок, как у представителей рода павлова (Pavlova), то он лежит в передней части клетки и состоит из ряда пигментных глобул. Запасной полисахарид хризоламинарин откладывается вне хлоропласта в вакуолях; присутствуют также липиды. У Pavlova встречается запасной продукт — парамилон.

Поверхность клетки гаптофитовых покрыта нежными целлюлозными органическими чешуйками или гранулами. Дополнительно встречаются кальцинированные чешуйки (кокколиты) самого разнообразного строения — в виде дисков, колец и др. (рис. 156). И органические, и неорганические чешуйки формируются в аппарате Гольджи. Полагают, что кокколиты выполняют следующие функции: ограничивают проникновение бактерий и вирусов внутрь клеток; защищают клетки от выведения простейшими; регулируют плавучесть (регулируя образование или потерю тяжелых кокколитов).

Рис. 156. A — органическая чешуйка;
Б — кокколиты

Цитоплазма каждой клетки под цитоплазматической мембраной окружена периферическими цистернами эндоплазматического ретикулума. В отличие от охрофитовых диктиосомы расположены перпендикулярно горизонтальной оси клетки. В центре клетки расположено ядро с одним или несколькими ядрышками, исчезающими во время митоза. Митоз открытый (у Pavlovales митоз закрытый), ядерная мембрана исчезает в поздней профазе. Хотя базальные тела
жгутиков двигаются к полюсам, они не являются центрами организации микротрубочек. Центриоли отсутствуют, на полюсах расположены группы цистерн эндоплазматического ретикулума. В метафазе хромосомы выстраиваются в плотную метафазную пластинку, в которой через каналы проходят микротрубочки от полюса к полюсу. Цистерны эндоплазматического ретикулума на каждой стороне метафазной пластинки используются позднее в построении ядерной мембраны. В телофазном ядре веретено деления удлиняется. Клетка делится за счет впячивания цитоплазматической мембраны. Каждая из дочерних клеток получает половину чешуек от материнской клетки, вторую половину чешуек достраивает.

У некоторых видов описан гапло-диплобионтный гетероморфный жизненный цикл, гаплоидная стадия — нитчатая (бентосная), диплоидная — жгутиковая (планктонная) (рис. 157); у других видов в жизненном цикле присутствуют диплоидные формы с кокколитами, а гаплоидные с органическими чешуиками.

![Рис. 157. Жизненный цикл Pleurochrysis. 1 — оплодотворение; 2 — редукционное деление](image)

Большинство гаптофитов обитают в морях, предпочитая открытые зоны, некоторые обитают в пресных и солоноватоводных водоемах. При массовом развитии гаптофиты могут вызывать цветение воды.

Филогенетический анализ последовательности нуклеотидов гена, кодирующего малую субъединицу рРНК, подтверждает разделение гаптофитовых водорослей на два класса: Pavlovophyceae и Prymnesiophyceae.
Класс павловофициевые
(Pavlovophyceae)

Павловофициевые — почти исключительно монадные представители с субапикально или почти латерально прикрепленными гетероморфными и гетеродинамическими жгутиками. Гаптонема всегда короткая, трудноразличимая при световой микроскопии. Длинный жгутик часто может быть покрыт тонкими волосками или маленькими плотными тельцами. У некоторых представителей имеется глазок. Клетки обычно не покрыты органическими чешуйками, если чешуйки встречаются, то они отличаются от чешуек примнезиевых. Хлоропласт один на клетку. Митоз имеет ряд особенностей: центрами организации микротрубочек служит фибриллярный корешок длинного жгутика; митоз закрытый, нет кинетохоров. Обитают в планктоне морей, солоноватоводных и пресноводных водоемов.

Типичный представитель класса — род павлова (Pavlova, см. рис. 155, Б), представленный одноклеточными жгутиконосцами, которые могут формировать пальмелоидную стадию. Клетки имеют короткую гаптонему, при движении метаболируют. Длинный жгутик покрыт частицами или тонкими волосками; около жгутиков расположена глоткоподобная зона; поверхность тела покрыта головчатыми или грибообразными структурами чаще, чем фибриллярными чешуйками; глазок, если присутствует, расположен вне хлороплазста. Встречаются в пресных озерах, но большинство представителей обитают в солоноватоводных условиях.

Класс примнезиофициевые
(Prynnesiophyceae)

Клетки на переднем конце имеют жгутики изоморфные, гомо- или гетеродинамичные. Гаптонема разной длины, может также отсутствовать. Органические чешуйки исходно плоские пластинчатые, затем могут приобретать сложные формы. У кокколитофорид формируются кокколиты. В клетках обычно содержатся два хлоропластов. Полагают наличие сложных жизненных циклов с чередованием гаплоидного и диплоидного поколений и нескольких альтернативных морфологических жизненных форм, живущих в различных местообитаниях.

Род примнезиум (Prynnesium) представлен одноклеточными жгутиконосцами, покрытыми органическими чешуйками, с короткой гаптонемой. Представители устойчивы к широкому пределу солености. Некоторые образуют галактолипидные токсины, вызывающие гибель рыб. В благоприятных условиях водоросль энергично размножается, и в 1 см³ воды может насчитываться до 800 000 клеток.

На основании сходства в пигментном составе и строении хлоропластов гаптофитовые объединяли с охрофитовыми, но ультраструктурные и молекулярные данные показали, что гаптофитовые образуют отдельную группу. От охрофитов
их отличают: отсутствие жгутика с трехчастными мастигонемами; наличие гаптонемы; отсутствие опоясывающей ламеллы; отличие в положении аппарата Гольджи; отсутствие вздутия при основании жгутика; наличие периферического эндоплазматического ретикулума под плазмалеммой; аранжировки хлоропласт-ной ДНК; особенности митоза.

Гаптофиты имеют огромное значение в природе: играют значительную роль как продуценты первичной продукции; вызывают цветение воды; вносят около 25% суммарного ежегодного вертикального транспорта углерода на дно океана, известковые панцири современных и ископаемых кокколитофорид образуют пласты известняка (в частности, мел на 50—75% состоит из кокколитофорид); выделяют громадные количества диметилсульфидов (ДМС), которые участвуют в образовании кислотных дождей; виды, образующие кокколиты, участвуют в глобальном потеплении климата, играя ключевую роль в глобальном балансе углекислого газа; могут образовывать токсичные морские приливы, которые вызывают гибель рыб и беспозвоночных животных.

ОТДЕЛ ДИНОФИТЫ
(DINOPHYTA)

Для этих эукариотных организмов характерно наличие так называемого динокариона, или мезокариона. В таких ядрах хромосомы находятся в конденсированном состоянии на протяжении всего клеточного цикла и содержат незначительное количество гистонов. Большинство представителей из этого отдела — монадные формы, встречаются амёбоидные и коккоидные представители.

Клетки дорсовентральные, имеют две бороздки: поперечную, охватывающую клетку по кольцу или по спирали, но не смыкающуюся полностью, и продольную, находящуюся на брюшной стороне клетки. Жгутиков два, разных по длине и по строению, один лежит в поперечной бороздке, другой — в продольной. Поперечный жгутик имеет спирально закрученную аксонему и исчерченный белковый тяж, который выполняет механическую функцию. На мембране жгутика расположен ряд простых волосков. С помощью поперечного жгутика осуществляются вращательное и поступательное движения. Продольный жгутик имеет типичное строение, и на его мембране волоски расположены в двух рядах; он осуществляет поступательное движение вперед, резкую остановку и движение назад. Клетка одета особым клеточным покровом, называемым амфиевой или текой. Это многокомпонентная система, состоящая из наружной мембраны и расположенных под ней уплощенных пузырьков, окруженных одиночной мембраной, — текальных везикул. Под текальными везикулами может располагаться слой микротрубочек. У некоторых в текальных везикулах лежат цеплюлозные пластинки, которые часто располагаются в строгом порядке и срастаются краями, образуя прочный панцирь. В месте их срастания появляются швы, а на поверхности пластинок — различные неровности (выросты, шипы и т.п.). В теке имеются поры (рис. 158).
Отдел динофиты (Dinophyta)

Рис. 158. Схема различных типов текдинофлагелллат.
A — Oxysrrhis; B — Amphidinium; V — Katodinium; Г — Wołoszynskia

Рис. 159. Схема строения стигмы.
A — Kryptoperidinium; B — Nematodinium: 1 — ядро, 2 — пигментные глобулы, 3 — пластинчатое тело, 4 — линзовидное тело, 5 — ретиноид

Хлоропласты разной формы и окраски одеты трехслойной оболочкой; тилакоиды по два или по три собраны в ламеллы. Зеленые пигменты хлорофиллы а и с маскируются каротиноидами, главный из которых — перидинин. В последние годы показано, что динофитовые с перидинином и динофитовые с производными фукоксантина формируют монофилетичную группу, которая является сестринской для гаптофитовых водорослей. Основываясь на полученных данных, полагают, что, во-первых, пластины этих групп динофитовых произошли от общего предка; во-вторых, предком их пластид была гаптофитовая водоросль и что пластиды динофитов произошли в результате третичного эндосимбиоза. Для некоторых динофитовых характерно присутствие других пластид, произошедших в результате третичного и вторичного симбиозов с различными другими зукариотными водорослями. В качестве эндосимбионта могли выступать орфофитовые, зеленые и криптофитовые водоросли.

Запасные продукты у пресноводных представителей — крахмал, откладываемый в цитоплазме, у морских — липиды.

Только этой группе организмов присущи своеобразные органеллы — пузулы, функция которых до конца не ясна, и, возможно, они служат для регуляции осмотического давления. Пузулы представляют собой вспомогательную цитоплазматическую мембрану в форме мешка или трубки и вдающиеся в полость клетки. Они расположены вблизи места отхождения жгутиков. У многих имеется стигма, или глазок, очень сложный по строению (рис. 159). У одних видов он имеет вид глобул, расположенных в цитоплазме и не окруженных мембраной. У других это масса глобул, окруженных или не окруженных мембраной и лежащих в хлоропласте. У третьих помимо рядов пигментных глобул, окруженных мембраной, имеется еще пластинчатое тело, состоящее из серии уплощенных, сообщающихся между собой мешочков. У четвертых глазок усложнен наличием помимо пигментонесущих глобул еще линзовидного тела и ретиноида.
Для некоторых характерны особые стрекательные структуры — трихоцисты. Они располагаются под порами ткани, через которые выбрасывают наружу белковые фибриллы. В каждой трихоцисте имеется головка и рукотья. Трихоцисты способны скручиваться и раскручиваться, выстреливая через пору длинную по- перечно исчерченную нить.

В цитоплазме клетки содержится очень крупное ядро с одним или несколькими ядрышками, которые при митозе исчезают. Митоз закрытый. Центриоли у большинства видов отсутствуют. Микротрубочки веретена проходят в каналах, ограниченных ядерной мембраной. У хромосом отсутствуют центромеры. Они прикрепляются кинетохорами к ядерной мембране. Метафазная пластинка отсутствует. Деление ядра осуществляется перетягиванием его ядерной мембраной.

Размножаются динофитовые делением в подвижном или неподвижном состоянии (ветеративно), зооспорами и апоплазоспорами. Половое размножение — холо-, изо- и гетерогамия — известно более чем у 20 представителей. Почти все динофитовые — гаплонты, хотя ночесветка диплоидна в вегетативном состоянии. При неблагоприятных условиях образуются цисты с толстой целлюлозной оболочкой.

Встречаются динофитовые в морских (около 90% видов) и пресных водах в северных, умеренных и южных широтах, но большего развития достигают в теплых водах. Большинство динофитовых — планктонные формы, но имеются и бентосные представители. Известны динофитовые, обитающие в снегу и придающие последнему красную органогенную окраску. Важная группа динофитовых — «зоосанталлы» — эндосимбионты многих беспозвоночных. Среди динофитовых есть группа паразитических форм, которые поражают копепод, рыб, водорослей.

Ископаемые остатки динофитовых известны из юрского и мелового периодов мезозойской эры.

К динофитовым относят 550 родов и 4000 видов водорослей, из которых более 2000 современных и столько же ископаемых видов. Система динофитовых разработана недостаточно, что связано с неравномерностью изученности отдельных групп. Нет единой точки зрения даже на объем отдела, а также на количество классов и порядков в нем. Наиболее распространены системы или с единственным классом Dinophyceae, или с четырьмя классами (Dinophyceae, Noctiluciphycaceae, Blastodiniophycaceae, Syndiniophycaceae). Последние два класса включают паразитических представителей различных беспозвоночных и водорослей.

Класс динофитовые (Dinophyceae)

ПОРЯДОК ГИМНОДИНИЕВЫЕ (GYMNODINIALES)

Порядок включает большинство беспанцирных («гольных») динофитовых с типичной организацией тела и жгутикового аппарата. Некоторые покрыты нежной оболочкой, состоящей из неопределенного числа однородных ячеек. Вы осты
на клетках отсутствуют. Хлоропласты имеются или отсутствуют. Чаще всего размножаются вегетативно делением в подвижном и неподвижном состояниях; встречается также бесполое и половое размножение. Организмы главным образом морские, реже пресноводные.

Типичный представитель порядка — гимнодиниум (Gymnodinium), встречающийся в морском планктоне, реже в пресных водах. Поперечная борозда проходит по середине клетки или несколько смещена; она кольцевая или спиральная, но высота оборота спирами не более 1/5 длины клетки (рис. 160, A). Оболочка бесструктурная. Имеются окрашенные и бесцветные формы. Окраска хлоропластов чаще всего желтых или бурых оттенков, но встречаются сине-зеленые и различных оттенков зеленые клетки.
ПОЯДОК ПЕРИДИНИЕВЫЕ
(PERIDINIALES)

Перидиниевые широко распространены в разнообразных морских и пресных водоемах. Нередко развиваются в таких количествах, что окрашивают воду в желтый или красный цвет, вызывая токсичные или нетоксичные «красные приливы». Клетки имеют оболочку из целлюлозы в виде панциря, состоящего из многоугольных щитков. Число и расположение щитков служат основным систематическим признаком порядка. У некоторых клеток обнаружены выросты в виде рогов или шипов. Размножаются вегетативно и половым путем. Деление в косом направлении или каждая из дочерних клеток образует собственную теку.

В морских и пресных водах особенно часто встречаются виды родов перидииниум (Peridinium) и церациум (Ceratium) — последний род в ряде систем выделяют в порядок гониалуксовых. Клетки представителей этих родов имеют ясно выраженное дороосцентральное строение: со спинной стороны они выпуклые, с брюшной — вогнутые (вдавленные). У видов рода перидииниум с брюшной и спинной сторон клетки овальные или округлых очертаний, а сбоку почковидные или бобовидные. Клетки одеты мощным панцирем; он состоит из щитков, снабженных у некоторых сосочками, порами, щипиками и т.п. На поверхности панцира отчетливо выражены поперечная и продольная бороздки. Первая опоясывает спинную, выпуклую сторону клетки, а концы ее смываются или не смываются на брюшной, вогнутой стороне. Она выстлана щитками, составляющими так называемый поясок, и делит клетку на две почти равные части: верхнюю, или апикальную, одетую передней створкой панциря — эпипальвой, и нижнюю, или антапикальную, одетую задней створкой — типипальвой. Продольная бороздка, перпендикулярная к поперечной, в основном проходит по брюшной стороне нижней половины клетки, лишь отчасти переходя на верхнюю половину. Обе бороздки сходятся на крупном щитке панциря на брюшной стороне, который занимает и верхнюю и нижнюю части клетки. Он называется брюшным щитком, или замковым аппаратом. На этом щитке есть отверстия, из которых выходит оба жгутика. Поперечный, лентовидный уплощенный жгутик скрыт в поперечной бороздке, а продольный, нитевидный жгутик располагается в продольной бороздке, отчасти выступая из нее за пределы нижнего конца клетки. Щитки соединены между собой узкими или широкими, часто поперечно исчерченными швами, за счет расширения которых растет панцирь (рис. 160, Б).

В протопласте содержатся многочисленные хлоропласты бурого цвета, крупное ядро, иногда глазок. Запасные вещества — крахмал и масло.

Размножение чаще всего происходит делением клетки на две. Делящаяся особь теряет подвижность. Родительская клетка делится внутри старого панциря, телесные пластинки которого отчасти растворяются. Дочерние клетки некоторое время удерживаются вместе внутри этого разрушающегося панциря. Еще внутри старого панциря в дочерних клетках начинается отложение телесных пластин. Половой процесс — изогамия — наблюдается при недостатке азота в окружающей среде.
Род почти исключительно пресноводный, но некоторые его представители встречаются в опресняемой прибрежной полосе морей и океанов. Морских представителей сейчас относят к роду протоперидиум (Protoperidinium).

Клетки видов рода церациум (Ceratium) сильно вытянуты в продольном направлении. Верхняя, апикальная половина продолжается в длинный отросток, или апикальный рог, а нижняя, антапикальная имеет два или три антапикальных роговидных придатка (рис. 160, B). Для пресноводных видов, а их известно четыре, установлено сезонное изменение длины этих выростов: например, у C. hirundinella весной и осенью развиваются формы со сравнительно короткими выростами, а летом — формы со значительно более длинными (явление так называемого цикломорфоза). Это объясняется тем, что с повышением температуры уменьшается вязкость воды и более длинные отростки, создавшие большее трение о воду, задерживают опускание клетки в толщу воды.

Поперечная бороздка у видов церациума окружает всю клетку в самом широком месте, продольная бороздка, также широкая, начинается от поперечной на брюшной стороне и идет косо вниз. В отличие от видов рода перидиум щитки панциря соединяются плотно, не образуя широких швов. Как и у видов рода перидиум, имеются два жгутика: поперечный и продольный.

Размножение происходит в подвижном состоянии путем деления всей клетки в косом направлении. Одна из новых особей получает большую часть верхней половины материнской клетки и некоторую часть нижней, другая — большую часть нижней и небольшую часть верхней. Недостающие части достраиваются и покрываются панцирем. Для некоторых видов известен гетерогамный половой процесс. В конце вегетационного периода образуются цисты, которые перезимовывают на дне водоема или в тине.

Большинство — морские представители. Некоторые морские виды способны формировать колонии в виде цепочки клеток (рис. 161).

Класс ноктилюковые
(Noctiluciphycaceae)

Класс представлен единственным порядком ноктилюковые (Noctilucales), куда относятся исключительно морские организмы крайне специализированного строения с гетеротрофным типом питания и сложным циклом развития. Главным образом в теплых морях обитает ночесветка (Noctiluca). Ее голые, бесцветные, очень крупные клетки достигают 2 мм в диаметре и совсем не похожи на других перидиней. У них отсутствуют бороздки и имеется один очень короткий жгутик,
а возле него отходит длинное хвостообразное щупальце. Клетки способны к свечению. При массовом развитии ночесветки заметны ночью прямым глазом в виде ярко светящихся точек, а вода в море при этом сильно фосфоресцирует (свет бывает серебристо-белый или слегка голубоватый и усиливается от механического раздражения и аэрации, например при работе веселами).

Жизненный цикл ночесветки диплобионтный, с гаметической редукцией. Размножение вегетативное и половое (изогамия, гаметы похожи на гимнодиниум) (см. рис. 160, Г).

Существуют различные точки зрения о филогенетических связях динофитовых. Раньше их сближали с криптофитовыми и относили к одному отделу Pyrrophyta, но большая часть альгологов не поддерживает этой точки зрения. На том основании, что у них имеется хлорофилл c, отсутствует хлорофилл b, жгутики неравные по длине, в хлоропластах содержатся трехтилакоидные ламеллы, в некоторых системах их помещают в качестве класса в отдел хромофитовые. Однако динофитовые отличаются от других представителей этой группы отсутствием трехчастных мастигонем на жгутиках, наличием динокарпиона, отсутствием опоясывающей ламеллы, наличием трехслойной, а не четырехслойной оболочки хлоропластов, иными продуктами ассимиляции. Поэтому многие исследователи относят их к самостоятельному отделу. В последние годы с использованием данных молекулярной биологии показана значительная близость динофитовых с инфузориями и апикомплексами. Все эти три группы организмов предложено отнести к царству Альвеолобионты (Alveolates).

Динофитовые водоросли играют большую роль в круговороте кислорода, углерода, фосфора, азота, в синтезе органических веществ, в питании личинок и мальков рыб. Чувствительность динофитовых к значениям рН и степени минерализации среды позволяет использовать их как биоиндикаторы при типологии водоемов. Например, Gymnodinium fuscum обитает исключительно в кислых водах с низким значением рН; многие другие представители показывают такую же приуровоченность к водам определенного состава и свойств. Некоторые из этих водорослей имеют отрицательное значение. Развиваясь в массе, они вызывают токсичные «красные приливы». Около 60 видов динофлагеллят образуют водо- или жирорастворимые токсины: цитолитические, гепатотоксичные или нейротоксичные.

ОТДЕЛ КРИПТОФИТЫ
(CRYPTOPHYTA)

Представители отдела криптофиты — почти исключительно одноклеточные, монадные формы, только один род способен к образованию простых нитчатых талломов и некоторые — к формированию пальмеливидных стадий. Клетка имеет дорсовентральное строение (спинная сторона выпуклая, брюшная —
Рис. 162. Строение клетки Cryptomonas (по: Hoek van den et al., 1995).

A — продольный разрез через клетку: 1 — двухчастые мастигонемы, 2 — длинный жгутик, 3 — короткий жгутик, 4 — сократительная вакуоль, 5 — хлоропласт, 6 — ламелла, 7 — оболочка хлороплаза, 8 — хлоропластный эндоплазматический ретикулум, 9 — спинная сторона клетки, 10 — нуклеоморфа, 11 — пиреноид, 12 — ядро, 13 — ядрышко, 14 — брюшная сторона клетки, 15 — крахмал, 16 — митохондрия, 17 — аппарат Гольджи, 18 — тельце Маупа, 19 — трихоцисты, 20 — глотка; B — розеточная чешуйка; В — поверхность периплаза

уплощенная); от переднего более или менее скошенного конца идет продольная борозда. У некоторых есть глотка. Схема строения клетки криптомонад представлена на рис. 162.
ВОДОРОСЛИ

Клетки имеют два неравных по длине жгутика. Жгутики покрыты особыми двухчастными мастигогенами, состоят из трубчатой части и тонкого терминального волоска. Они могут располагаться в два супротивных ряда на длинном жгутике и в один ряд на коротком, или в один ряд на каждом жгутике, или отсутствовать на коротком. Кроме того, жгутики могут быть покрыты небольшими органическими чешуйками в виде семигольных розеток. В переходной зоне жгутика имеется система двойных септ.

Хлоропластины в числе одного-двух или больше. Окраска их разнообразная, так как наряду с хлорофиллами a и c в них содержится ряд каротиноидов и фикобилиновых пигментов. Фикобилины локализованы внутри тилакоидов, а не в фикобилисомах, из-за этого тилакоиды криптомонад толще, чем у других водорослей. В клетках криптомонад присутствуют или фикоцианин, или фикоэритрин, но не оба вместе. Хлоропластины одеты двумя собственными мембранами и окружены еще двумя мембранами хлоропластной эндоплазматической сети, наружная мембрана которой переходит в наружную мембрану ядра. В отличие от охрофитов и гаптофитов в перiplastидном пространстве отсутствует перiplastидный ретикулум. Ламеллы чаще двухтилакоидные, реже трехтилакоидные, опоясывающая ламелла отсутствует. Хлоропластная ДНК концентрируется в виде небольших телец (нуклеоидов), которые рассеяны в строе хлоропласта.

В перiplastидном пространстве хлоропласта находится уникальная структура — нуклеоморф, которая по своей ультраструктуре имеет сходство с эукариотным ядром. Она одета двойной мембраной с порами, имеет 3 хромосомы, ядрышко и способна к саморепликации. Наличие нуклеоморфы, перiplastидного пространства и строение оболочек хлоропласта свидетельствуют о вторичном симбиотическом происхождении хлоропластов криптофитовых, когда бесцветная фаготрофная флагеллята «съела» эукариотную красивую водорось, а она затем превратилась в пластиду. Симбиотическое происхождение хлоропласта криптомонад от красных водорослей подтверждается филогенетическим анализом.

Глазок располагается внутри пластид и состоит из большого числа пигментных глобул, собранных параллельными рядами. Запасной продукт — крахмал, но откладывается он в перiplastидном пространстве хлоропласта, что является уникальным случаем для водорослей. В цитоплазме могут присутствовать капли липидов.

В цитоплазме имеется единственная сетчатая мitoхондрия с пластинчатыми кристами. Ядро в клетке одно. Митоз открытый, хромосомы конденсированы, ядрышко не исчезает, центриоли, по-видимому, отсутствуют. Число хромосом у криптомонад очень большое — от 40 до 210. В метафазе они объединяются в массивную пластинку. В ней образуются каналы, свободные от хроматина, через которые проходят микротрубочки веретена.

В клетках имеются стрекательные структуры — трихоцисты (эджектосомы), окруженные мембраной и содержащие две ленты, скрученные рулоном (цилинд-
ры). Более крупный цилиндр состоит из намотанного по спирали лентовидного мембранного материала, в его углублении вверху находится второй цилиндр. При химическом и физическом раздроблении туто скрученные ленты расправляются, разрывая мембрану эджектосомы и перипласт. Сначала выбрасывается маленький цилиндр и, покидая клетку, он вытягивает за собой ленту большого цилиндра. Более мелкие эджектосомы расположены по всей поверхности клетки, а крупные выстилают глотку. На переднем конце клетки имеются сократительные вакуоли, изливающие свое содержимое в глотку или бороздку.

Клетки одеты перипластом, который состоит из плазмалеммы с дополнительным белковым экстра- и интрацеллюлярным материалом. Наружный компонент перипласта может состоять из пластинок, чешуек, слизи или их комбинации, внутриклеточный компонент имеет форму чехла или состоит из пластинок.

Размножаются критопмонады делением клеток пополам за счет впячивания плазмалеммы. Оно идет начиная с заднего конца клетки; чаще всего делящаяся клетка сохраняет подвижность. Критопмонады могут образовывать покоящиеся цисты, окруженные толстым экстрацеллюлярным матриксом. Для одного вида критопонад показан половой процесс.

Встречаются как в пресных, так и в морских водах. Это обычные обитатели отстойников, прудов, часто с загрязненной водой, реже водохранилищ и озер. Важную роль играют они в холодных водах, особенно зимой и ранней весной. Например, могут доминировать в весенних цветениях фитопланктона в Северном море, где, как полагают, являются активными компонентами пищевых цепей. Локальные цветения, вызванные развитием критопонад, встречаются в Антарктических водах. Ряд критопонад обитают как симбионыты в инфузориях, в то же время некоторые динофитовые приобрели критопонад в качестве своих хлорoplastов.

К настоящему времени описано более 200 видов критофитовых водорослей (приблизительно 100 пресноводных и 100 морских), относящихся к одному классу (Cryptophyceae) и двум порядкам.

Наиболее широко распространен и богат видами род критопонад (Cryptomonas), имеющий два хлороплаза с пириноидами, преимущественно бурого или оливкового цвета. Широко распространен в пресном и морском фитопланктоне.

Положение критопонад среди водорослей и их объем до сих пор дискутируются. А. Пашер полагал, что они произошли от хризомонад, и от критопонад выводил перидинеи. Он объединил критопонады и перидинеи в отдел пирропита. Большинство современных альгологов исключают критофитовых из пирропитов, рассматривая их как самостоятельную группу на основании того, что критофитовые отличаются от динофитовых строением ядра, жгутикового аппарата, наличием нуклеоморфы, составом пигментов, биохимическими особенностями.
В настоящее время известно около 800—1000 видов эвгленовых водорослей. Большинство имеют монадную организацию, немногие — коккоидную. Эвгленовые принадлежат к тем окрашенным подвижным организмам, которые не обнаруживают никаких связей с известными группами водорослей. Их строение, физиологические и биохимические особенности настолько отклоняются от аналогичных особенностей, свойственных другим формам, что возникает необходимость ставить их особняком в общей системе водорослей.

Тело у большинства эвгленовых вытянуто в продольном направлении; оно метаболизирующее и покрыто пелликулой (рис. 163). У некоторых в поверхностном слое пелликулы содержатся стрекательные структуры, напоминающие трихоцисты динофитовых. Пелликула включает цитоплазматическую мембрану, расположенные под ней белковые полосы и системы микротрубочек. Белковый слой состоит из многочисленных тесно лежащих и подвижно соединенных друг с другом полос или штрихов; они начинаются от глотки, по спирали обвивают

Рис. 163. Схема строения клетки Euglena spirogyra.
1 — длинный жгутик; 2 — парабазальное вдутие; 3 — короткий жгутик; 4 — глотка; 5 — резервуар; 6 — стигма; 7 — пульсирующая вакуоль; 8 — аппарат Гольджи; 9 — ядро; 10 — митохондрия; 11 — хлоропласти; 12 — утолщение пелликулы; 13 — штриховка пелликулы; 14 — параметон; 15 — липидные капли

Рис. 164. Строение пелликулы (A) и стигмы (B) эвгленовых.
1 — пигментные глобулы; 2 — парабазальное вдутье; 3 — жгутики; 4 — стигма
Отдел эвгленовые (Euglenophyta)

всю клетку и анастомозируют на концах клетки. Между штрихами располагаются продольные бороздки, а в середине каждой полосы имеется утолщение, или гребень, за счет которого поверхность клетки становится ребристой. Под полосами находятся небольшие слизистые тельца, выделяющие слизь в бороздки и через поры пелликулы (рис. 164, A).

Такое строение дает возможность совершать своеобразные ползающие движения, свойственные многим представителям отдела. Реже покровы тела относительно толстые, твердые и снабжены мощными «ребрами», между которыми четко видимыми рядами расположены выпуклости, или бородавочки. У некоторых представителей протопласт снаружи клетки образует домик коричневого цвета с отверстием, из которого выступает жгутик. Цвет домика обусловлен отложениями на нем железа и марганца.

На переднем конце тела находится булыкообразное углубление — резервуар, или ампула, — расширяющееся книзу, а кверху переходящее в более или менее прямую трубку, которая открывается наружу (глоточный канал, или воронка). В резервуар изливается содержимое пульсирующих вакуолей и через глотку выходит наружу (см. рис. 163). От основания резервуара отходят два жгутика, реже несколько. Иногда второй жгутик так мал, что не выходит за пределы резервуара или даже совсем редуцирован, но в основании резервуара и в этом случае находятся два базальных тела. У длинного жгутика обычно присутствует белковый параксиальный тяж, из-за наличия которого жгутики эвгленовых толще и их легче заметить, чем жгутики других эукариот. Жгутики эвгленовых покрыты рядом тонких волосков, которые отличаются по своему строению от мастигоном орофит. Волоски расположены группами по 3—4 в один ряд, который тянется по спирали по всей длине жгутика. Помимо этого на жгутиках может быть покрытие из коротких волосков. Особенность жгутикового аппарата эвгленовых — просто устроенная переходная зона.

Светочувствительная система эвгленовых водорослей состоит из двух структур. Во-первых, это парафлагеллярное тело — вздутие (парабазальное вздутие) при основании одного видимого жгутика, которое содержит синие светочувствительные флавины. Второй компонент — глазок (стигма), который локализован в цитоплазме (вне хлоропласта) около резервуара напротив парафлагеллярного тела (рис. 163). В состав стигмы входят несколько десятков глобул, расположенных рядами и отделенных друг от друга мембраной (рис. 164, B). Глобулы содержат каротиноиды астаксантин и/или эхиненон, которые придают глазку оранжево-красную окраску. При движении эвгленовых глазок затеняет парабазальное вздутие.

Ядро в клетке одно, округлое или удлиненное, с одним или несколькими ядрышками. Его деление (митоз) отличается от типичного ядерного деления тем, что в течение всего процесса сохраняется ядерная оболочка (закрытый митоз), ядрышко не исчезает, а делится перетяжкой, центриоли отсутствуют, хромосомы все время находятся в конденсированном состоянии, не собираются в правильную метафазную пластинку. Оболочки дочерних ядер образуются путем перешнуровки оболочки материнского ядра. Цитокинез происходит за счет впячивания мембраны по продольной оси клетки.
Хлоропласты зеленого цвета, содержат хлорофилл а и б и различные каротиноиды, имеют разные величину и форму (звездчатую, пластинчатую, зернистую, лентообразную). Оболочка хлороплста состоит из трех мембран (как у динофит), и наружная мембрана хлороплста никогда не переходит в наружную мембрану ядра. Ламеллы состоят обычно из трех, редко — большего количества тилакоидов, опоясывающая ламелла отсутствует. Хлоропластная ДНК имеет вид тонких гранул, распространенных по всему хлоропласту. У некоторых есть пиреноид. У многих эвгленовых хлоропласты отсутствуют. Хлоропласт эвгленовых, как полагают, — результат вторичного симбиоза бесцветного эвгленового предка с зеленой водорослью. Две мембраны интерпретируются как мембраны хлороплста зеленой водоросли, а третья — как мембрана пищеварительной вакуоли хозяина.

Характерный продукт ассимиляции углевод парамиллон (β-1,3-связанный глюкан) образуется в виде зерен или палочек в цитоплазме, а не в хлоропластах. Форма, в которой он откладывается в клетке, и его местонахождение имеют таксономическое значение.

Из других органелл и включений можно указать митохондрии с дисковидными кристами и волютин.

Эвгленовые размножаются продольным делением клетки в подвижном или в неподвижном состоянии. В последнем случае перед делением клетка увеличивается в размерах, сбрасывает жгутики, окружаются и одевается слизью (иногда довольно толстым слоем). По окончании деления вновь образовавшиеся клетки вырабатывают жгутики и выходят из слизи. Процессу деления предшествуют деление ядра, удвоение жгутикового аппарата. Постепенно клетка разделяется надвое, следуя направлению штрихов на поверхности. Отделение дочерних клеток друг от друга сопровождается их вращением вокруг оси тела. Весь процесс занимает обычно 2—4 часа (рис. 165, A—B).

Рис. 165. A—B — деление эвглена; Г — Euglena viridis, внешний вид клетки; D — Trachelomonas, внешний вид клетки; Е — Phacus, внешний вид клетки
При наступлении неблагоприятных условий у эвгленовых могут формироваться цисты и пальмелоидные стадии, связанные с образованием слоистого слизистого чехла вокруг клетки, препятствующего ее движению.

Очень многие эвгленовые водоросли питаются миксотрофно, некоторые — гетеротрофно (осмотрофно) или имеют животный тип питания, т.е. захватывают твердые пищевые частицы (бактерии, микроскопические водоросли, жгутиковые, детрит).

Биосинтез лизина у эвгленовых отличается от всех других фотосинтезирующих организмов, так как осуществляется через α-аминоадипиновую кислоту, как у настоящих грибов и животных.

Эвгленовые чаще встречаются в пресных водах, предпочитая мелкие водоемы, богатые органическими веществами. Иногда они образуют на поверхности такого водоема пленку, в которой представлены неподвижными клетками. Некоторые паразитируют, поселяясь в кишечнике коловраток и других беспозвоночных животных, а также лягушек и на жабрах рыб. По-видимому, недооценивается роль эвгленовых водорослей в морских местообитаниях, где они могут формировать крупные популяции после весеннего цветения, вызванного диатомовыми. Среди эвгленовых есть холодолюбивые виды, которые могут вмерзать в лед, не теряя жизнеспособности.

Класс эвгленовые
(Euglenophyceae)

В большинстве ботанических классификаций эвгленовые относят к единственный классу Euglenophyceae, который включает около 50 родов, распределенных в 5—7 порядков.

ПОРЯДОК ЭВГЛЕНОВЫЕ
(EUGLENALES)

Наиболее широко распространены в пресных водах, а иногда на сырой почве виды рода эвгlena (*Euglena*). Род содержит около 150 видов, характеризуется наличием одного видимого жгутика. Клетки неутолщенные, веретеновидные, вытянуты в длину. Пластиды имеют разнообразную форму. У ряда видов в клетках имеется большое число красных гранул, содержащих каротиноид астаксантин, маскирующий зеленый хлорофилл, что придает клетке красную окраску. При массовом развитии эти виды вызывают на свету «красное цветение» воды. Особенно часто встречается эвгlena зеленая (*E. viridis*, рис. 165, Г). Она быстро плавает, а также ползает, сильно измения форму тела; легко осиливается (пальмелоидное состояние) или инцистируется, округляясь и вырабатывая толстую оболочку.

Виды рода астазия (*Astasia*) очень похожи на эвглен, но бесцветны и не имеют глазка. Они встречаются главным образом в болотах и заболоченных водах с гниющими растительными остатками.
В мелких гумифицированных водоемах, где в результате реакций восстановления освобождаются большие количества соединений железа и марганца, обычны виды рода трахеломонас (Trachelomonas, рис. 165, Д), имеющие твердый домик, внутри которого помещается сама клетка. Домик может быть гладким или различным образом орнаментированным. Вначале он не окрашен, затем становится желтым, коричневым и почти черным. Из отверстия домика выставляется жгутик. При размножении одна или обе дочерние клетки выполняют из отверстия и вырабатывают новые домики. Их форма, орнаментация, характер отверстия у разных видов неодинаковы.

Виды рода факус (Phacus) также типичны для пресных водоемов. Клетки их уплощены в виде листовой пластинки, имеют килевидные выросты, и у многих сзади виден прямой или загнутый отросток (рис. 165, Е).

Эвгленовые занимают изолированное положение среди других водорослей, от которых они резко отличаются строением жгутикового аппарата, организацией хлоропласта и пигментных систем, дискобразными кристаллами митохондрий, клеточными покровами, продуктами ассимиляции и другими признаками. В то же время лучшими кандидатами на роль родственников эвгленовых оказались кинетопластиды. С этой группой у них сходно строение кристи митохондрий, структура жгутиков, похожее деление ядра и ряд других признаков. К числу отличий следует отнести разный способ синтеза лизина и отсутствие кинетоплазма.

Эвгленовые водоросли активно участвуют в процессе самоочищения вод, причем некоторые виды служат биологическими индикаторами степени загрязнения водоема.

В лабораториях эвгленовые водоросли часто используются для биологических и таксonomicских исследований, так как легко культивируются и представляют собой хорошие объекты для изучения фотосинтеза, тонкого строения хлоропластов, фототаксиса, движения жгутиков и т.д. В медицинской практике особенно популярна E. gracilis, в частности для выяснения действия антибиотиков, гербицидов, ростовых веществ, для количественного определения в среде витамина B₁₂, к недостатку которого этот организм очень чувствителен.

ОБРАЗ ЖИЗНИ И РАСПРОСТРАНЕНИЕ ВОДОРОСЛЕЙ

Водоросли встречаются повсеместно: в реках и в морях, на поверхности почвы и в ее толще, на деревьях и скалах, стенах домов и в меже животных. Их находят даже в местах, недоступных для других организмов: на больших глубинах, в пещерах и гrottах, в снегу и горячих источниках. Способность водорослей адаптироваться к разнообразным внешним условиям, неприхотливость и физиологическая пластичность способствовали расселению их по всему земному шару. Практически невозможно назвать какую-либо географическую зону на Земле, где отсутствовали бы эти гольфитные (растениеподобные) организмы.
Водоросли, т.е. растущие в воде, как и любые другие организмы, нуждаются в воде, хотя потребности в ней неодинаковы для разных видов. Они могут жить только при полном погружении в водную среду, другим достаточно грунтовых вод или дождя, третьи довольствуются совсем небольшими количествами влаги — росой, брызгами водопада или прибоя.

В зависимости от совокупности различно действующих экологических условий (освещения, температуры, характера субстрата, его химического состава и т.п.) водоросли образуют многообразные группировки, сообщества, или ценозы. Каждому сообществу свойственное более или менее постоянный видовой состав. В целом выделяют следующие основные группировки водорослей:

– планктонные (фитопланктон);
– нейстонные (фитонейстон);
– бентосные (фитобентос);
– воздушно-наземные, или аэрофильные (аэрофитон);
– почвенные (фитоэдифон);
– водоросли подвижных и пустынных песков (псаммофитон);
– водоросли горячих источников (термофитон);
– водоросли снега и льда (криофитон);
– водоросли соленых материковых водоемов (галофитон);
– водоросли известкового субстрата (кальцефилы).

Представители первых трех группировок (ценоэозов) — типичные обитатели водной среды. Планктонные водоросли населяют открытую часть водоемов. Это микроскопические формы, в основном пассивно взвешенные в толще воды и неспособные противостоять течениям. Бентосные, или донные, микро- и макроскопические водоросли в своей жизни связаны с донным субстратом. Обычно они занимают прибрежную зону водоемов и в качестве субстрата могут использовать подводные предметы. Нейстонные микроскопические водоросли живут в самог верхнем слое воды, в зоне поверхностной пленки, где гидросфера непосредственно соприкасается с воздушной средой.

Аэрофильные и почвенные водоросли приспособились к существованию в наземных условиях. По сравнению с водными обитателями они периодически подвергаются резко выраженным колебаниям температуры и особенно влажности среды.

Водоросли следующих группировок обитают в экстремальных условиях — при высоких либо низких температурах (термальные и криофильные водоросли), в среде с повышенной соленостью (галофитон) или щелочностью (кальцефилы, или калькофиты, обитающие в местах выхода известняков, мела).

Качественный состав альгоценозов в пресных и морских водах неодинаков. Общие виды в них достаточно редки. По видовому составу к пресноводным альгоценозам близки альгоценозы суши. К этим двум типам можно отнести и альгоценозы наземных водоемов (озер) с соленой, но не морской водой.
На состав и распределение водорослей в разных биотопах* влияют условия и ресурсы среды обитания, которые можно характеризовать как комплекс факторов абиотических, биотических и антропогенных. К абиотическим факторам относятся физические и химические условия среды обитания. Из физических характеристик первостепенное значение имеют непосредственно зависящие от климатического пояса световой режим и температура, а для воздушно-наземных групировок водорослей — влажность. Из химических особенно важны соленость воды и содержание в ней минеральных и других питательных веществ. Не менее существенное влияние на развитие водорослей оказывают биотические факторы, т.е. взаимоотношения между разными видами водорослей, а также между водорослями и другими растительными и животными организмами. К антропогенным факторам относятся все виды воздействия на природу человека.

Абиотические факторы

Свет. Свет как основной источник энергии для фототрофных организмов очень важен и для водорослей, подавляющее большинство которых — типичные фотоавтотрофы. Однако представители разных групп водорослей неодинаково относятся к спектральному составу света. Это связано с тем, что водоросли обитают на разных глубинах и соответственно в разных световых режимах. Уже на мальных глубинах в воде исчезают длинноволновые лучи красного цвета, и на большие глубины проникают лучи только сине-зеленой части спектра. Водоросли, обитающие здесь, адаптируются к глубоководным условиям как за счет изменения количественного состава пигментов, так и за счет использования определенных пигментов, в частности фикобилинов.

Некоторые водоросли (например, синезеленые) могут изменять окраску в зависимости от спектрального состава света. Это явление получило название хроматической адаптации.

Что касается количества света, то водоросли часто довольствуются очень слабым освещением, гораздо меньшим, чем наземные растения. Теневыносливость определяет предельную глубину, на которой проникающий в воду свет обеспечивает водорослям жизнь. Она не превышает, как правило, 15—45 м, хотя представители некоторых видов встречаются на глубинах 150—200 м. Основная масса планктонных организмов в морской воде размещается в слое до 40—70 м, а в некоторых местах они опускаются на глубину 150—200 м и более. В озерах фитопланктон встречается преимущественно в слое до 10—15 м, а в водах с малой прозрачностью — в самом поверхностном слое толщиной не более 3 м. Считается, что более требовательны к интенсивности освещения зеленые и синезеленые водоросли, а большинство диатомовых, наоборот, избегает ярко освещенного приповерхностного слоя воды.

* Биотопом называют неорганическую среду, которая характеризуется относительной однообразностью и изолированностью и служит местом размещения разнообразных форм жизни. Поселяющиеся в биотопе различные живые организмы образуют биоценоз.
Температура. Температура — один из наиболее важных факторов, обусловливающих нормальную жизнедеятельность водорослей. В целом для них характерен широкий диапазон температурных условий обитания. Тем не менее одни виды существуют исключительно в холодноводных водоемах, другие — в водоемах с теплой водой, а третьи живут в разных условиях, т.е. способны переносить существенные колебания температуры.

Виды водорослей, которые развиваются в сравнительно узких пределах изменения температуры, называются стенотермными. Так, большинство ламинариевых водорослей и многие виды фуксов — типичные обитатели холодных вод как Северного, так и Южного полушария. В то же время близкие родственники фуксов саргассовые водоросли являются теплолюбивыми и обитают преимущественно в тропиках. В противоположность им эвритермные* виды встречаются в широком интервале изменения температурного фактора, что обусловливает их присутствие в водоемах разных географических широт и в разные сезоны года. Примером эвритермных водорослей может служить представитель семейства ламинариевых Macrocystis, ареал которого простирется с севера и юга до тропиков, вдоль тихоокеанских берегов Северной и Южной Америки. Среди фито-планктонных организмов также известны и стенотермные, и эвритермные виды.

Важно отметить, что температурные границы встречаемости видов, определяемые максимальной и минимальной летальными температурами, значительно шире зоны температурного оптимума, в пределах которого жизненные функции осуществляются наиболее активно, что выражается в наибольшей продуктивности данного вида водоросли. Например, диатомовая водоросль Melosira islandica**, распространенная в озерном планктоне умеренной и субарктической зон, обычно встречается при температуре воды от 1 до 13°C, максимальное размножение происходит в более узком интервале температур — от 6 до 8°C.

Поскольку температурные оптимумы у отдельных видов разные, а температура воды изменяется по сезонам, в водоемах происходит периодическая смена одних доминирующих видов водорослей другими, так называемая сезонная сукцессия видов. Иллюстрацией этому служит годовое развитие фитопланктона в озерах умеренно холодного климата. Зимой в связи с образованием ледяной корки фитопланктон не развивается из-за недостатка освещения. В марте — апреле в довольно большом количестве появляются мелкие жгутиковые Cryptomonas, Chromulina и некоторые другие. В мае бурно развиваются диатомовые водоросли, среди которых преобладают виды Melosira и Diatoma. Холодноводный комплекс диатомей с повышением температуры воды до 15°C сменяется умеренно тепловым, в состав которого входят не только диатомовые (Asterionella, Tabellaria и др.), но также хризомонады, зеленые и синезеленые водоросли. При дальнейшем

* По отношению к другим факторам среды используют аналогичные термины, начинающиеся с той же приставки. Например, эвригиальные водоросли способны переносить довольно широкие колебания солености, стеногиальные живут лишь в узких границах изменения этого показателя, эврифаги относительно безразличны к характеру пищи, стенофаги, наоборот, ограничены в своих пищевых потребностях и т.д.

** Новое название Aulacoseira islandica (Simonsen, 1979).
повышении температуры представители зеленых и синезеленых становятся доминирующими. В летнем планктоне диатомей сравнительно немногочисленны, к их тепловодным видам относятся виды *Fragilaria, Melosira granulata*. Осенью с понижением температуры до 10—12°C снова наблюдается всплеск развития холодноводных видов диатомей.

Двувершинная кривая развития, отмечаемая главным образом для диатомовых водорослей, динофлагеллят и хризомонад, характерна и для морского планктона. В северных морях России при весеннем цветении господствуют обычно виды *Chaetoceros*, осенью — динофлагелляты.

Следует, однако, отметить, что, несмотря на доминирующее значение температурного режима, сезонная сукцессия связана и с рядом других факторов, в частности с содержанием азотистых соединений, которых особенно много в воде именно в весенне-осенний период.

Химический состав водной среды. Важнейшими химическими компонентами водной среды являются минеральные соли, биогенные элементы**, минеральные соединения, органические вещества (растворенные и взвешенные) и органоминеральные скопления (детрит).

По содержанию питательных веществ водоемы делятся на следующие типы: олиготрофные, эвтрофные, сапротрофные и дистрофные***. Олиготрофные водоемы характеризуются чистой прозрачной водой с очень низкой концентрацией элементов питания. Расположены они на бедных грунтах с кислой реакцией и отличаются незначительной продукцией фитопланктонных видов. Эвтрофные воды, богатые биогенными элементами и органическими соединениями, имеют разнообразную и обильную альгофлору. Для водоемов с повышенной эвтрофностью характерно «цветение», обусловленное активным размножением синезеленых водорослей (например, *Aphanizomenon flos-aquae*, *Microcystis aeruginosa*) или иных водорослей. Дистрофные водоемы образуются там, где есть условия для роста торфяного мха, в них мало биогенных элементов и много веществ гуминовой природы. В этих водах количество фитопланктонных организмов незначительно, но разнообразие видов (особенно десмидиевых) огромно. Сапротрофные водоемы содержат очень большое количество растворенных органических веществ, попадающих туда со сточными водами или из отстойников. В них обнаруживается богатая альгофлора (хлорококковые, вольвооковые, бесцветные жгутиковые и другие организмы), и нередко имеет место «цветение».

Естественные воды довольно резко отличаются между собой по суммарной концентрации солей, или общей солености. Именно этот фактор обусловливает разделение водоемов и населяющих их водорослей на две большие группы: морские и пресноводные. Морские воды имеют соленость 35—38% (35—38 г соли

* Новое название *Aulacoseira granulata* (Simonsen, 1979).
** Биогенные элементы — химические элементы, постоянно входящие в состав организмов и необходимые им для жизнедеятельности. К ним относятся кислород, углерод, водород, азот, кальций, калий, фосфор, магний, сера, хлор, натрий, железо, кремний, марганец, медь и др.
*** Это деление чаще используют для пресноводных водоемов, прудов и озер.
на 1 л раствора), пресноводные — с соленостью менее 1‰*. Промежуточное положение занимают солоноватые воды (эстуарии больших рек, лагуны, где морская вода опресняется за счет дождей или поступления пресных вод, и т.п.).

Альгофлора пресных вод и морей различна. Типичными обитателями пресных вод являются почти все конъюгаты, большинство вольвоксовых и хлорококковых водорослей. Сифоновые (бриопсидовые), наоборот, являются морскими формами. Подавляющее большинство бурых и красных водорослей также распространено в море. Синезеленые и диатомеи встречаются как в морях, так и в пресных водах. Однако общие виды, которые одинаково хорошо развивались бы и в морской, и в пресной воде, редки.

Альгофлора солоноватых вод, очень изменичивых по концентрации и составу солей, представлена эвриталильными формами, которые легко приспосабливаются к большим колебаниям солености. Эти водоросли не отличаются большим видовым разнообразием, зато представлены большим числом особей, так как не имеют конкурентов со стороны других организмов.

Для водорослей наиболее важными из минеральных веществ являются соли азота и фосфора. Соли азота эти растительные организмы могут использовать в любой встречающейся в природе форме. Относительное содержание солей азота в водоемах может меняться, но общее количество данного элемента из года в год остается величиной постоянной, равной примерно 1 мг/л. Содержание фосфора в воде измеряется гораздо меньшими величинами, в среднем от 0,5 мг до тысячных долей мг на 1 л.

Однако во многих естественных водоемах количество азота и фосфора часто невелико, что может тормозить развитие водорослей. Особенно обеднена этими элементами открытая, удаленная от берегов часть морских бассейнов. Обогащение таких вод в результате вертикальной циркуляции воды, когда придонные воды поднимаются вверх (явление атвениция), в зону фотосинтеза, или за счет приноса питательных веществ речной водой, ведет к резкому увеличению продуктивности водорослей.

Железо и кальций, необходимые для питания водорослей, используются ими в ионной форме**. Содержание этих элементов в разных водоемах сильно варьирует, причем для железа эти колебания выражены в большей степени, что часто зависит от климатических условий.

В водоемах существует естественная связь между содержанием кальция и железа, а также углекислоты и железа. В известковых водах, имеющих щелочную реакцию, соли железа выпадают в осадок. В водах, бедных известью, с нейтральной и кислой реакцией содержание железа, наоборот, повышенное.

Потребности разных видов и групп водорослей в железе и кальции не одинаковы, а часто даже и прямо противоположны, поэтому накопление этих элементов в воде — решающий фактор в распределении растений. К числу железолюбивых форм, произрастающих в среде с концентрацией Fe 1–3 мг/л, относятся многие

* ‰ — промилле — тысячная часть числа; в промилле определяется соленость воды. Например, соленость воды в океане составляет 35—38‰, т.е. в 1 л воды содержится 35—38 г соли NaCl.

** Ион кальция входит в состав оболочек многих водорослей.
диатомовые, десmidiевые водоросли, драпарнальдия, хетофора, улотрикс, вощерия и др. В жестких водах с большим количеством кальция (более 25 мг/л) и минимальным количеством железа (менее 0,5 мг/л) обитают кладофора и хара.

Водоросли, обладающие повышенной чувствительностью к железу, такие, как Cladophora fracta и Oedogonium capillare, могут использоваться в качестве индикаторов содержания железа в воде. Например, кладофора лучше всего развивается при концентрации Fe 0,2—0,3 мг/л; при повышении же концентрации Fe до 0,5 мг/л ее рост замедляется. Для эдогониума оптимальная концентрация Fe в среде 0,4—0,5 мг/л, при большей концентрации его развитие останавливается.

Магний, калий и сера также принадлежат к числу необходимых для водорослей элементов, но в отличие от вышеуказанных не имеют экологического значения, поскольку практически всегда присутствуют в среде в достаточных количествах.

Кремний содержится в пресных водах в больших количествах, чем в море, причем наиболее бедны этим элементом поверхностные слои морских вод. По- скольку кремний необходим в основном для построения панцирей диатомовых водорослей, его недостаточное содержание в среде обитания отражается на строении панцирей некоторых диатомов: в результате слабого окрашивения у морских форм диатомей панцири становятся заметно тоньше. От количества кремния в воде зависит и размножение диатомей: деление клеток диатомовых водорослей идет нормально, если в воде содержится не менее 5 мг Si/л; когда же его содержание снижается до 0,5 мг/л, деление прекращается. Отмечено, что весенняя и осенняя вспышки развития диатомей совпадают не только с температурным оптимумом и содержанием основных элементов питания, но и с максимальным количеством кремния в среде.

Водоросли нуждаются не только в биогенных элементах. Не менее важны для их жизни микроэлементы, которые в природных средах присутствуют в достаточных количествах. Например, повышенное содержание марганца в воде стимулирует рост железолюбивых водорослей.

Водоросли испытывают необходимость и в биологически активных соединениях. На диатомовые и некоторые другие водоросли благоприятно действуют, например, витамины B1, B12.

Многие водоросли используют для своего роста и развития эвкогенные органические вещества, которые содействуют ускорению их роста и увеличению биомассы. Это означает, что водоросли обнаруживают способность к миктотрофному (смешанному) питанию — как за счет фотосинтезируемых, так и за счет поглощаемых из среды органических веществ. Усвоение водорослями раство- ренных органических веществ доказано для зеленых, синезеленых, диатомовых и других в опытах с чистыми культурами. При этом обнаружено, что некоторые виды в присутствии органических веществ могут расти и в абсолютной темноте, как типичные сапрофиты. В таких условиях водоросли Pleurococcus, некоторые виды Chlorella не теряют хлорофилла, другие же, например эвгленовые, обес- цвечиваются, хотя и продолжают размножаться. При обильном органическом питании клетки теряют хлорофилл и на свету. У ряда бесцветных форм водорослей (Prototheca, Polytona и др.) такое состояние наследственно закрепилось,
и они встречаются в природных водах с большим содержанием органики как обязательные сапрофиты.

Из источников углерода в условиях культуры наиболее доступны для водорослей прые сахара и некоторые органические кислоты. Азотистые органические соединения (мочевина, аминокислоты, растворенные белки) одновременно являются источниками и азота, и углерода.

Способность водорослей использовать в процессе жизнедеятельности разнообразные группы растворенных веществ обусловливает их участие в очищении водоемов. Автотрофные растения, выделяя кислород, прямо или косвенно содействуют минерализации органических веществ. В результате такой деятельности водорослей и других микроорганизмов загрязненная и часто имеющая тяжелый запах вода превращается в чистую: происходит процесс биологической очистки вод.

Однако «санитарные» способности водорослей небезграничны. Превышение определенного уровня загрязненности водоемов в результате хозяйственной деятельности человека приводит к нарушению процессов их естественной самоочистки и соответственно к резко отрицательным последствиям для их обитателей, в том числе водорослей. Так, сброс в водоемы сточных вод промышленных предприятий служит причиной токсикации среды, которая влечет за собой обеднение или полную гибель фитопланктона. Чрезмерное поступление смесей сельскохозяйственных площадей веществ или сточных городских вод, сильно обогащая водоем биогенами*, вызывает бурное развитие фитопланктона. Водоем начинает «цвести», причем очень сильно, что сопровождается разложением водорослей и выделением токсических веществ, которые вызывают гибель не только флоры и фауны самого водоема, но и животных, использующих такую воду для питья. Умеренное же поступление биогенов в природные воды сопровождается повышением продуктивности сначала фитопланктона, затем зоопланктона, что в конечном итоге благоприятно отражается на увеличении рыбных запасов.

Движение воды. Движение воды — течения, прибой, приливы и отливы, вертикальные и горизонтальные циркуляции — можно рассматривать как один из основных факторов, определяющих рост и развитие водорослей. Это связано с тем, что в местах с высокой подвижностью воды за счет ее постоянного обновления водоросли лучше обеспечиваются питательными веществами. Кроме того, в этих зонах происходит более интенсивное удаление автотоксических продуктов метаболизма, что благоприятно сказывается на росте и развитии водорослей. Как и для других экологических факторов, для движения воды существуют верхние и нижние границы, при которых водоросли могут нормально функционировать. В частности, у макроводорослей изменяется форма тела: например, у Fucus distichus из зоны большой волновой активности таллом становится более развитленным, но при этом его ветви утонщаются. Кроме того,

* Понижение качества воды в результате искусственного насыщения водоема биогенами называют антропогенной эвтрофикацией. Это одно из нежелательных проявлений загрязнения окружающей среды человеком. Такому воздействию подвергаются сейчас не только пресноводные бассейны, но и моря.
у ряда водорослей зоны с повышенной активностью воды отмечается утолщение клеточных стенок, что связывают с увеличением механической прочности этих растительных организмов, увеличивается также прочность их прикрепления к субстрату. Однако слишком мощное движение водных масс может вызывать гибель молодых водорослей или истиранье талломов взрослых, отрыв их от субстрата и полное разрушение организма.

Субстрат. Существенное значение для развития прикрепленных водорослей имеет субстрат, на котором они растут. Экспериментально доказано, что зооспоры обладают хемотаксисом и способны выбирать субстрат. Например, бурьи водоросли предпочитают твердые субстраты — скалы, камни, металлические сваи; среди красных макроводорослей встречаются как виды, предпочитающие каменистый субстрат, так и виды, развивающиеся интенсивнее на песчаном или илистом дне. Зеленые водоросли заселяют самые разнообразные субстраты, вплоть до растительных организмов.

Обсихание. Этот фактор влияет на рост и развитие морских водорослей, поскольку именно они подвергаются периодическому обсиханию во время отливов. У макрофитов, растущих в приливно-отливной зоне, в отличие от родственных видов, но растущих постоянно погруженными, в значительной степени могут изменяться биохимия, соотношение РНК и ДНК, функциональные характеристики (интенсивность фотосинтеза, темнового дыхания), форма таллома и скорость его роста. Например, скорость роста *Fucus vesiculosus* верхней литорали, т.е. периодически обсихающего, ниже, чем у бурых водорослей средней и нижней литорали. А у *Fucus spiralis* и *Porphyra yezoensis* фотосинтез и темновое дыхание при небольшой потере воды (сохранение 96—92% воды в тканях) на воздухе даже стимулирует фотосинтез (до 148% по сравнению с полностью оводненными талломами); большее же обезвоживание ведет к снижению фотосинтеза (до 0 при потере 85% воды у *Fucus spiralis* и 90% воды у *Porphyra yezoensis*). Микроводоросли литоральной зоны избегают обсихания, оставаясь под покровом макроводорослей. Микроводоросли пресноводных водных бассейнов переживают неблагоприятные условия при обсихании в виде спор.

Ледовый режим. Лед оказывает как положительное, так и отрицательное воздействие на водоросли. Его положительная функция состоит в том, что он «укрывает» водоросли (кроме литоральных видов), создавая константные (по нулевой и положительной температуре) условия, при которых продолжается замедленный рост слоевища с соответствующим циклом размножения. Косвенное положительное влияние льда проявляется и при его весеннем таянии, в результате которого вода обогащается биогенами и происходит подкормка водорослей, способствующая повышению темпа роста ряда макрофитов. В течение зимы лед накапливает биогены (наряду с загрязнителями), впитывая их в себя подобно губке; концентрация этих веществ в нем может в 5—10 раз (иногда даже в сотни раз) превышать их концентрацию в нормальной морской воде.

Отрицательное воздействие льда проявляется в различных формах. Водоросли, растущие на глубине до 0,5 м, испытывают непосредственное влияние льда: они вмерзают в его толщу и во время ледохода «стираются», в связи с чем на этой глубине невозможно развитие крупных многолетних видов макроводорослей. На больших глубинах водоросли подвергаются опосредованному влиянию льда:
интенсивность света уменьшается, что может отрицательно сказываться на фотосинтетической активности макрофитов.

Раннее становление льда приводит к повреждению слоевищ: они «срезаются» острыми краями льдин. Механическое повреждение ранним льдом может составлять 50% всей популяции и более. В результате уменьшается численность составляющих фитоценозы видов, понижается общая биомасса, замедляются темпы роста.

Косвенное отрицательное влияние льда на альгофлору связано с аккумуляцией им загрязняющих веществ. В местах скопления сильно загрязненных береговыми наносами медленно тающих ледовых глыб сезонные фитоценозы появляются позже, снижается в 1,5—2 раза темп роста, уменьшается численность, исчезают наиболее чувствительные к загрязнению виды, развиваются другие фитоценозы.

Биотические факторы

В конкретном биотопе помимо абиотических факторов на рост водорослей действуют и биотические факторы — взаимоотношения между особями одной или разных популяций водорослей, а также взаимодействия водорослей с другими растениями и животными. Эти взаимоотношения имеют следующие формы: симбиоз и мутуализм, комменсализм и амнисализм, хищничество и паразитизм, конкуренция и нейтрализм.

При совместном произрастании водорослей наиболее часто встречается конкуренция. В конкурентной борьбе более быстрорастущие организмы чисто механически вытесняют медленнорастущие. А в *синузиях* представители одного вида воздействуют на водоросли соседствующего вида с помощью выделения определенных химических веществ, тормозящих или полностью подавляющих рост последних. Например, при прорастании зооспор ламинариевых водорослей в искусственных условиях проростки из них не развиваются, если в сосудах с зооспорами находятся части талломов аскофиллума.

Однако известны факты и положительного взаимодействия водорослей, в частности с высшими растениями, а именно стимулирующее действие прижизненных выделений водорослей на корни высших растений в почвенных экосистемах — *консорциях*.

Поскольку водоросли служат пищей различным животным, разрастание их нередко прямо зависит от численности последних. Так, было установлено, что площади, занятые промысловыми бентосными водорослями у берегов Канады, сокращаются из-за выведения их морскими ежами. Регулировать численность этих животных, а следовательно, препятствовать истреблению зарослей макрофитов можно косвенным путем — сокращением вылова в этих местах омаров, питающихся морскими ежами.

* Синузия — структурная часть фитоценозов, характеризующаяся совместным пребыванием в ней видов одной экологической группы растений (здесь водорослей).

** Консорция — минимальная структурная единица биоценоза, состоящая из разнородных организмов, которые в течение всей жизни или отдельных периодов находятся в тесных и полезных контактных отношениях друг с другом.
ВОДОРОСЛИ

Экологические группировки водорослей

ПЛАНКТОННЫЕ ВОДОРОСЛИ

Планктон (от греч. \textit{planktyς} — блуждающий) включает живое население водной толщи, состоящее из мелких растительных (фитопланктон) и животных (зоопланктон) организмов. Фитопланктон составляют свободноживущие микроскопические водоросли. Это преимущественно одноклеточные и колониальные формы, неподвижные или недостаточно подвижные, чтобы преодолевать пассивное перемещение водных масс*.

Фитопланктон обитает в водоемах самой разной природы и размеров: от морей и океанов до маленьких пересыхающих луж и каналов. Типичное фитопланктонное сообщество характерно для крупных водоемов: морей, больших озер и медленно текущих рек. В мелких водоемах и особенно в реках с быстрым течением к типично планктонным водорослям примешивается очень большое количество донных обитателей.

Состав планктона водоемов или даже одного водоема в разных его участках по сезонам не остается постоянным. В течение года в связи с изменениями физических и химических условий в водоеме одни группы водорослей сменяются другими, а в периоды массового развития нередко доминирующим становится вообще один вид.

Глубина, на которой обнаруживаются планктонные водоросли, зависит от типа водоема, прозрачности воды и изменяется, как правило, от нескольких метров в пресных водах до 100 м и более в морях. Отдельные группы представителей фитопланктона отмечаются и на более значительных глубинах.

Максимальное количество фитопланктона обычно приурочено не к самому поверхностному слою, а к более глубоким, причем для многих организмов характерен свой глубинный оптимум обитания. Такая стратификация фитопланктона объясняется неоднородным температурным режимом, а соответственно и химическим составом различных слоев водной среды. Поддержанию выраженной слоистости в распределении осеннего планктона в летний период способствует и сттанция** воды, затрудняющая ее вертикальное перемешивание.

Пресноводный фитопланктон состоит главным образом из диатомовых, зеленых, синезеленых, золотистых, динофлагеллят и эвгленовых водорослей. Зеленые представлены монадными и коккоидными формами. Из них наиболее часто встречаются виды родов \textit{Chlamydomonas, Pandorina, Eudorina, Gonium, Volvox, Scenedesmus, Pediasastrum, Ankistrodesmus, Kirchneriella, Oocystis, Chlorella}.

* Кроме перечисленных фито- и зоопланктона выделяют еще так называемый \textit{saproplanктон}, куда входят бактерии, грибы, актиномицеты. Функции этих трофических группировок в водных экосистемах различны. Фитопланктонные организмы, или первичные продуценты, усваивая неорганические соединения, создают в воде органическое вещество. Зоопланктонные организмы, или первичные консументы, питаются фитопланктоном и в свою очередь служат пищей для вторичных консументов, например рыб. Сапрофитопланктонные формы, или деструкторы, в процессе жизнедеятельности разлагают органическое вещество до простых соединений.

** Станция — расслоение воды по температуре: более холодные воды занимают придонное положение. Более теплые расположены сверху.
и др. В заболоченных водоемах или в бассейнах, связанных с болотами, в планктоне преобладают десмидиевые водоросли: Cosmarium, Closterium, Staurastrum, Euastrum, Micrasterias, Xanthidium, Desmidium, Hyalotheca и др. Из синезеленных в пресноводном планктоне наиболее многочисленны Anabaena, Microcystis, Anaphidnimonen, Gloeotrichia. Диатомовые представлены неподвижными формами из класса Pennatophyceae (Asterionella, Tabellaria, Fragilaria и т.д.) и некоторыми видами из класса Centropyceae (в основном различные виды рода Melosira). Видовое разнообразие типично планктонных диатомей в пресных водах невелико, но оно часто расширяется за счет временно планктонных видов, имеющих донную fazу в жизненном цикле. В сравнительно холодной воде нередко наблюдается изобилие монадных охрофит (виды родов Synura, Dinobryon, Uroglena, Mallomonas), в теплой воде — эвгленовых (виды родов Euglena, Trachelomonas, Phacus). Из динофлагеллят наиболее обычны виды Ceratium и Peridinium. Выше-перечисленные сообщества характерны в основном для средних и мелких по размеру пресноводных бассейнов: озер, прудов, заводей рек и т.д. В таких крупных озерах, как Байкал, Ладожское, Онежское, наблюдается много общего, особенно в распределении планктона, с морями. Melosira baicalensis (в Байкале) и M. islandica (Aulacoseira islandica) (в Онежском и Ладожском озерах), доминирующие в этих бассейнах, не опускаются на дно, как в более мелких водоемах, а образуют на некоторой глубине характерные зоны скопления, как в морях.

Морской фитопланктон формируют в основном центрчные диатомовые и динофлагелляты, синезеленные и кокколитофориды, зеленые водоросли отсутствуют на второй план. Среди диатомеи по видовому разнообразию наиболее многочисленны роды Chaetoceros, Thalassiosira, Rhizosolenia, Planktoniella и некоторые другие. За небольшим исключением (например, некоторые виды Rhizosolenia) это типично морские обитатели. Жгутиконосы из отдела Dinophyta в морях представлены большим количеством видов, чем в пресных водах. Некоторые роды, такие, как Dinophysis, Gonyaulax, являются исключительно мorskими обитателями. Кокколитофориды (известковые жгутиковые), несколько видов которых встречается и в пресной воде, в море представлены значительно разнообразнее. Только для морских бассейнов характерны силикофлагелляты (кремнежгутиковые водоросли). Число видов синезеленных водорослей несколько ограничено, тем не менее один из них — Trichodesmium erythraeum — может развиваться так бурно, что вызывает «цветение» воды в тропических морях.

В распределении морского фитопланктона четко прослеживается географическая зональность: в теплых тропических водах распространены преимущественно динофлагелляты и известковые жгутиковые, диатомовые же приурочены к холодным водам северных и арктических морей, где местами в больших количествах встречаются также силикофлагелляты и некоторые зеленые водоросли.

В распределении фитопланктона в пределах одного бассейна (моря, океана) также существуют определенные закономерности. Это связано с делением поверхностных фотических* слоев водной толщи (или пелагиали) на 2 зоны: эпи- пелагиа, или океаническую (глубоководную), существующую вне связи с грунтом,

* Фотическими, или эвфотическими, называют слой, в который проникает достаточное количество света, необходимое для протекания фотосинтеза; в среднем его толщина составляет 200—300 м.
и неритопелагиаль, или неритическую (шельфовую), простирающуюся от берега до конца материковой отмели. В соответствии с этим весь планктон делит по месту его обитания на планктон эпипелагиали (океанический) и неритопелагиали (неритический). Распространение океанического фитопланктона ограничено фотической зоной. Вода в этой области прозрачнее, чем в неритической зоне. Поэтому свет в ней распространяется на большую глубину. Однако эта зона более бедна биогенными элементами, особенно фосфатами. В результате продуктивность фитопланктона в ней несколько меньше, чем у берегов. Неритический фитопланктон отличается богатством видового состава и большей продуктивностью. По мере приближения к берегу пелагические формы здесь все больше соприкасаются с бентосными.

Фитопланктон опресненных внутренних морей заметно отличается по составу и по количеству видов не только от океанического, но и от неритического планктона Мирового океана. В открытой части этих водоемов, отличающихся пониженной соленостью по сравнению с океаном, отсутствуют типичные океанические виды. В неритическом планктоне встречаются лишь эвригалинные виды, а также виды, характерные для пресноводных водоемов, но приспособившиеся к условиям обитания в морской среде.

Общая численность планктона в разных водоемах значительно колеблется. Например, в холодных арктических морях весной в 1 см³ верхних слоев воды насчитывается до 30 особей, в умеренных водах — до 100 000 экземпляров и более. В пресноводных прогреваемых бассейнах это число резко возрастает. В водохранилищах при «цветении» воды (синезеленые водоросли) нередко в 1 см³ воды содержится до 1 млн клеток. Иногда в прибрежных зонах таких «цветущих» водоемов скапливаются огромные массы водорослей, окрашивающих воду в ярко-зеленый или грязно-зеленый цвет.

О биомассе фитопланктона того или иного водоема принято судить по количеству органического вещества, приходящегося на единицу поверхности или объема среды. В арктических морях она достигает 6—14 г/м³ воды, в Каспийском море 1—3 г/м³, а недалеко от впадения в него Волги — 100—140 г/м³. В Азовском море летом биомасса иногда исчисляется в 250—300 г/м³.

По аналогии с наземными растениями продуктивность (или урожайность) планктона оценивается количеством органического вещества, продуцируемого на 1 га водной поверхности за год. Годовая продукция планктона в пресных водах и морях выражается близкими величинами. Например, в Баренцевом море она равна 30—50 т (сырой массы) на 1 га, а в наиболее продуктивных пресных озерах — 26,5 т/га.

Предполагают, что биомасса фитопланктона в Мировом океане составляет примерно 1,5 млрд т, а продукция его за год превышает биомассу в 300—400 раз, что возможно лишь при условии постоянного, ежесуточного деления фитопланктонных организмов, а соответственно возобновления их биомассы. Эти цифры как нельзя лучше подчеркивают значение планктонных водорослей как поставщиков органических соединений. Огромные водные пространства не являются бесплодными: благодаря развитию планктона урожаи с них не только не уступают, но иногда превосходят урожаи с наземных площадей.
Приспособления. Планктонные водоросли, населяющие толщу воды, под действием силы тяжести неминуемо должны были бы опуститься на дно. Однако в природе этого не происходит, чему способствует как перемешивание воды, так и особенности в строении взвешенных организмов. Одна из этих особенностей — микроскопически малые размеры клеток этих форм. Кроме того, у некоторых водорослей, например у монадных форм, этой же цели служат жгутики.

Для увеличения плавучести есть и некоторые специальные приспособления, ведущие, во-первых, к уменьшению удельной плотности организмов и, во-вторых, к увеличению их трения о воду. Эти приспособления весьма сходны у планктонных водорослей разной систематической принадлежности, что свидетельствует о параллельном и независимом развитии их под влиянием одинаковых условий существования.

Уменьшение удельной плотности организма достигается путем накопления в нем включений с плотностью меньше единицы. Это, например, капли жира, которые в качестве запасного продукта накапливаются в клетках фитопланктона, или наполненные воздухом газовые вакуоли, которые появляются у синезеленых водорослей, — они настолько уменьшают плотность клеток, что водоросли всплывают на поверхность воды и в периоды массового развития образуют там большие скопления. У планктонных диатомей «плавучесть» повышается за счет источения панциря по сравнению с бентосными формами. Немаловажную роль играет и слизь, выделяемая многими планктонными водорослями.

Интересно отметить, что у водорослей в теплых водах приспособления к планктонному существованию развиты в большей степени, чем у холодноводных. Например, тропические представители Ceratium имеют более длинные роговидные выросты, чем представители этого же вида, обитающие в умеренном и холодном климате (рис. 167)*. У C. hirundinella, обитателя пресных вод, отмечен так называемый сезонный полиморфизм: в холодной воде (осенью и весной) этот вид имеет более короткие рога, чем в теплой воде (летом). Подобная температурно-сезонная изменчивость наблюдается и у представителей других групп. Причина этого явления — уменьшение вязкости воды с повышением ее температуры. Миграции в толще воды ряда водорослей способствуют воздушные пузыри, образуемые ими в процессе метаболизма.

* Существует также предположение, что выросты типа шипов и рогов сформировались как защитные устройства против выведения фитопланктеров представителями зоопланктона.
Рис. 166. Внешние морфологические приспособления к планктонному образу жизни у водорослей разных систематических групп.

A — Pediastrum; B — Asterionella; V — Corethron; Г — Planktoniella; D — Chaetoceros; E — Ornithocercus

Рис. 167. Внешние морфологические приспособления к планктонному образу жизни у водорослей одного рода, обитающих в различных температурных условиях.

A — Ceratium palmatum; B — C. reticulatum; 1, 3 — холодноводные, 2, 4 — тепловодные формы
НЕЙСТОН

Нейстоном называют своеобразное сообщество мелких растений и животных, живущих в зоне поверхностной пленки, у границы раздела водной и воздушной сред. Выделяют эпинейстон — группу организмов, живущих над поверхностной пленкой, и гипонейстон — виды, прикрепляющиеся к поверхностной пленке снизу (рис. 168).

Рис. 168. Водоросли нейстона.
Паразюты Kremastochrysis pendens (A) и Kremastochloris sp. (B), плавающие на поверхности воды, с висящими под ними клетками

Нейстон наиболее легко обнаружить в тихую погоду в мелких, защищенных от ветра водоемах — в лужах, торфяных карьерах, канавах, небольших заливах и прудах. Не исключается его существование и в больших водоемах — в озерах и даже морях, но на сравнительно ограниченной площади спокойной воды (без волн). Обитатели поверхностной пленки нередко образуют ярко окрашенный слой, видимый невооруженным глазом. Количество организмов на 1 мм² поверхности в таких случаях составляет несколько десятков тысяч экземпляров.

В пресноводном нейстоне наиболее многочисленны золотистые (виды рода Chromulina), эгленовые (виды рода Euglena, Trachelomonas), зеленые (виды рода Chlamydomonas) и разножгутиковые (виды рода Botrydiopsis) водоросли.

Многие нейстонные организмы для удержания в зоне поверхностной пленки имеют специальные приспособления в виде слизистых колпачков, напоминающих маленькие паразюты, плавательных пластинок с гидрофобной поверхностью и др. рис. 168.
БЕНТОСНЫЕ ВОДОРОСЛИ

К фитобентосу принадлежат все водоросли, жизнь которых так или иначе связана с дном водоема. Субстратом для них служат твердые и мягкие грунты (камни, скалы, песок, ил), другие растения (более крупные водоросли и высшие водные растения), панцири и раковины беспозвоночных животных и т.п., причем водоросли могут либо прикрепляться к субстрату, либо свободно лежать на нем.

В отличие от микроскопических планктонных организмов бентосные водоросли представлены микро- и макроскопическими формами. Растут они, как правило, большими группами. Микроскопические формы в совокупности образуют видимые невооруженным глазом обрастания в виде слизистых пленок, войлочных подушечек, налетов, окрашенных в различные оттенки зеленого, желтого, бурого цвета. Макроскопические морские бентосные водоросли, отдельные виды которых достигают в длину 100 м и более, формируют густые заросли, напоминающие подводные леса (например, заросли бурых водорослей).

Для развития фитобентоса необходим прежде всего свет. Степень его использования в свою очередь зависит от сопряженного действия целого ряда других факторов: движения воды, температуры, характера грунта, содержания в воде минеральных и органических веществ и, часто, скорости поступления этих веществ в слое воды. Например, процессы фотосинтеза и дыхания, а также поглощение водорослями питательных веществ протекают более интенсивно в условиях постоянного обновления водных масс. Подтверждение этому — наиболее пышное развитие бентосных водорослей именно в местах с интенсивным перемешиванием воды: в реках и ручьях — на перекатах, где вода течет с большой скоростью, в морях — в проливах с течениями, в прибрежной прибойной зоне.

Глубина обитания бентосных пресноводных водорослей составляет 30—40 м. Это связано с тем, что вода в большинстве пресных водоемов имеет низкую степень прозрачности. Дно глубоких бассейнов (в частности, оз. Байкал) вообще свободно от фотоавтотрофных форм водорослей. В водоемах же с прозрачной водой эти растительные организмы опускаются на большую глубину. Например, в оз. Севан (Армения) Ulothrix, Cladophora, Enteromorpha вместе с диатомовыми растут на глубине до 70 м.

Естественно, что в водоемах с разной степенью прозрачности воды и неоднаковым химическим составом не может быть идентичного распределения водорослевого бентоса по вертикали. Тем не менее для пресных водоемов относительно закономерно, что верхний слой преимущественно заселяется особенно морфологическими к свету зелеными водорослями. Глубже других в пресных водах опускаются диатомовые, так как некоторые из их видов являются типичными сапротрофами, способными обитать на таких глубинах, куда не проникает свет.

Пресноводный бентос состоит в основном из зеленых, разножгутиковых, диатомовых и синезеленых водорослей. Красные представлены небольшим числом видов, из них наиболее часто встречаются Batrachospermum. Среди зеленых водорослей довольно много прикрепленных видов, растущих на камнях и других твердых предметах (эпилимно), на высших растениях: тростниках, рдестах и т.п. (энтолиты). Наиболее распространены виды родов Ulothrix, Cladophora, Rhizoclonium, Siageoclionium и др. Кладофера и стигеоклониум имеют вид ветвящихся
кустиков. Иногда, отрываясь от субстрата, эти водоросли образуют в воде длинные «хвосты», одним концом прикрепленные к подводным растениям. Часто встречается также кустистая форма *Draparnaldia*. В прибрежной зоне оз. Байкал мощные заросли образуют эндемичные виды *Draparnaldia*.

В небольших водоемах (канавах, прудах) и в прибрежной области крупных озер обитает много неприкрепленных видов бентосных водорослей. Это разнообразные нитчатые формы зеленых (например, *Spirogyra*, *Oedogonium*), разножгутиковых (*Trichonema*) и синезеленых (*Oscillatoria*, *Lyngbya*, *Tolypothrix*) водорослей, а также диатомеи. Одни из них свободно лежат на песчаном или ильстом дне (эпипелиты), другие располагаются на поверхности подводных растений, плотно прилегая к ним (эпифиты). Между высшими водными растениями можно обнаружить слизистые бесформенные скопления *Tetraspora*, мелкие округлые колонии *Rivularia*, *Gloeotrichia pismum* и др. Нитчатые водоросли образуют слизистую тину ярко-зеленого (зигнепламентный водоросли) или буровато-зеленого (синезеленные водоросли) цвета. У некоторых видов днем нити, увлекаемые пузырьками кислорода, выделяемого при фотосинтезе, часто скапливаются большими массами на поверхности воды, а ночью снова оседают на дно. Миграция в толще воды с использованием воздушных пузырей характерна также для диатомовых водорослей.

Самые крупные представители пресноводного фитобентоса — харовые водоросли. Виды хары и нителлы наиболее часто встречаются в прудах и озерах с илистым дном, где они образуют густые заросли, прочно закрепляясь в субстрате с помощью длинных ризоидов.

Макроскопический таллом до 1,5 м в длину имеет во взрослом состоянии и водяная сеточка (*Hydrodictyon reticulatum*). Для разрастания этой формы благоприятны прибрежные части прудов, ручьев, заводи рек, имеющие достаточно азотсодержащих солей.

Из бентосных синезеленных водорослей по величине колоний, иногда достигающих размера куриного яйца, первенствует *Nostoc pruniforme*. В период массового развития скопления ностока могут препятствовать работе шлюзов и т.д.

По внешнему виду морские бентосные водоросли сильно отличаются от нежных пресноводных. Их огромные заросли состоят главным образом из макроскопических бурых, красных и зеленых водорослей. В «подлеске» между крупными формами и эпифитно на них расселяются мелкие бурь и красные водоросли, которые, в свою очередь, могут обрастать разнообразными формами зеленых, диатомовых и синезеленных водорослей.

Существует определенная связь между величиной таллома водорослей и характером грунта — размером частиц, его слагающих. Крупные водоросли обычно приурочены к каменистому и скальному грунту, обитают на сваях, подвзажных субстратах (лодках, плотах и т.п.) и высших водных растениях. Рыхлый песок, мелкий галечник, ил, непригодные для макроскопических растений, заселяются обычно мелкими формами (рис. 169). Причина этого заключается в особенностях строения органов прикрепления макроскопических водорослей: короткие ризоиды или подощицы не проникают в грунт субстрата, а распластываются по его поверхности, для чего необходим плотный субстрат и относительно большая
Рис. 169. Пленкообразующие нитчатые водоросли, связывающие частицы песка (по Scooffin)

его поверхность. Длинные ризоиды, напоминающие корни высших растений и уходящие в песок или ил, у морских бентосных водорослей, так же как у пресноводных, встречаются у очень немногих форм. К ним относятся обитающие в пресных и соленых водах виды Chara и Nitella, а также виды Caulerpa, растущие на песчаном грунте в тропических морях.

Флористический состав морского бентоса зависит от состава воды, обусловленного свойствами грунта и интенсивностью перемешивания водных масс, а также ее прозрачностью и температурой.

Бентосные водоросли занимают прибрежную, сравнительно узкую часть моря. Глубина их обитания в разных морях неодинакова. Например, в северных морях России граница встречаемости бентосных растений проходит на незначительных глубинах — около 40—50 м, а у берегов Флориды она опускается до 100 м; в Средиземном же море, отличающемся необычной прозрачностью, бентосные водоросли растут на глубине 130—180 м и более.

Вертикальное распределение водорослей обусловлено особенностями прибрежной области, в которой они обитают. Эта область подразделяется на три зоны: супралитораль, литораль и сублитораль (рис. 170). Супралитораль — самая узкая полоса морского побережья, располагается выше линии наибольшего стояния воды во время приливов и орошается только брызгами прибоя. Литораль, или
осушная зона, занимает пространство от высшего уровня прилива* до низшего уровня отлива. Один или два раза в сутки водоросли этой зоны остаются по несколько часов на воздухе**. Сублитораль, или инфралиторальная зона, находится ниже литорали и простирется до глубины 40 м и более, т.е. до глубины эфотической зоны. В ней выделяют две области: верхнюю, отличающуюся от литорали более спокойной водой и незначительной интенсивностью освещения, и нижнюю, наиболее глубокую часть прибрежной зоны, в которой растут водоросли. Она характеризуется наибольшим постоянством факторов среды и малым освещением.

Альгфлора супралиторали в связи с нерегулярностью увлажнения и колебаниями в солености отличается сравнительно малым видовым разнообразием и представлена преимущественно микроскопическими формами. В литорали и верхней сублиторали обитают макроскопические бурые, зеленые и красные водоросли, образующие огромные заросли. В глубоких сублиторальных слоях на больших глубинах преобладают красные корковые водоросли***.

Широтное распределение морских бентосных водорослей обусловлено главным образом температурным фактором. Бурые макрофиты являются, как правило, типичными обитателями холодного и умеренного поясов (хотя, например, виды рода саргассум и диктиотовые характерны и для тропических, и для субтропических морей). Красные и зеленые водоросли преобладают в теплых морях.

Рис. 170. Схема, иллюстрирующая зональное распределение водорослей на скалистом побережье в Европе (по Чэпмену)

* Высота приливов может быть очень разной: от нескольких сантиметров во внутренних морях до 10 м в открытых морях.

** Береговая линия литоральной зоны может иметь разную протяженность: от нескольких метров до нескольких километров. Когда литораль достаточно обширна, ее подразделяют на горизонты: верхний, средний и нижний.

*** Преобладание красных водорослей обусловлено наличием у них фикобилиновых пигментов, способных поглощать в сине-зеленых частях спектра.
Широтное распределение бентосных водорослей можно проследить на примере Белого и Черного морей. Литоральную зону холодного Белого моря населяют в основном фукосовые водоросли (фукс, аскофиллум, пельвеция). Местами они занимают до 75% общей площади литоральных зарослей. Пельвеция желобчатая (Pelvetia canaliculata), самая мелкая из порядка Fucales, встречается в супралиторали и верхней литорали. Фукс пузырчатый (Fucus vesiculosus) образует обильные разрастания в верхней и средней литорали. Далее следуют фукс двухрядный (F. destichus), аскофиллум узловатый (Ascophyllum nodosum), фукс зубчатый (F. serratus). Между купрными водорослями и отчасти на них поселяются более мелкие формы бурых (например, Chordaria flagelliformis), а также красные (из родов Rhodymenia, Porphyra, Ceramium и др.) и зеленые (из родов Enteromorpha, Monostroma, Ulvaria, Ulva, Cladophora). Во время отлива эти водоросли оказываются защищенными от высыхания талломами крупных бурых водорослей. В верхней сублиторали густо разрастаются наиболее крупные ламинариевые водоросли (виды родов Laminaria, Chorda, Alaria и др.). На них много эпифитов, главным образом из красных водорослей: представителей родов Polysiphonia, Delesseria, Phycodris. Последние встречаются и на каменном грунте вместе с Phyllophora, Ahnfeltia и др. Для нижней сублиторали особенно характерны известковые красные водоросли, местами покрывающие дно сплошным ковром (виды рода Lithothamnion, Corallina).

В теплых водах Черного моря преобладают красные водоросли, а бурые отступают на второй план. Здесь совсем нет ламинариевых, фукосовых представлены только цистозелейными водорослями, однако у берегов Крыма и Кавказа они формируют плотные и обширные заросли: на глубине 10 м и более растет филофора, образующая целые поля (филлофорное поле С.А. Зернова расположено в северо-западной части Черного моря; в настоящее время оно сильно уменьшилось). Для опресненных и загрязненных участков прибрежной зоны характерно массовое развитие зеленых водорослей (виды Cladophora, Enteromorpha, Ulva). Типичные для тропических морей сифоновые зеленые водоросли представлены здесь в основном кодиумом червеобразным (Codium vermiculare) и видами бриоopsis (Bryopsis).

На распределение водорослей влияет также соленость: в бассейнах с океанической или близкой к ней соленостью альгофлора значительно богаче, чем в морях с низкими значениями этой характеристики.

Поскольку донные водоросли обитают в сравнительно неширокой прибрежной полосе, не превышающей одной десятой всей площади Мирового океана, суммарная биомасса этих растительных организмов в целом уступает планктону, хотя в отдельно взятых конкретных точках она существенно превышает ее и колеблется от 0,5 до 60 кг/м².

ВОДОУШНЮ-НАЗЕМНЫЕ (АЭРОФИТНЫЕ) ВОДОРОСЛИ

Аэрофитные водоросли обитают вне водоемов на различных субстратах: скалах и камнях, растениях (листьях и коре деревьев), разнообразных постройках (заборах, крышах и стенах домов) и даже на животных*.

* Некоторые зеленые водоросли обнаружены на шерсти ленивцев.
Воздушная среда, в которой развиваются аэрофиты, характеризуется прежде всего резкой сменой температуры (днем и ночью, зимой и летом), а также в большинстве случаев лишь кратковременным увлажнением во время дождя, тумана или росы.

Несмотря на своеобразие условий жизни, аэрофитные водоросли нередко развиваются в массовом количестве, образуя на поверхности субстратов яркие слизистые или порошкообразные налеты, мягкие или рассыпающиеся. Особенно много наземных водорослей в районах с теплым и влажным климатом. В областях с суровой и продолжительной зимой число их видов резко снижается.

В качестве приспособлений клеток аэрофитов к неблагоприятным условиям жизни служат слоистые, сильно утолщенные клеточные стенки, слизистые обертки, чехлы, удерживающие воду, накапливающееся в больших количествах масло, более вязкая цитоплазма.

Общее количество видов наземных водорослей приближается к 300. Эти микроскопические организмы — одноклеточные, колониальные и нитчатые — принадлежат в основном к трем отделам: синезеленым, зеленым и диатомовым.

Во влажных тропических областях аэрофитные водоросли поселяются и на листьях, образуя плотные обрастания. Здесь царствуют различные представители зеленых и синезеленых водорослей (роды *Phormidium*, *Scytomena*, *Schizothrix* и др.). На мхах наряду с некоторыми зелеными и синезелеными водорослями встаются и диатомовые.

На скалах, периодически орошаемых водой, обитают виды рода *Mesotaenium* (слизистые скопления этой водоросли легко переносят временное высыхание), *Stichococcus bacillaris*, виды родов *Chlorococcum*, *Chlorella* и т.д. Гораздо беднее микрофлора там, где поверхность каменных глыб или стен увлажняется постоянно просачивающейся водой. В таких местах вместе с некоторыми зеленными (виды родов *Cosmarium*, *Cylindrocytis*) и диатомовыми (виды родов *Melosira*, *Diatoma*, *Pinularia*) изобилиют синезеленые водоросли (роды *Gloeocapsa*, *Stigonema*, *Nostoc*, *Calothrix*, *Tolyphothrix*). На известковых скалах преобладают синезеленные водоросли, где они разрастаются в виде темных слизистых налетов или чернильных полос. В засушливое время такие пленки теряют воду и превращаются в легко разламывающиеся корочки; при увлажнении они вновь набухают и ведут процессы деления. На известняках или других пористых субстратах синезеленые водоросли поселяются не только на поверхности или в трещинах породы, но и на некоторой глубине, в пространствах между частицами субстрата. В таких условиях без непосредственной связи с поверхностью субстрата могут обитать, например, *Gloeocapsa*.
Разнообразные по систематической принадлежности водоросли приспособились к существованию в пещерах. Известно более сотни «пещерных» водорослей, среди которых также преобладают синезеленные.

ПОЧВЕННЫЕ ВОДОРОСЛИ

Сообщество всех организмов в почве определяется как эдафон. Его растительную часть называют фитоэдафоном.

Подавляющее большинство почвенных водорослей обитает на почве и в ее поверхностном (толщиной несколько сантиметров) слое; с увеличением глубины число их резко уменьшается. Максимальная глубина, на которой были обнаружены жизнеспособные водоросли, 2,7 м. Для почвенных водорослей характерны различные жизненные формы, образующие налеты, слизи, комочки (рис. 171)*.

В поверхностном слое, куда проникает свет, водоросли живут как типичные фототрофы, а в глубоких почвенных слоях они переходят на сапротрофное питание.

![Рис. 171. Жизненные формы почвенных водорослей.
1 — Chlorococcum-форма (Ch-форма); 2 — Cylindropermum-форма (C-форма); 3 — Xanthophyta-форма (X-форма); 4 — Bacillariophyta-форма (B-форма); 5 — Phormidium-форма (P-форма); 6 — Microcoleus-форма (M-форма); 7 — Heterothrix-форма (H-форма); 8 — Nostoc-форма (N-форма); 9 — Vaucheria-форма (V-форма)]

* Под жизненной формой понимается единица экологической классификации растений; в альгологии — группа водорослей со сходными приспособительными структурами. Названия обычно берутся по первым буквам названия таксона, рассматриваемого в качестве эталона.
Почва — очень сложная среда обитания. Она отличается неоднородностью как в горизонтальном, так и в вертикальном направлении и обладает рядом экологических особенностей. Поверхностный слой почвы наиболее изменчив по показателям влажности, температуры и освещения, глубокие почвенные горизонты характеризуются относительным постоянством этих признаков.

Общее количество видов почвенных водорослей приближается к 2000. Среди них самые многочисленные — синезеленые и диатомовые, далее — зеленые и желто-зеленые. Золотистые (Geochrysis) и красные (Porphyridium) встречаются довольно редко. Синезеленые водоросли (Phormidium, Microcoleus, Schizothrix, Nostoc и др.) особенно характерны для степных и пустынных почв юга Средней Азии, где они образуют кожистые (слизистые в период увлажнения) или напоминающие войлок пленки. В связи с засушливым климатом ценозы этих водорослей эфемерны: пышное развитие их наблюдается лишь во влажные периоды.

Для влажной земли, обнаруживающейся при высыхании луж и т.п., типичен Botrydium. Там же в затененных местах рядом с различными синезелеными водорослями часто развиваются желто-зеленые Vaucheria, Stigeoclonium и некоторые слизистые формы: Mesotaenium, пальмелоидные стадии хламидомонад.

На почве, в значительных количествах содержащей аммоний (там, где имеет место загрязнение различными сбросами, в том числе канализационными), обитают зеленая Prasiola и некоторые синезеленые водоросли.

Все представители фитоэдафона для вегетации нуждаются в увлажненном субстрате, поэтому для переживания неблагоприятных условий (засушливые летние периоды или холодные зимние) разные водоросли выработали специфические адаптационные механизмы и приспособления. Например, подвижные диатомеи при высыхании почвы перемещаются в нижележащие влажные слои. У Botrydium в таких условиях протопласт переходит в подземные ризоиды и там распадается на цисты; у Vaucheria формируются апланоспоры, а у некоторых зеленых нитчаток — акинеты (толстостенные клетки), очень стойкие к недостатку влаги. Одно из важных приспособлений для перенесения высыхания — обильное образование слизы, прочно удерживающей воду.

Численность водорослей в почве зависит от целого ряда факторов: от водного и солевого режима почвы, от наземной растительности, от агрохимии. В частности, количество водорослей в окультуренных почвах выше, чем в целинных. Подсчитано, что в возделанных почвах число клеток в слое глубиной до 10 см достигает 1 млн/г, а в целинных — 300 тыс./г.

Почва обработанных полей, отличающаяся лучшим водным режимом и достаточным содержанием минеральных веществ, часто «зацветает» от массового развития микроскопических водорослей. Ее поверхность становится зеленоватой, что по народной примете обещает хороший урожай. Это наблюдение часто оправдывается и, по-видимому, не случайно: во-первых, интенсивное развитие самих водорослей свидетельствует об благоприятных абиотических факторах почвы (температура, влажность, присутствие легко усваиваемых питательных веществ) и, во-вторых, водоросли прямо и косвенно участвуют в повышении плодородия почвы, обогащая ее углеводами и азотом.
ВОДОРОСЛИ ГОРЯЧИХ ИСТОЧНИКОВ

Водоросли способны жить и размножаться в таких местообитаниях, которые на первый взгляд кажутся совершенно непригодными для жизни: в горячих минеральных источниках, загрязненных горячих водах, спускаемых промышленными предприятиями. Температура воды в них часто намного превышает те границы (от 0 до 50°С), в пределах которых живет большинство организмов. Водоросли найдены даже в воде с температурой, приближающейся к точке кипения.

Термальным природным водам свойственна не только высокая, но и постоянная в течение года температура, обеспечивающая круглогодичную вегетацию водорослей. По химическим свойствам эти воды отличаются также высоким содержанием минеральных веществ и газа. Минеральный состав водной среды оказывает на флору часто не менее существенное влияние, чем температура*.

В пределах одного и того же горячего источника поддерживается стабильность жизненных условий, что обуславливает неизменность состава растений не только в течение года, но и на протяжении более длительного отрезка времени. Так, например, в ряде горячих источников Карлсбадена в настоящее время отмечается та же самая альгофлора, что и в прошлом столетии.

Способность переносить экстремальные условия в течение всей жизни свойственна в основном синезеленым водорослям. Термофильных диатомовых и зеленых водорослей гораздо меньше. Например, в одном из горячих источников Камчатки из 52 обнаруженных видов водорослей на долю синезеленых пришлось более половины — 28 видов, диатомовых — 17, зеленых — только 7.

Температурный предел, при котором еще могут жить диатомовые и зеленые водоросли, не превышает 50,7°С, тогда как у нитчатых синезеленых (из порядка Oscillatoriales) он равен 85,2°С. В таких условиях синезеленые нитчатки образуют хорошо заметные пленки, плавающие на поверхности воды или лежащие на дне водоема.

Общее количество видов водорослей, обнаруженных в горячих водах, более 200. С повышением температуры в водоеме число видов, способных переносить изменение условий, заметно уменьшается. Большинство термофильных водорослей живут при температуре 35—40°С. При 85—90°С обнаружены единицы.

Большая часть обитателей термальных вод относится к эвритермным организмам, живущим и при более низких температурах (роды Ulothrix, Oedogonium, Cladophora, Spirogyra, Cosmarium, Rhizoclonium, Nitzschia и т.д.). Специфических термофилов, неспособных существовать при температуре ниже 30°С, очень немного. Самые типичные и широко распространенные из них — Astigoclados laminosus и Phormidium laminosum. Оптимум их температурного развития лежит в пределах от 45 до 55°С.

У термофильных водорослей отсутствуют какие-либо специальные внешние приспособления, компенсирующие экстремальные воздействия среды, и поэтому морфологически они не отличаются от форм, населяющих обычные холодные воды. Выносливость их, по-видимому, обусловлена внутренними физиологическими перестройками в клетках, структурой и химическим составом цитоплазмы.

* Поскольку водоросли очень чувствительны к химическому составу термальных вод, они могут служить индикаторами их качества (по составу водорослей с д о химических свойствах воды).
ВОДОРОСЛИ СНЕГА И ЛЬДА

Другая группировка, приспособленная к жизни в крайних температурных условиях (при 0°C и ниже), — криофитон, или криофильные водоросли, которые обитают на поверхности снега и во льдах.

В настоящее время список этих водорослей насчитывает свыше 100 видов. Среди них особенно распространены одноклеточные зеленые, диатомовые и синезеленые водоросли. Золотистые водоросли и динофлагелляты представлены ограниченным числом видов.

«Снежные» водоросли развиваются, как правило, не на свежевыпавшем, а на старом снегу, оставшемся лежать в холодных ущельях или на снеговых полях высоко в горах. Их рост и размножение начинаются после того, как под действием солнечной радиации снег частично растает. Окраска снега в зависимости от преобладания в нем того или иного вида (а также стадии развития водоросли) может быть красной, зеленой, желтой, бурой, почти черной.

Наиболее известно явление так называемого «красного снега». Чаще всего оно связано с интенсивным размножением водорослей Chlamydomonas nivalis, в клетках которой содержится большое количество красного пигмента астаксантин. Другой вид, C. flavovirens, встречающийся в Высоких Татрах, окрашивает снег в желто-зеленый цвет. Позеленение снега в Гренландии, Альпах и ряде других высокогорий обусловлено кроме видов Chlamydomonas также видами рода Raphidonema, некоторыми десмидиевыми, синезелеными водорослями и динофлагеллятами. Буровато-желтую окраску обычно придают снегу диатомовые. Площадь окрашенного снега может занимать до нескольких квадратных километров.

Во льдах арктических и антарктических бассейнов сильно разрастаются диатомеи. Первоначально они развиваются на нижней, погруженной в воду поверхности льда, а затем в толще его, распространяясь по тонким каналцам, которые пронизывают лед в разных направлениях. В случае массового развития диатомовые водоросли вызывают интенсивное буровато-желтое окрашивание льда на больших пространствах. При этом биомасса диатомей весьма значительна: с 1 м³ льда собирают около 1 кг (сырой массы) водорослей.

ВОДОРОСЛИ СОЛЕНЫХ МАТЕРИКОВЫХ ВОДОЕМОВ

Своебразную группировку организмов представляют собой водоросли соленных озер*. Концентрация солей в континентальных водоемах может быть очень высокой — до 285 г/л воды, если в ней преобладает хлористый натрий, и до 347 г/л при преобладании сульфата натрия. Солевыносливых водорослей довольно много, известны даже виды, живущие в насыщенных растворах. Альгофлора засоленных водоемов не может считаться морской, так как типичные обитатели моря здесь отсутствуют. По происхождению это, скорее, пресноводные формы, приспособившиеся к повышенной концентрации солей.

* Таких водоемов особенно много в районах с жарким климатом и там, где подстилающие породы содержат большое количество солей.
ВОДОРОСЛИ

Организмы, населяющие воды с хлористыми солями, делятся на две группы: эвгальфиты и олигоэвгальфиты. К первой относятся формы, живущие только в присутствии солей натрия и магния (из них полиэвгальфиты населяют воды с высокой концентрацией солей, близкой к морской, а иногда и большей, а мезогальфиты — с уменьшенным содержанием солей, например во внутренних морях и опресненных морских бухтах). Вторая группа включает формы, которые живут в воде либо без хлоридов (галофобы), либо с незначительным их содержанием, не более 5%.

Типичный полиэвгальфит Dunaliella salina — одна из наиболее распространенных водорослей соленых водоемов, сходная по строению с хламидомонадой. В клетках этого вида дуналиеллы содержится красный пигмент β-каротин. В периоды массового развития пигмент из отмерших клеток водорослей переходит в солевой раствор (ртут), окрашивая его и соль, выпадающую в виде кристаллов, в разные оттенки красного цвета*.

Другой обычный обитатель соленых озер — синезеленая водоросль Chlorogloeoa sarcinoides, встречающаяся на юге Украины. Мощные слизистые скопления этой водоросли образуют пласти в береговой части некоторых озер. Ил, остающийся после отмирания Chlorogloeoa, используется в лечебных целях.

ИЗВЕСТКОВЫЕ ВОДОРОСЛИ

Эту группу составляют «сверлящие» водоросли, жизнедеятельность которых связана с известковым субстратом. Число их видов невелико — около 20. В основном эти представители водорослей довольно широко встречаются в пресных и морских водах, на известковых скалах, раковинах, кораллах. Выделяя органические кислоты, водоросли постепенно растворяют известковые субстраты и из них образуются пронизанным тонкими и глубокими каналами — ходами.

Еще одну группу известковых водорослей образуют формы, способные выделять углекислый кальций**. Количество известки, образующее разными видами, неодинаково: у одних оно небольшое, у других — настолько обильное, что кластеры нити водорослей как бы заключаются в своеобразные футляры, у третьих организм полностью погружается в субстрат, в котором он постепенно отмирает. Жизнеспособными в таких случаях остаются лишь водоросли, расположенные ближе к поверхности субстрата.

СОЖИТЕЛЬСТВО ВОДОРОСЛЕЙ С ДРУГИМИ ОРГАНИЗМАМИ

Водоросли не всегда ведут свободный образ жизни. Очень часто можно наблюдать их сожительство — симбиоз — с бактериями, грибами, другими водорослями, высшими растениями и животными. Взаимоотношения между организмами, составляющими такие сочетания или комплексы, степень влияния...

* Рта, в которой растет Dunaliella salina, имеет приятный запах фиалок.
** Эти водоросли способствуют образованию отложений, называемых туфами, которые особенно обильны в отложений древних геологических периодов. В древних туфах нередко обнаруживаются остатки синезеленых водорослей.
одного компонента на другой могут быть самыми разными и не всегда носят характер положительных взаимодействий (когда один из видов извлекает для себя пользу из сожительства с другим видом и не причиняет ему никакого вреда).

Обычно различают несколько типов сожительства водорослей с другими организациями: эпифитизм, эндофитизм, паразитизм, мутуализм. Эпифитизм представляет такой тип сожительства, при котором имеет место тесный наружный контакт между водорослью и другим организмом, на котором она поселяется, при автономности их питания. При эндофитизме автономность питания обоих организмов сохраняется, но между ними формируется уже внутренний контакт (водорось живет внутри другого организма, не нанося ему видимого вреда). Паразитизмом называют такие взаимоотношения, когда внедряющаяся в тело хозяина водорось питается за его счет и в конечном итоге приводит к отмиранию отдельных частей организма хозяина или иногда к полной его гибели. Мутуализм, наоборот, представляет собой такой тип взаимоотношений, когда совместно существующие виды (один организм внутри другого) извлекают из своего сожительства множество преимуществ и иногда не в состоянии жить раздельно. В природе такие случаи встречаются, правда, очень редко. Следует подчеркнуть, что резко разграничить перечисленные типы взаимоотношений, обнаружить их в чистом виде на практике удастся далеко не всегда, скорее можно наблюдать переходные формы.

Эпифитизм среди водорослей — очень частое явление. Он заключается в том, что водоросли-эпифионы используют другие растения как субстрат для прикрепления и, не проникая внутрь их тела, пытаются вполне самостоятельно. При этом один и тот же вид водоросли может прикрепляться не только к разным растениям, но даже к неживым субстратам и животным*. В пресных водоемах эпифитами, например, являются диатомеи, поселяющиеся на талломе одной из распространенных зеленых водорослей — кладофоры, а в морях — многие бурые и красные водоросли, прикрепляющиеся к многолетним черешкам ламинарий, основаниям фукусов и других крупных форм. Все отделы водорослей имеют представителей, ведущих эпифитный образ жизни**. Приспособления к прикреплению у эпифитов разной систематической принадлежности часто носят конвергентный характер. Пример тому — удивительно похожие морфологически, но относящиеся к разным отделам коккоидные водоросли.

Отношения между эпифионтом и хозяином не всегда складываются безразлично для организма, служащего опорой. Это особенно наглядно проявляется при массовом развитии эпифитов, когда они почти сплошным слоем обрастают растение. Та же кладофора или аквариумные высшие растения, плотно покрытые талломами эпифитных водорослей, испытывают явное угнетение. Причиной, по-видимому, служит избыточное затемение, утгетающее фотосинтез этих рас- тений.

* При использовании животного организма в качестве места прикрепления водоросли (эпизоны), как правило, тяготеют к определенной группе животных.
** Необходимо заметить, что продолжительность эпифитирования у разных видов неодина- кова: у одних она занимает почти весь жизненный цикл, у других — только часть его.
Более специализированным и сложным типом сожительства двух организмов оказывается эндомфитизм (эндосимбиоз), когда водоросль живет полностью или частично внутри другого организма. При этом хозяин не обнаруживает признаков какого-нибудь подавления, а эндофит, используя его тело как жизненное пространство и сохраняя способность самостоятельно питаться, не теряет своей независимости. Эндофит либо поселяется в толще клеточной стенки другой водоросли, либо проникает между клетками, раздвигая их. Например, Coleochaete nitellarum локализуется в клеточных стенках междоузлий нителлы, Endoderma — в стенках кладофоры. Водоросли родов Anabaena и Nostoc живут в воздушных камерах мхов Anthoceros и Blasia, Anabaena azollae — в полостях на нижней стороне листьев водного папоротника Azolla americana (рис. 172), а Nostoc punctiforme обитает в межклетниках водных растений Cycas и Zamia.

Филлобийм (Phyllobium) поселяется вблизи сосудистых пучков некоторых высших растений (из разных семейств). Трентеполия (Trentepohlia) рассматривается одновременно и как эпифит, и как эндофит, поскольку глубоко проникает внутрь пробковой ткани коры деревьев. Цефалеурос (Cephaleuros) выступает как промежуточная форма между эндофитами и паразитами. Разрастаясь внутри живых листьев тропических растений, он вызывает отмирание прилегающих к нему тканей растения-хозяина (рис. 173), однако, сохраняя хлорофилл, сохраняет способность к автотрофному питанию.

Родохитриум (Rhodochrytrium), встречающийся на сложноцветных, — уже настоящий паразит, живущий исключительно за счет хозяина, так как из-за отсутствия хлорофилла утерял способность к автотрофному питанию. Из красных водорослей наиболее совершенный пример паразитизма представляет лишенная хлорофилла Harveyella mirabilis, развивающаяся на красных водорослях Rhodomela (рис. 174, A). Баланс углерода в трофических отношениях этих водорослей показан на рис. 174, B.

Рис. 172. Продольный срез через ось папоротника Azolla, показывающий различные стадии формирования полостей на листьях и захваты симбиотической синезеленой водоросли Anabaena azollae (по Peters)

Рис. 173. Cephaleuros в листе высшего растения
Рис. 174. Взаимосвязь паразита и хозяина. Паразитическая водоросль *Harveyella mirabilis* на *Rhodomela confervoides* (мелкие нити паразита внедряются в ткань хозяина) (A); ежедневный баланс углерода в трофических отношениях между водорослью-паразитом и хозяином (B). Сырая масса хозяина принята за 200 мг, паразита — за 0,05 мг. РОВ — растворенное органическое вещество.
В отличие от вышеперечисленных примеров паразитизма эндосимбиозы могут характеризоваться и взаимовыгодными отношениями партнеров, наиболее тесно и длительно связанных друг с другом в едином комплексе. Классическим примером межклеточного эндосимбиоза служат лишайники, представляющие собой настолько прочное и гармоничное биологическое единство водоросли и гриба, что образуется целостный организм нового типа. В такой кооперации гриб защищает водоросль, а водоросль его кормит, так как сохраняет хлорофилл и способность к фотосинтезу. Правда, не всегда взаимоотношения между грибом и водорослью в лишайнике столь прозы и безобидны, особенно для водоросли. Большая часть выигр от такого сожительства находится все-таки на стороне гриба, доминирующего в лишайниковых талломах.

Внутриклеточный эндосимбиоз распространен значительно шире. В качестве симбионтов водоросли могут соединяться с животными — одноклеточными и многоклеточными (инфузориями, радиоляриями, гидрами, губками, некоторыми червями и др.). Сами они принадлежат чаще всего к простейшим зелёным водорослям и динофлюгелятам и носят специальные названия — зоохлорелла (Zoochlorella) и зооксантелла (Zooxanthella).

В организмы одних видов животных водоросли попадают случайно, с пищей (благодаря голозойному типу питания). Внутри животного некоторые клетки, которых почему-либо не коснулось переваривание, успевают приспособиться к необычным условиям существования и даже размножаются. В процессе жизнедеятельности они снабжают своего хозяина углеводами. Примерами таких в конечном итоге расподающихся симбиозов служат системы инфузории — зоохлореллы; личинки отдельных видов стрекоз — клетки Euglena gracilis, содержащиеся в эпителии пищеварительного тракта стрекоз; ресничный червь конволюта (Convoluta roscoffensis) — картерия (Carteria) и др. Предполагаемый обмен биогенами между Convoluta roscoffensis и его симбиотической водорослью показан на рис. 175.

Рис. 175. Предполагаемый обмен биогенами между ресничным червем Convoluta и его симбиотической водорослью (по Boyle и Smith)
Значение водорослей в природе и жизни человека

Среди симбиотических пар встречаются и более прочные и продолжительные связи. Однако симбиотические отношения такого рода складываются у водорослей только с определенными видами животных. При этом автотрофный организм в процессе размножения животных передается из поколения в поколение. Пример такого рода симбиозов — зеленая гидра — водороль, асцидия — прохлорофитовая водоросль.

Аналогичные симбионты имеются у гриба Geosphon и водорослей Rhizosolenia. Разница с предыдущими примерами в том, что здесь эндосимбиотические синезеленые водоросли свой облик заметно не меняют и их легко узнать. Это нитчатые формы, близкие к Nostoc и Anabaena. Geosphon встречается на влажной почве и внешне напоминает маленькие ботридиумы (рис. 176). Таллом его состоит из стеляющихся развителенных нитей (без перегородок) и не отходящих от них вверх пузырепищадных вздутий, содержащих нит ностока. В таком сообществе отсутствие пластид в растении-хозяине компенсируется за счет фотосинтеза синезеленой водоросли. Некоторые виды Rhizosolenia, содержащие в цитоплазме нити Richella, в отличие от Geosphon, не утрачивают собственных пластид.*

Рис. 176. Внутриклеточный симбиоз Geosphon

ЗНАЧЕНИЕ ВОДОРОСЛЕЙ В ПРИРОДЕ И ЖИЗНИ ЧЕЛОВЕКА

Благодаря широкому распространению водоросли имеют большое значение как для жизни биосферы, так и для хозяйственной деятельности человека.

Составляя основную часть фототрофов водной среды, эти организмы являются одними из главных поставщиков органического вещества в водоемах. Они представляют собой начальное звено в цепи питания различных гидробионтов, включая наиболее важных из них — рыб. При этом роль планктонных форм, называемых «микроскопическими лабораториями органического вещества», просто незаменима. Питательная ценность планктона по содержанию белков и жиров не уступает ценности многих сельскохозяйственных культур.

Обитие в водоемах микроскопических водорослей определяет количество его животного населения. Учитывая это обстоятельство, для искусственного рыбоводства выбирают водоемы, богатые фитопланктоном. В случае же

* Описанные случаи внутриклеточного симбиоза у водорослей и так называемый лишайниковый (внеклеточный) симбиоз представляют большой теоретический интерес. Некоторые из подобных примеров в свое время послужили стимулом для зарождения теории симбиогенеза. В последние годы она вновь получила некоторое распространение на основании сходства в составе и строении отдельных органелл митохондрий, пластид с прокариотами.
недостаточного его развития, например в олиготрофных прудах, применяют органические и минеральные удобрения, что увеличивает биомассу планктона. В морях, где наличие фитопланктона также очень важно, по степени его обилия нередко устанавливают прогнозы для рыбного промысла.

Однако чрезмерное изобилие микроскопических водорослей в водоемах отрицательно сказывается на качестве воды, приобретающей неприятный привкус и запах. Накопление в ней прижизненных выделений водорослей, в том числе ядовитых веществ, образующихся при распаде их клеток, губительно действует на животные организмы. Причиной появления токсичности вод могут быть многие водоросли, вызывающие «цветение» водоемов. Наиболее часты из них виды Aphanizomenon, Microcystis, (синезеленые водоросли), Prymnesium parvum (гаптофитовые), Alexandrium, Gymnodinium (динофитовые) и др. При массовом развитии водорослей-обрастателей возникают трудности в водоснабжении, в эксплуатации водного транспорта и различных гидротехнических сооружений.

С другой стороны, ряд водорослей (вольбоксовые, эвгеновые, желтозеленые, динофитовые, диатомовые) вместе с гетеротрофными организмами, как активные санитары, осуществляют процессы естественного самоочищения сточных и загрязненных вод. Многие виды их являются индикаторами биологического загрязнения и заселения.

Наряду с образованием биомассы постоянно идет обратный процесс — отмирание водорослей. В водоемах бентос и оседающий планктон входят в состав детрита, который служит пищей для бактерий, акиномицетов, грибов, окончательно разрушающих мертвое органическое вещество. В случае развития, например, диатомового планктона детрит идет не только на питание организмов. Ему принадлежит также ведущая роль в накоплении осадков. Диатомовые, зеленые, золотистые водоросли формируют илы, сапропели и некоторые породы. Так, например, осадочная порода диатомит на 50—80% состоит из панцирей диатомей. Некоторые известняки сложены в основном из остатков кокколитофорид и харовых водорослей.

Водоросли, живущие в почвах, повышают их плодородие. Особенно ценны в этом отношении азотфиксирующие синезеленые водоросли, которые поселяются на вулканической лаве, скалах, песчаных и даже на субстратах, оставшихся после ядерных испытаний, и участвуют в создании первичного гумуса, в результате чего эти субстраты становятся пригодными для жизни других организмов. Вместе с бактериями, грибами и лишайниками им принадлежит роль пионеров растительности.

Водоросли на протяжении столетий использовались человеком в самых различных целях (табл. 4). Это и непосредственное употребление в пищу, и использование в качестве корма сельскохозяйственным животным, и внесение в почву в виде удобрений, и широкое применение в медицинских целях, а также использование в качестве биоконцентратов и биоиндикаторов. Водоросли в качестве биоиндикаторов используют для определения пригодности промышленных отвалов для их последующей биологической рекультивации. Они служат удобными тест-объектами в случае изучения токсичности почв после внесения ге лицинодов или попадания других ядов.
Использование водорослей

<table>
<thead>
<tr>
<th>Область использования</th>
<th>Продукты</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пищевая промышленность, производство продуктов питания</td>
<td>Желирующие вещества: для кондитерских изделий (начинка конфет, пасты, зефир, мармелад), майонез, мороженое, йогурт, цукаты, консервы, пищевая морская капуста, сгущенные сливки</td>
</tr>
<tr>
<td>Медицина</td>
<td>Изготовление твердых сред в микробиологии, лекарственных эмульсий от ожогов, повязок на раны, слабительных средств, витаминных препаратов, органических йодистых соединений и ряда микроэлементов — легкоусваиваемых I, K, Na, P, Mg, Br. Получение ценных лекарственных средств при ряде заболеваний, радиосорбенты</td>
</tr>
<tr>
<td>Сельское хозяйство</td>
<td>Органические и минеральные удобрения с микроэлементами; водорослевая крушка для подкормки крупного рогатого скота, а также для выращивания свиней, птицы</td>
</tr>
<tr>
<td>Рыбное хозяйство</td>
<td>Зеленый свежий корм, детрит</td>
</tr>
<tr>
<td>Энергетика</td>
<td>Добыча биогаза, углеводородов</td>
</tr>
<tr>
<td>Автомобильная промышленность</td>
<td>Краски, лаки</td>
</tr>
<tr>
<td>Текстильная промышленность</td>
<td>Пропитка тканей, краски</td>
</tr>
<tr>
<td>Бумажная промышленность</td>
<td>Бумагопечатание, краски, бумага</td>
</tr>
<tr>
<td>Парфюмерия</td>
<td>Изготовление кремов, паст, лосьонов, высококачественных зубных паст</td>
</tr>
<tr>
<td>Нефтедобыча</td>
<td>Изготовление связывающих растворов при бурении скважин</td>
</tr>
<tr>
<td>Биоочистка</td>
<td>При сточных и других загрязнения</td>
</tr>
</tbody>
</table>

История научных исследований и промышленного использования водорослей насчитывает более 300 лет. Так, агарт-агар стали добывать из морских водорослей в Японии в 1670 г. Промышленное производство каррагинана началось в Германии в 1842 г. В России небольшое производство по получению из водорослей йода, брома, соды было организовано монахами Соловецкого монастыря в XIX в.

В настоящее время из водорослей получают различные полисахариды, полициклические, алифатические и ароматические соединения, витамины. Выявлены биологически активные вещества (БАВ), принадлежащие к различным по своим свойствам и спектру действия группам химических веществ: ингибиторы и стимуляторы роста клеток, антибиотики, сорбенты радионуклидов, вещества кардиотонического, нейротропного, транквилизирующего, антиопухолевого, растительного и язвозаживающего действия. Наиболее широко на сегодняшний день используются водоросли-макрофиты, в основном для получения из них альгинатов и агароподобных веществ.

Что касается прямого использования водорослей для хозяйственной деятельности человека, то на первое место следует поставить красные (Porphyra, Rhodymenia и др.) и бурые (Laminaria, Alaria, Undaria и др.). Морские макрофиты с древних времен используют в пищу и на корм скоту. Приготовление салатов, супов, острых приправ и кондитерских изделий из этих водорослей особенно популярно на Востоке (в Японии и Китае).
Водоросли, используемые в пищевых целях, не только питательны, но и богаты витаминами и минеральными элементами, в том числе соединениями йода и брома. В связи с этим добавление их в пищу рекомендуется с целью лечения и профилактики ряда заболеваний. Например, «морская капуста» (ламинариевые водоросли) в качестве пищевой добавки назначается при многих сердечных заболеваниях, атеросклерозе, расстройстве деятельности щитовидной железы и как слабое слабительное средство.

Из пресноводных водорослей в пищу идут крупные колонии Nostoc, а также Spirulina platensis, издавна употребляемая некоторыми народностями. В настоящее время в ряде стран налажено массовое культивирование этой водоросли.

Морские водоросли служат сырьем для многих отраслей промышленности. Наиболее важные субстанции, получаемые при переработке красных и бурых макрофитов, — агар, каррагинан, альгинаты. Агар образуется при вываривании талломов красных водорослей и состоит из смеси различных полисахаридов. При комнатной температуре расплавленный агар легко застывает и превращается в плотный студень наподобие животного желатина. Агар выпускается промышленностью в виде тонко размолотого порошка, лент или плиток. Он широко применяется в пищевой, текстильной, бумажной, микробиологической, фармацевтической и других отраслях промышленности. В России, к сожалению, в значительных количествах агар получают из анфельции, добываемой в Белом и дальневосточных морях.

Альгинаты (соли альгиновых кислот), извлекаемые из бурых водорослей, обладают превосходными свойствами загустителей и стабилизаторов растворов. Их добавляют в пищевые продукты, лекарственные препараты, используют при выделке кожи, при производстве бумаги и тканей, синтетических волокон, пластмасс, строительных материалов. Из альгинатов делают растворимые нити, используемые в хирургии, противожоговые повязки. В гинекологической практике и при лечении ран успешно применяют специально приготовленные тампоны из черешков ламинарии (Laminaria digitata и L. cloustoni). В этом случае используется свойство альгинатов сильно набухать при увлажнении.

В настоящее время из морских водорослей промышленным путем получают зольные элементы: калий и натрий (их используют для удобрений), а также некоторые органические кислоты, маннит, ацетон и ряд других веществ.

В последнее десятилетие большое внимание уделяется вопросам промышленного применения микроскопических водорослей. Особенно важны работы по освоению массовых культур этих растений в условиях искусственного выращивания либо под открытым небом, либо в замкнутых аппаратах. Биомасса микроскопических водорослей используется как дополнительный источник белка и витаминов, для регенерации воздуха в замкнутых экологических системах, например в космических кораблях, а также для получения ценных для промышленности веществ. Культуры водорослей необходимы и в научно-исследовательской работе. Значение водорослей как объектов исследования в области физиологии, биохимии, генетики, биофизики и общей биологии трудно переоценить. Можно без преувеличения сказать, что многие открытия в биологии в последние десятилетия связаны с изучением именно низших автотрофных растений. Широкую известность среди них получили микроскопические хлорококковые водоросли (Chlorella, Scenedesmus), а также водоросли с крупными талломами, очень удобными для экспериментирования: харовые (Chara, Nitella) и дазикладовые (Acetabularia).
ГРИБЫ
И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

ОБЩАЯ ХАРАКТЕРИСТИКА

Определение. С эколого-трофической точки зрения к гриbam относят гетеротрофные эукариоты с исключительно осмотрофным типом питания, вегетативное тело которых обычно погружено в субстрат, а на поверхность субстрата выдвинуты спороносные органы. У многих грибов (макромицетов) они крупные и хорошо заметные — это, например, поднимающиеся над почвой плодовые тела шляпочных грибов или вырастающие на дереве трутовики. Другие грибы (микромицеты) имеют мелкие органы спороношения, строение которых можно рассмотреть только под микроскопом. При массовом развитии они образуют цветные налеты в виде пленей на различных субстратах.

Филогенетические построения показывают, что экоморфа «грибы» не является однородной монофилетической группой, а разделяется на две филы (царства). Большая часть, названная «истинными грибами» (эумицеты), монофилетична и составляет царство Грибы (Fungi), которое разделяют на четыре отдела — Chytridiomycota, Zygomycota и два отдела — сумчатые (аскомицеты) и базидиальные грибы из надотдела Dikaryomycota. Меньшая часть, названная «грибоподобными организмами» (псевдомицеты), входит наряду с некоторыми водорослями в состав царства Stramenopila, группируясь в два отдела — Oomycota (оомицеты) и Labyrinthulomycota (сетчатые слизевики).

Грибной таллом

Морфологическая классификация позволяет выделить три типа талломов, присущие большинству грибов: амёбоидный (плазмодиальный), мицелиальный и дрожжеподобный.

Амёбоидный таллом. Представляет собой лишенную клеточной стенки одноклетковую клетку. Кроме цитоплазматической мембраны клетка защищена лишь уплотненным периферическим бековым слоем — перипластом. Многоклеточный таллом такого типа называют плазмодиальным. Для закрепления в субстрате и питания таллом, находящийся на поверхности (экстраматрикальный) или внутри
(интраматрикальный) субстрата, может образовывать корнеподобные выросты — ризомицелий. Если ризомицелий отсутствует или лишен ядер, то таллом представлен одной амёбoidной клеткой и называется моноценциртрическим. У некоторых грибов ризомицелий удлинен, в него переходят ядра, и он образует в некоторых местах расширения, образуя другие амёбoidные клетки с ядрами (полиценциртрический таллом). У примитивных видов моноценциртрический таллом при переходе к спороношению целиком превращается в спорангиев (холокарпический таллом). У грибов с эухарпическим талломом из амёбoidной клетки формируется несколько спорангиев или они образуются в нескольких клетках полиценциртрического таллома.

Мицелиальный таллом. Это покрытые клеточной стенкой развиваемые нити, разделенные внутренними перегородками на фрагменты (клеточные мицелии) или не фрагментированные (неклеточные мицелии). Перегородки образуются врастанием клеточных покровов (клеточной стенки и мембраны) от периферии к центру (подобно диафрагме микроскопа или оптического фотоаппараты). Они обычно не замкнуты, в середине остается просвет, через который из одной клетки в другую могут мигрировать питательные вещества и некоторые органеллы, включая ядра. В клетках многих сумчатых грибов находятся включения углеводной или белковой природы (пробки, тельца Воронина), которые могут закупоривать отверстие в септе и останавливать межклеточные обмены. Как правило, пора одна, но встречаются септы, перфорированные многими порами наподобие сита. Септы с простой порой могут постепенно утончаться к центру или иметь одинаковую толщину. Долипоровая септа, характерная для базидиомицетов, имеет трубчатое расширение у поры и прикрыта перфорированным мембранным колпачком — парентосомой (рис. 177). Через такую пору миграция клеточных органелл невозможна, хотя на отдельных стадиях жизненного цикла происходит растворение парентосом и появляется возможность межклеточных обменов органеллами.
Общая характеристика

Рис. 178. Мицелий вешенки (*Pleurotus ostreatus*) с многочисленными ананастомозами (один ананастомоз обозначен стрелкой) (фото О.В. Камзолкиной и М.В. Козловой)

Гифы имеют верхушечный рост, причем растет не только верхушка первичной гифы, но и веточки, поэтому в зрелом мицелии гифы настолько густо переплетены, что бывает невозможно определить, где первичная гифа, а где веточки. Картина усложняют многочисленные ананастомозы (слияния) боковых веточек друг с другом (рис. 178). Ананастомозы придают прочность мицелярной структуре. Диаметр гиф обычно не бывает меньше 1 мкм и больше 30 мкм (в среднем около 10 мкм). Тем не менее у некоторых представителей рода *Achlya* гифы могут достигать ширины 1000 мкм (т.е. 1 мм!). Гифы, составляющие мицелий, могут быть примерно одинакового диаметра, но могут сильно различаться (как стволы и ветви деревьев). Именно из мицелия (за редчайшими исключениями) формируются многочисленные структуры грибов, в том числе и плодовые тела, в общем называемые «грибами».

Видоизменения мицелия обусловлены адаптациями к условиям жизни, ибо мицелий несет не только функции, обеспечивающие питание, но и выживание в окружающем мире. Все видоизменения можно свести к обеспечению двух функций — вегетативной и пропагативной. Вторая функция будет рассмотрена в последующих разделах, а здесь остановимся на первой. Вегетативная функция может быть разделена на обеспечение выживания (покоящиеся структуры), поддержание целостности мицелия в пространстве (проводящие и поддерживающие структуры), заражение и питание в теле хозяина (инфекционные структуры). Конечно, такое деление, как и всякая другая биологическая классификация, условно, ибо многие грибные структуры полифункциональны. Например, зиготические (т.е. пропагативные, а не вегетативные) структуры многих грибов покрыты толстыми оболочками и несут функцию выживания, а вегетативные хламидоспоры наряду с функцией выживания обеспечивают размножение.

- **Среди покоящихся структур** рассмотрим склероции и хламидоспоры. **Склероции** представляют собой тесное переплетение гиф (ложная ткань — плектенхима),
образующее комочок размером от нескольких десятков микрометров до нескольких сантиметров. По анатомическому строению склероции разделяют на истинные и ложные. У первых на поперечном разрезе можно увидеть два слоя: узкий — кольцевой и широкий — сердцевинный (рис. 179). Кольцевой слой образован очень плотным сплетением мелких гиф с толстыми оболочками, пропитанными темным пигментом меланином, который придает клеткам особую прочность. Внутренний слой представлен рыхлым сплетением крупных гиф с тонкими оболочками и запасом питательных веществ (каплями жира и др.). Он служит для питания проростков склероции. Ложные склероции не имеют внутренней слоистости. Все их клетки одинаковые и содержат питательные вещества и меланин в оболочке. Склероции могут быть образованы только грибными гифами или же в их образовании принимают участие ткани зараженного хозяина, которые мумифицируются. Таковы, например, мумифицированные, черные с поверхности (вследствие отложения меланина) яблоки, зараженные возбудителем плодовой гнили Monilia cinerea, или гусеницы, зараженные грибами из рода Cordycepс.

При образовании хламидоспор отдельные клетки мицелия покрываются толстыми, часто меланизированными оболочками и обособляются. Хламидоспоры, однонасыщенные или соединенные в цепочки, могут образоваться интеркалярно (из внутренних клеток мицелия) и терминально (из конечных клеток). Они могут быть различными по форме и размерам.

- **Проводящие и поддерживающие структуры** характерны для древоразрушающих базидиомицетов, мицелий которых часто распространяется на очень большие расстояния вдоль дерева (иногда на десятки метров). Для обеспечения единства таллома на таком большом протяжении отдельные гифы срастаются боковыми сторонами, образуя пучки — синемы. Крупные, прочные, видимые невооруженным глазом синемы называют тяжами или шнурами. Центральные гифы в таких шнурах могут функционировать как проводящая ткань, обеспечивающая транспорт воды и питательных веществ. У осенного опенка (Armillaria mellea) оболочки наружных клеток разветвленных тяжей меланизированы, вследствие чего они становятся очень прочными и темноокрашенными (похожими на пролонгу). Такие «гибриды» тяжей и склероциев называют ризоморфами. Они способны распространяться не только по зараженному стволу дерева, но и в почве и заражать корни расположенных вблизи здоровых деревьев.

- **Инфекционные структуры** предназначены для заражения растений или животных и питания за их счет. Паразиты растений часто образуют на поверхности расширение кончика гифы апгессорий, который плотно прилегает к кутикуле за счет выделенных наружу гидрофобных белков гидрофобное, служащих «вакуумной смазкой». На участке оболочки апгессории, не соприкасающимся с кутикулой, откладывается меланин, а в растение из апгессории выделяются гидролитические ферменты, разрушающие кутикулу и клеточную стенку растения. Под действием высокого тургорного давления и ферментов в оболочке растения образуется отверстие, через которое прорастает внутрь инфекционная гифа, преобразующаяся в питательный орган — гаусторий. При росте гаустория плазма-
лемма хозяйской клетки не разрушается, а вдавливается (инвагинируется), вследствие чего зараженная клетка не погибает, а некоторое время снабжает гаусторий питательными веществами и обеспечивает внутриклеточный (межклеточный) рост гиф паразита. По форме гаустории бывают простыми и разветвленными (рис. 180).

Рис. 180. Гаусторий возбудителя стеблевой ржавчины пшеницы Puccinia graminis в клетке зараженного растения (Л.Н. Андреев, Ю.М. Плотникова, 1989).

МКГ — материнская клетка гаустория (инфекционная гифа гриба); ЭМ — экстрагаусториальная мембрана (продолжение плазмалеммы растительной клетки, окружающее гаусторий); ЭГМ — экстрагаусториальный матрикс (пространство между ЭМ и клеточной стенкой гаустория)
Интересны по своему строению ложные гифы хищных грибов, питающихся мелкими почвенными и водными нематодами, амёбами, ракообразными и другими беспозвоночными животными. Ложные гифы могут представлять собой различного рода кольца, петли, сети, клейкие нити, стреляющие «гарпуны», которые образуются в ответ на присутствие определенных веществ потенциальной жертвы и сжимаются или выстреливают при механическом соприкосновении с ней.

Ложные ткани. Настоящие ткани, возникающие в результате деления клеток в разных направлениях, образуют немногие грибы, в частности лабульневые аскомицеты. Однако мицелий может формировать ложные ткани (плектенхимы), из которых, в частности, построены плодовые тела. На поверхности ризоморф, шляпок плодовых тел, склероциев образуется кроющая «ткань»; у некоторых трутневых грибов сильно развиты механические элементы, а млечные ходы некоторых видов шляпочных грибов, таких, как виды рода Lactarius (рыжики, грузди, волунщики), можно рассматривать как подобие проводящих тканей. В особенностях морфогенеза сложно устроенных плодовых тел различных грибов — макромицетов — также большую роль играют гидрофобины, обеспечивающие слипание соседних гиф.

Дрожжеподобный почковующийся таллом представляет собой отдельные клетки, покрытые стенкой, или распадающиеся короткие цепочки клеток (псевдомицелей), которые образуются вследствие нерасхождения материнских и дочерних клеток. Большинство дрожжей размножаются почкованием, при котором новая клетка образуется не вследствие врастания клеточной стенки внутрь клетки, как у мицелиальных грибов, а локальным вздутием оболочки (почка), в которое переходят разделившееся ядро и другие органеллы. Существует также небольшое число «делящихся дрожжей», у которых клетки делятся врастанием оболочки.

Химический состав и метаболизм грибов

Все метаболиты условно разделяют на первичные и вторичные. Первичные метаболиты необходимы для роста организма и незаменимы. Это — нуклеино- вые кислоты, белки, углеводы, коферменты, липиды и др. Из них построены клеточные органеллы — ядра, митохондрии, рибосомы, клеточная стенка и мембранные структуры. Их отложения клетка использует в качестве источников питания и энергии. Вторичные метаболиты необходимы для адаптации организма к условиям жизни. Они могут встречаться у одних видов и отсутствовать у других. В отличие от первичных, вторичные метаболиты — это, как правило, низкомолекулярные соединения.

БЕЛКИ

Структурные белки входят в состав клеточной стенки, мембранных структур, хромосом, из них построены элементы цитоскелета — микротрубочки и микрофиламенты. Ферментные белки обеспечивают все внутриклеточные процессы и взаимодействие с окружающей средой (подробнее см. раздел о питании грибов, с. 272).
УГЛЕВОДЫ

Структурные углеводы составляют основу клеточной стенки грибов. По химическому составу их можно разделить на три группы: полимеры глюкозы, полимеры других моносахаридов и полимеры углеводов, ковалентно связанные с пептидами (гиликопротеины).

Полимеры глюкозы — это глюканы, хитины и целлюлоза. Глюканы представляют собой линейные или разветвленные цепочки молекул глюкозы, соединенные α- или β-связями. Они составляют наружный слой клеточной стенки большинства грибов. В молекулах хитина глюкозные остатки соединены с аминогруппами (аминированы), к которым в свою очередь присоединены остатки уксусной кислоты (ацетилированы). Длинную неразветвленную β-1,4-цепь из n-го числа таких модифицированных молекул глюкозы (N-ацетил-глюкозамина) называют хитином (рис. 181, 2). Его цепочки составляют внутренний слой грибной клеточной стенки и придают ей жесткость, ригидность, заменяя целлюлозу, которая у большинства грибов отсутствует. Степень ацетилирования молекул глюкозы в хитинах из разных организмов может быть различной. Деацетилированный хитин получил название хитозана. Он встречается лишь у некоторых грибов. Наконец, целлюлоза представляет собой пучок линейных молекул α-1,4-глюкана (рис. 181, 1), которые соединены друг с другом многочисленными водородными связями, делающими молекулу очень прочной. Молекулы глюкозы, сшитые друг с другом разветвленными молекулами других полисахаридов, составляют прочный каркас клеточной стенки. Целлюлоза обнаружена у всех исследованных ооомицетов; она составляет около 10% массы клеточной стенки. Долгое время считали, что у истинных грибов целлюлоза отсутствует, но сейчас показано ее наличие в стенке некоторых аскомицетов (род Ophiostoma).

Полимеры других моносахаридов (маннозы, галактозы и др.), называемые у высших растений гемицеллюлозой, встречаются не во всех группах грибов. Особенно много полимеров маннозы (маннанов) в клеточных стенках дрожжей. По-видимому, такой состав стенки лучше, чем глюкановый, обеспечивает покровение.

Наконец, в клеточных стенках грибов, как и растений, содержится много полисахаридов, соединенных с белковыми молекулами (пептидоглюканы, маннанопротеины и др.). Они формируют средний слой многолойной клеточной стенки и играют важную роль как в поддержании структурной целостности клеток, так и в ее обменных процессах с окружающей средой.

Запасные углеводы. У грибов не обнаружен крахмал — основной запасной полисахарид высших растений и многих водорослей. Глюкоза у зукицетов запасается в качестве α-глюкана, близкого к животному крахмалу гликогену, а у ооомицетов — в качестве β-глюкана, близкого к ламинарину бурых водорослей. Помимо глюканов у грибов есть и другие запасные углеводы, причем некоторые характерны только для этого царства. Дисахарид трегалоза, в котором 2 молекулы глюкозы соединены α-1,4-связью, играет важную роль в адаптациях грибных клеток к стрессам и в регуляции осмотических процессов (показано Е.П. Феофиловой). Долгое время трегалозу нащадли только в грибах, отчего
она получила второе название — микоза. Сейчас трегалоза обнаружена также в некоторых высших растениях в качестве минорного соединения. В клетках эумицетов содержатся сахароспирты — маннит, сорбит, ксилит и др.

ЛИПИДЫ

Липиды (эфиры глицерина с монокарбоновыми кислотами, имеющими неразветвленную алифатическую цепь) являются важными запасными продуктами, откладываемыми в клетке в виде капелек жира. Для грибов характерно высокое содержание полиненасыщенных (имеющих несколько двойных связей...
в алифатической цепочке) жирных кислот, таких, как линоленовая с тремя и арахидоновая с четырьмя двойными связями. В виде фосфолипидов (соединений эфирной связью с фосфорной кислотой) липиды входят в состав клеточных мембран (как основной компонент). Большую роль в создании мембран структур играют также липоиды стероны, придающие мембранам прочность. В отличие от холестерина животных, имеющего 27 атомов углерода в молекуле (C-27), и фитостеринов растений (C-29), основной стерин грибов — эргостерин (C-28).

ВТОРИЧНЫЕ МЕТАБОЛИТЫ

Пигменты. Грибы лишены фотосинтетических пигментов, но продуцируют большое число соединений, окрашивающих мицелий, пропагативные органы или субстрат. По химической природе большинство пигментов относится к терпеноидам (каротиноиды) или к ароматическим соединениям. Пигменты выполняют разнообразные функции. Так, оранжевые производные каротина индуцируют протекание полового процесса у мукоровых грибов; темно-зеленые и черные фенольные пигменты аспергиллов откладываются только в спороносном аппарате, который, в отличие от субстратного мицелия, образуется в воздушной среде, и в спорах для защиты от ультрафиолетового света; темноокрашенный меланин откладывается в клеточных стенках, что повышает их прочность.

Токсины и антибиотики. Многие грибы образуют соединения, токсичные для других организмов. Вещества, токсичные для микроорганизмов, называют антибиотиками, токсичные для растений — фитотоксинами, токсичные для животных и человека — миктоксинами. Некоторые метаболиты грибов, будучи токсичными для разных групп организмов (микроорганизмов и растений, растений и животных), имеют комплексное действие. Антибиотиками обладают многие почвообитающие грибы, которым приходится конкурировать за питательные субстраты с другими микроорганизмами. Их химическая природа и механизм действия многообразны. Так, антибиотики пенициллины и цефалоспорины ингибируют синтез клеточной стенки у бактерий, трихотецины — синтез белка у эукариотных микроорганизмов, гризеофаульвин — митоз.

Фитотоксины, выделяемые грибами в ткань зараженного растения, вызывают гибель растительных клеток, которые после этого становятся легкой добычей паразита. Токсины ингибиторы ферментативные процессы в клетках зараженных растений (например, тентоксин гриба Alternaria ингибирует фотосинтетическое фосфорилирование); обладают сильным мембранотропным эффектом и влияют на транспорт веществ через мембраны, трансмембранный перенос ионов (фузарневая кислота, фузикоксикин и др.).

Микотоксины разделяют на две группы: токсины микроскопических грибов микромицетов и токсины грибов макромицетов, имеющих крупные плодовые тела. Первые особенно опасны у грибов, заражающих растительную продукцию, которая используется в пищу. Например, в склероциях спорыньи накапливаются алкалоиды (гетероциклы, содержащие азот), являющиеся нервно-паралитическими ядами. Они не разрушаются при хлебопечении, поэтому хлеб, выпеченный из муки с примесью размолотых склероций, крайне опасен. Его использование
может вызвать серьезные отравления, часто с летальным исходом. Другой паразит злаков — возбудитель фузариоза колоса гриб Fusarium — выделяет в зерно терпеноидные токсины, также вызывающие серьезные отравления (хлеб, выпеченный из зараженной фузариозом муки, в народе называли «пылный хлеб», так как он вызывал головокружение, рвоту и другие симптомы, напоминающие сильное алкогольное отравление). Очень опасен токсин желтого аспергилла — афлатоксин. Его продуцент в странах с теплым климатом поражает различную сельскохозяйственную продукцию, использование которой в пищу или на корм скоту может вызвать серьезные поражения печени и других внутренних органов, часто с летальным исходом.

Токсины макромицетов опасны для людей, увлекающихся сбором съедобных грибов, но не умеющих отличить съедобные виды от ядовитых.

Токсичность некоторых грибов соединений обусловлена тем, что они подавляют иммунную систему животных или растений, т.е. являются иммунносупрессорами. По химической природе большинство таких соединений являются циклическими пептидами (замкнутые кольца, образованные соединением аминокислот друг с другом). В отличие от белков, циклические пептиды, во-первых, низкомолекулярны (образованы из 5—11 аминокислот) и, во-вторых, соединены друг с другом не матричным синтезом на рибосомах, а с помощью специальных ферментов — циклаз. Из подобных соединений наиболее изучен циклосторин, продуцируемый грибом Tolypocladium. Его используют в хирургической практике — при пересадке органов для подавления иммунных реакций отторжения чужеродного органа.

Фитогормоны. Некоторые грибы, являющиеся паразитами растений, выделяют в зараженную ткань низкомолекулярные соединения, регулирующие ростовые процессы у растений (деление и растяжение клеток, открывание и закрывание устьиц и др.). Таковы терпеноиды гиббереллины, образуемые сумчатым грибом Gibberella.

Наследственность

Геном. Геномом организма называют все его внутриклеточные структуры, способные к саморепликации и несущие ту или иную наследственную информацию. В грибной клетке к таким структурам относятся ядра (ядерный геном), митохондрии (митохондриальный геном), плазмиды.

Ядерный геном у грибов по своему размеру занимает промежуточное положение между геномом бактерий и высших эукариот. Например, пекарские дрожжи имеют 15 хромосом, но каждая хромосома в среднем в 5 раз меньше «хромосомы» кишечной палочки и только в 4 раза больше ДНК бактериофага. В среднем размер генома у грибов на два порядка меньше, чем у высших растений. Число хромосом у разных грибов составляет 2—28, большинство видов имеет 10—12 хромосом. Гораздо более значительные колебания отмечены в размерах ДНК на гаплоидном геном: от 0,015 нг у дрожжей Saccharomyces до 8,2 нг у зигомицета Entomophaga, т.е. более чем в 500 раз (разница в содержании ДНК у высших растений менее 100 раз). Наименьшие размеры генома имеют аскомицет
Ашбия госсипи — 9,7 млн нуклеотидных пар (н.п.): у сахаромицетных дрожжей — 13,5 млн, у большинства грибов — 25—40 млн. Это самый маленький геном среди всех исследованных свободноживущих эукариот.

Структура ядерного генома грибов также промежуточная между бактериальным и геномом высших эукариот. У истинных грибов низкий процент повторяющихся последовательностей (10—15%), которые у бактерий почти отсутствуют, а у высших эукариот составляют значительную часть генома. Повторы в геноме грибов представлены почти исключительно рибосомальными генами. Исключение составляют ооцисты (псевдогрибы), в геноме которых повторы составляют 18—65%. Более мелкие, чем у высших эукариот, и грибные интроны (некодируемые последовательности ДНК, вырезаемые перед транслацией). Таким образом, в процентном отношении протяженности ДНК, участвующей в синтезе белков, у грибов больше, чем у высших эукариот. У многих грибов обнаружены мелкие В-хромосомы. Число В-хромосом у разных штаммов, в отличие от нормальных хромосом, может быть различным. Следовательно, информация, закодированная в В-хромосомах, необязательна для обеспечения жизнеспособности клеток, но иногда важна для адаптации к условиям жизни. Например, описаны фитопатогенные грибы, факторы вирулентности которых контролируются В-хромосомами, поэтому штаммы, не имеющие их, могут питаться только растительными остатками.

Митоз у грибов также имеет ряд специфических особенностей. 1. У большинства грибов ядерная оболочка сохраняется во всех фазах митоза (закрытый митоз). 2. Центриоли имеются только у небольшой группы грибов и псевдогрибов, обладающих жгутиковыми стадиями. У большинства грибов их заменяют более просто устроенные белковые структуры полярные тельца веретена (ПТВ), являющиеся организаторами микротрубочек и обозначающие полюса при митозе. 3. Мелкие хромосомы и быстрое чередование фаз затрудняют микроскопические исследования митоза у многих грибов. Долгое время считали даже, что ядра грибов разделяются амитотически. 4. Несинхронная телофаза часто является причиной того, что в дочерние ядра иногда переходит неравное число хромосом (явление гетероплоидии). Особенно часто гетероплоидия обусловлена различием в числе В-хромосом. 5. У большинства грибов митоз не сопряжен с цитокинезом, а у ценофильских (с неклеточным мицелием) видов цитокинез вообще редок и связан лишь с образованием органов размножения или ремонтом поврежденных участков таллома. Поэтому число ядер на клетку, как правило, больше одного и неопределенное.

Половая рекомбинация. У сумчатых и базидиальных грибов зиготическое диплоидное ядро без периода покоя претерпевает редукционное деление, причем участки цитоплазмы вокруг образующихся 4-гаплоидных ядер (тетрады) сразу или после еще одного митотического деления (октады) обособляются, покрываются оболочками и превращаются в мейоспоры. Таким образом, если диплоидное ядро было гетерозиготно по какому-либо гену, то по фенотипу потомства, полученного от каждой из 4 или 8 мейоспор, можно получить не статистически достоверные, как в опытах Г. Мендела с горохом, а истинные соотношения генов у родителей. Если фенотипический признак у родителей
Рис. 182. Сумки аккомицета Neurospora crassa с упорядоченными октади спор (споры расположены в линейном порядке).

1 — перитеций с пучком сумок; 2 — зрелая сумка с октадой спор; 3 — пучок сумок из раздавленного перитеция (гибрид, полученный от скрещивания природного штамма с темными спорами и мутанта со светлыми спорами)

контролировался одним геном с алелями A и a, то расщепление в тетрадном потомстве составит 2A : 2a, а в октадном — 4A : 4a. Генетический анализ, основанный на изучении фенотипов непосредственных продуктов мейоза, называется тетрадным анализом. Он разработан у сумчатых грибов и широко применяется в генетике. У многих сумчатых грибов мейоспорангий (сумка) имеет удлиненную форму, 8 спор находятся в нем в линейном порядке, как горошины в бобе (рис. 182), причем в процессе мейотических и митотических делений плоскости веретена всегда ориентированы строго параллельно длинной стороне сумки. Поэтому, проанализировав потомство ядер, выделенных в том же порядке, в котором они находились в сумке, можно получить важную генетическую информацию: о скреплении изучаемых генов, наличии кроссинговеров между ними, а также между генами и центромерами и др.

Гетерокариоз. Выше было отмечено, что: 1) многие грибы содержат более одного ядра в клетке; 2) клетки разделены неполными перегородками, и через поры в них ядра могут мигрировать из одной клетки в другую; 3) гифы внутри одной колонии и двух разных колоний могут сливаться (анастомозировать), в результате чего возможен обмен ядрами разных штаммов. Эти свойства привели к тому, что у грибов чрезвычайно широко распространено явление разноядерности, или гетерокариоза, при котором в одной клетке длительное время сохраняются ядра, гетероаллельные по некоторым генам. О гетерокариоз заменяет гаплоидным грибам гетерозиготность, так как в гетерокариотических гаплоидных клетках, как и в гетерозиготных диплоидных, имеется место доминантно-рецессивные отношения (маскировка рецессивного фенотипа доминантым). Однако если у гетерозиготных диплоидов соотношение аллельных генов жестко детерминировано
и равно 1:1 (только у полиплоидов может быть иное соотношение альелей), то при гетерокариозе число ядер в клетке не постоянно и соотношение альелей может меняться, что способствует быстрой адаптации к меняющимся условиям. «Гетерокариоз — гибкий механизм физиологической адаптации, суть которого заключается в количественных изменениях качественно фиксированного множественного генома» (Станьер).

Паразсексуальный процесс. Иногда гаплоидные ядра в многоядерных вегетативных клетках сливаются, вследствие чего образуются диплоидные ядра. Это явление очень редкое, не превышающее одного ядра на миллион, однако вследствие огромного числа ядер в талломах постоянно встречается в грибных популяциях. Если в гетерокариотичных клетках сливаются ядра, гетероаллельные по какому-либо локусу, возникает гетерозиготное диплоидное ядро. Оно может попасть в спору и дать начало диплоидному гетерозиготному клону. В процессе митозов диплоидные ядра могут возвращаться в гаплоидное состояние вследствие потери одного набора хромосом или в них может происходить обмен участками хромосом, подобный тому, который происходит при мейозе (митотический кроссинговер). Оба процесса сопровождаются рекомбинацией родительских генов и, следовательно, фенотипов. Рекомбинация без полового процесса получила название паразсексуальной (псевдополовой).

Ядерные циклы. Жизненные циклы грибов также разнообразны, как и сами грибы. Основные циклы следующие:

1. **Бесполый цикл.** Характерен для огромной группы (несколько десятков тысяч видов) несовершенных грибов, утративших половое размножение. Деление их ядер исключительно митотическое (митотические грибы), поэтому плодоносность ядер неизвестна.

2. **Гаплоидный цикл.** Ядра в вегетативном талломе гаплоидные. Диплоидная зигота (обычно после периода покоя) делится мейотически (зиготический мейоз) — зигомицеты, многие хитридиомицеты.

3. **Гаплоидный цикл с ограниченным дикарионом.** После сближения гаметангий или гамет происходит сдвоение и синхронное деление ядер, полученных от двух родителей (стадия дикариона). После этого ядра сливаются и мейотически делятся без периода покоя. Мейоспоры дают начало новым талломам. Таково большинство аскомицетов. У этих грибов отсутствует пул скрытой изменчивости, так как все резцессивные мутации сразу проявляются фенотипически.

4. **Гаплоидно-дикариотический цикл.** Сходен с предыдущим, но стадия дикариона длительная, часто доминирующая в цикле (большинство базидиомицетов).

5. **Гаплоидно-диплоидный цикл.** Изоморфная смена генераций, изложенная в разделе, посвященном водорослям. В отличие от водорослей у грибов она встречается редко и описана у некоторых водных хитридиомицетов.

6. **Диплоидный цикл.** Вегетативный таллом диплоидный, мейоз — при формировании гаметангии или гамет (гаметический). Характерен для ооцистов и некоторых сумчатых дрожжей. У этих грибов, как и у высших зукариот, возможно скрытое сохранение резцессивных мутаций в гетерозиготных ядрах и их появление в потомстве после половой или паразсексуальной рекомбинации.

- **Митохондриальный геном.** В митохондриях грибов содержится митохондриальная (mt) ДНК. Она представляет собой набор кольцевых молекул ДНК размером от 20 до 100 тыс. нуклеотидных пар (н.п.). Наиболее глубоко исследован
ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

мт-геном у дрожжей *Saccharomyces cerevisiae*, у которых 20—70 молекул mtDNA (от 5 до 30% всего генома) упакованы в один или несколько нуклеоидов. Митохондриальная ДНК содержит гены, необходимые для синтеза собственных белков (гены рибосомальной и транспортных РНК), а также компонентов дыхательной цепи (цитохром-оксидазы, АТФазы и др.). Мутации или делеции (выпадения) мт-генов часто приводят к гибели или изменению фенотипа (низкая скорость роста, снижение активности дыхания и др.).

- **Плазмиды и вирусы.** В геномах грибов обнаружены и другие самореплицирующиеся элементы — плазмиды и вирусы. Они содержат кольцевые или линейные молекулы ДНК или РНК, находятся в ядре, митохондриях или в цитоплазме и могут влиять на фенотипические признаки грибов. Например, некоторые митохондриальные кольцевые плазмиды вызывают у сумчатых грибов гибель мицелия, достигшего определенного возраста (феномен старения), наличие многих вирусов (все вирусы грибов имеют в отличие от клеточных организмов двухцепочечную молекулу РНК) вызывает дегенерацию мицелия и плодовых тел, потерю способности заражать восприимчивые растения (гиповирулентность) и другие симптомы.

- **Вегетативная несовместимость.** При лабораторных исследованиях выделенных из природы штаммов многих видов грибов оказалось, что часто их гифы не сливаются или же погибают после слияния. Это явление получило название вегетативная, или гетерокарпная, несовместимость, так как она препятствует формированию гетерокарпий. Вегетативной несовместимостью управляет специальная группа генов, причем если любая пара генов у двух штаммов гетероаллельна, то эти штаммы будут несовместимы. Полагают, что вегетативная несовместимость защищает штаммы грибов от заражения плазмидами и вирусами, переносимыми через анастомозы.

Питание грибов

В начале раздела были перечислены специфические морфофункциональные черты, которые наложили на грибы осмотрное питание. Здесь остановимся подробнее на том, как питательные вещества, находящиеся в окружающей среде, перевариваются и поступают в клетки.

Большинство грибов в своем питании связаны с растениями, поэтому имеют активные ферменты, разлагющие структурные и запасные полисахариды в живых растениях и растительных остатках. Таковы пектиназы, разрушающие полигалактурановую кислоту (пектин) на низкомолекулярные олигогалактурониды; ксиланазы, целлюлазы и целлобиазы, разрушающие целлюлозу и гемицеллюлозу — основные углеводные компоненты клеточной стенки растений; амилаза, разлагающая крахмал, и др. Второй после целлюлозы по массе компонент растительных клеток — лигнин, представляющий собой трехмерный полимер ароматических колец. Особенно много его в одревесневших клетках. Лигнин — самый стойкий растительный полимер, и только грибы (главным образом древоразрушающие трутовики) имеют ферменты лигазы (оксидазы), разрушающие лигнин. Многие грибы — паразиты растений — выделяют ферменты кутилизы, разрушающие
эфирные связи в воске-кутине, покрывающем эпидермис. Грибы-паразиты животных и человека, поражающие покровы (кожу, волосы, перья), выделяют ферменты, разрушающие белок керatin, из которого построены покровы животных.

Большинство из перечисленных ферментов в целях энергетической экономии синтезируются клетками не постоянно, а только при наличии в среде соответствующего вещества (например, если в окружающей среде нет пектина, то пектиназа не синтезируется). Они не конститутивны, а подвержены субстратной индукции. Кроме того, они не образуются, если в среде есть смесь питательных веществ, в которой имеются более благоприятные соединения энергетического обмена (катаболиты). Например, конечный продукт разрушения большинства полисахаридов — глюкоза, поэтому в среде, в которой кроме пектина или целлюлозы содержится глюкоза, пектиназы и целлюлозы не вырабатываются. Для чего производить сложные химические процессы для получения глюкозы, если она уже имеется в среде роста? Такая регуляция называется кatabолитной репрессией.

Продукты деградации полимеров поступают в клетки тремя путями: 1) в растворенном виде вследствие высокого тургорного давления, которое развивает гибкая гифа, всасывающая окружающие растворы подобно насосу; 2) пассивно, по градиенту концентрации вещества, ибо в растении глюкоза и другие мономеры быстро включаются в отсутствующие в среде метаболиты — трегаллозу, сахароспирты и др.; 3) активно, с помощью специальных белковых молекул — транспортеров, находящихся в плазмалемме и клеточной стенке.

Рост и развитие

Мицелиальный рост начинается с прорастания споры. Вначале росток несептирован. Перед образованием первой перегородки проходит 3 деления ядра (на стадии 8 ядер). Рост мицелия строго апикальный. В кончике гифы наблюдается большое скопление покрытых мембранами пузырьков — микровезикул, в которых к точке роста транспортируются строительные материалы (различные моносахары) и ферменты, необходимые для их полимеризации. Например, в микровезикулах, названных хитосомами, транспортируется неактивная форма фермента хитинсинтетазы, соединяющая отдельные молекулы ацетилглюкозамина в линейные полимеры — хитин. При контакте с плазмалеммой кончика гифы пузырьки сливаются с ней и выливают в пространство между стенкой и плазмалеммой содержимое. Здесь фермент активируется. В транспорте везикул участвуют элементы цитоскелета — миотрубочки и микрофиламенты. Кроме ферментов-строителей в процессах роста участвуют ферменты-разрушители — глюканазы, хитиназы и др., которые размягчают каркас клеточной стенки, позволяя достраивать его своими полимерами. Эти же ферменты необходимы для ветвления гиф: в определенных местах они разрывают стенку, которая под давлением клеточного содержимого образует вырост. Между отдельными ветвями возникают анастомозы, армирующие колонию.

Дрожжевой рост. Вегетативный цикл дрожжей сахаромицетов включает следующие фазы: митотическое деление ядра, образование почки, миграцию дочернего ядра в почку, отделение почки от материнской клетки, увеличение размеров
дочерней клетки. Весь цикл продолжается немногим более полутора часов. В процессе отделения почки большое значение имеет синтез хитина.

Хитин — минорный компонент клеточной стенки дрожжей-сахаромицетов. Небольшое количество хитина (1—2% от веса стенки), равномерно распределенное в оболочке, важно для поддержания ее структурной целостности. При почковании образуется хитиновое кольцо, опоясывающее почку. После формирования почки между ней и материнской клеткой откладывается хитиновая пластинка, которая при разделении клеток расщепляется ферментом хитиназой.

Мицелиально-дрожжевой диморфизм. Многие грибы могут менять свой морфологический статус, т.е. существовать в мицелиальной или дрожжевой форме. Это явление называется мицелиально-дрожжевым диморфизмом. Он обусловлен различными причинами, и главные из них следующие.

- **Физиология питания.** Мицелиальные формы дейтеромицетов из рода *Verticillium* живут как сапрофиты в почве, но могут заражать корни, проникать в сосуды ксилемы восприимчивых растений и существовать там в дрожжеподобной форме, вызывая увядание (вилт) пораженного растения. Дейтеромицет *Candida albicans* — возбудитель глубоких микозов человека. На большинстве питательных сред он растет в дрожжевой форме (эллипсоидальные бластоспоры); сыворотка млекопитающих, температура 37°C и некоторые другие факторы индуцируют мицелиальный рост.

- **Состояние ядер в клетках.** Базидиальные головневые и сумчатые тафриновые грибы образуют в зараженных тканях растений хорошо развитый мицелл, клетки которого содержат по два ядра (дикарионы). Такой мицелл не может расти на искусственных питательных средах. Одноядерные споры этих грибов размножаются почкованием, образуют дрожжеподобные колонии на искусственных средах и не способны заражать растения.

- **Газовый состав среды.** Некоторые энтомомицеты из рода *Mucor* в аэробных условиях существуют в мицелиальной форме, а в анаэробных — в дрожжевой.

Таким образом, мицелиально-дрожжевой диморфизм сопровождается кардинальной перестройкой морфологии, физиологии и метаболизма. При переходах из одной формы в другую изменяется физиология важнейших энергетических процессов (дыхание — брожение), образ жизни (паразитический или сапрофитный), химический состав клеточной стенки и мембраны. В частности, в мицелиальной форме доминирующими полисахаридами клеточной стенки являются глюканы, а в дрожжевой — маннаны.

Бесполое размножение

Бесполое размножение грибов может осуществляться подвижными и неподвижными спорами. Зооспоры образует небольшое число грибов, водных или наземных, но у которых четко прослеживаются генетические связи с водными. Структура жгутиков у зооспор ооцизетов и гифициподных аналогоична описанной для орхифитовых водорослей, а у хитридиомицетов будет рассмотрена
Общая характеристика

при описании этой группы грибов. Большинство видов грибов размножается неподвижными спорами, что указывает на их очень давний выход на сушу. Споры могут формироваться эндогенно в спорангиях (спorangиосторы) или экзогенно (конидии). Эндогенные споры освобождаются только после разрушения спорангиа, что происходит обычно при его намокании. Обычно в спорангиях формируется большое число (тысячи) спор, однако некоторые виды образуют мелкие споранги (спorangиоли), в которых находится лишь несколько спор (иногда одна). В последнем случае оболочки спорангиоли и споры могут срастаться, и тогда эндогенная спора функционирует как экзогенная. Это свидетельствует о первичном возникновении эндогенных спор, которые были предшественниками экзогенных.

Конидии образуются у большинства видов грибов (аскомицеты, базидиомицеты, некоторые зигомицеты). Несовершенные грибы, или дейтеромицеты, размножаются только конидиями. Они могут быть бесцветными (гиалиновыми) или темноокрашенными (меланизованными), одноклеточными или с перегородками, одно- или многоядерными, формироваться одиночно, в головках или цепочках. Формируются они на конидиеносцах, которые могут представлять собой недифференцированные гифы или специальные выросты, специфичные по форме (булавовидные, древовидно-разветвленные и др.). У многих видов грибов конидиеносцы расположены на мицелии группами, защищенными специальными сплетениями гиф мицелия (ложа, пикниды) (рис. 183).

Рис. 183. Формы конидиального спороношения.
1—3 — одиночные конидиеносцы; 4 — коремия; 5 — ложе; 6 — пикнида
Большой интерес представляет и процесс формирования конидий — конидиогенез. По способу образования выделяют таллоконоидии и бластоконоидии. При талломном (таллическом) способе конидия развивается из целой клетки, которая целиком превращается в спору, и изменение размеров и формы конидии происходит уже после ее отделения перегородкой от конидиеносца. При пластическом конидиообразовании спора приобретает свою форму и размеры до отделения перегородкой от конидиогенной (материнской) клетки и на ее образование идет не все содержащее клетки, которая, следовательно, может участвовать в формировании нескольких конидий. В этом заключается принципиальная разница между двумя типами конидиогенеза: при таллическом конидиогенная клетка не пролиферирует, а при пластическом она претерпевает многократные митотические деления, давая клон одинаковых спор, подобно стволовым клеткам млекопитающих.

Половое размножение

Морфология. Самый распространенный тип полового процесса (наиболее простой) — слияние двух не дифференцированных на гаметы вегетативных клеток (соматогамия). Подобный тип полового процесса характерен для аскомицетных дрожжей, многих базидиомицетов и др. Иногда он протекает даже без слияния клеток, просто сливаются ядра внутри клетки. Более сложному половому процессу предшествует обособление участков мицелия партнеров (гаметангиев), которые затем сливаются (гаметаниогамия). Такой половой процесс характерен для многих зиго- и аскомицетов. Наконец, у грибов встречается и обычная для других эукариотных организмов гаметогамия, т.е. слияние специализированных гамет. Изо- и гетерогамия, характерные для водорослей, встречаются только у низших грибов — хитридиомицетов. Классическая оогамия у грибов отсутствует вообще. Даже оомицеты, названные так вследствие наличия у них оогамии, не имеют мужских гамет (сперматозоидов или сперматациев), а яйцевлетки в оогонии лишены собственной клеточной стенки и названы ососферами. У некоторых видов сумчатых грибов имеется оогоний (но без женских гамет яйцеклеток, т.е. представляющий собой гаметанги), но отсутствует антеридий, так что оплодотворение происходит вегетативной гифой. У других аскомицетов и базидиомицетных ржавчинных грибов имеются мужские гаметы — сперматации, но отсутствуют женские гаметы, а иногда и гаметанги (сперматогамия). Причем у некоторых видов сперматации несут двойственные функции — мужских гамет и спор бесполого размножения (конидий).

Регуляция. По генетической и физиологической регуляции можно выделить несколько типов полового процесса:
- Гиантромиксис — характерен для двудомных оомицетов, у которых оогонии и антеридии образуются на разных талломах. Если генетически однородный штамм выращивать в монокультуре, то он размножается только бесполыми спорами. При нахождении рядом двух штаммов начинаются морфогенетические изменения под действием химических выделений стероидной природы — половых
феромонов. Феромон антеридиол индуцирует образование антеридиев у партнера, а оогониол — оогониев. После этого происходит встречный рост мицелиев и фертилизация оогониев антеридиами. Используя, что половые гормоны высших мlekопитающих — мужские андрогены и женские эстрогены также имеют стероидную природу. Таким образом, из двух совместно выращиваемых штаммов один функционирует как мужской, а другой — как женский. Однако если попарно выращивать серию природных штаммов, то можно обнаружить, что штамм, функционирующий как мужской в одной паре, становится женским в другой, т.е. для этих грибов характерна относительная сексуальность (гинандромиксис от слов «гина» — женский и «андрос» — мужской). Будет ли штамм образовывать антеридии или же оогонии, зависит от количественного соотношения оогониола и антеридиола у него и его партнера.

Димиксис, или **гетерогамия**. По терминологии, предложенной американским микологом А. Блексли (1904), грибы могут быть гомо- или гетерогамичными. У гомогамичных видов генетически однородное потомство одной споры может пройти весь жизненный цикл, включая половое размножение, т.е. при полом процессе сливаются генетически идентичные ядра внутри мицелия. У гетерогамичных видов для прохождения полового цикла необходимо на каком-то этапе (различном у разных видов грибов) сливание потомков двух генетически различных спор (и, следовательно, их ядер). Для половой совместимости двух штаммов необходимо генетическое различие (гетероспермия) в определенных локусах, названных **локусами спаривания**, или **mat-локусами** (от англ. *mating* — спаривание). У большинства грибов (эпи-, аско- и некоторых базидиомицетов) имеется один локус спаривания с двумя аллелями. Локус спаривания состоит из нескольких генов, которые управляют синтезом половых феромонов, влияющих на морфогенез партнера, и рецепторов на мембране, связывающих феромон партнера. Такой гетерогамия называют **одногенетическим** или **иппогенетическим**. Аллели локуса спаривания у разных видов грибов обозначают как + и −, A1 и A2, A и a, α и т.д. Потомство таких грибов после мейоза разделяется на две самосовместимые, но взаимно совместимые группы в соотношении 1:1, т.е. вероятность родственного (инбридинга) и неродственного (аппифиллинга) скрещивания составляет, как и у дупольных высших зукариот, 50%.

В геноме многих высших базидиальных грибов (макромицетов) имеется два локуса спаривания — A и B, причем совместимы друг с другом только штаммы, гетерогамальные по обоим локусам (*A*B* совместим с *Ay By*, но не с *Ay By* и *Ay Bx*). Их гетерогамия называют **двухфакторным**, или **тетрагенетическим**. Двухфакторный гетерогамия снижает вероятность инбридинга до 25% (из 4 аллельных вариантов гибридного потомства — *AxB*, *Ay By*, *AxB*, *Ay Bx* — только два взаимно совместимы), т.е. препятствует близкородственным скрещиваниям.

Диафоромиксис — наличие не двух, а многих аллелей локуса спаривания, случайно встречающихся у разных штаммов, слагающих популяцию. Каждое аллельное состояние контролирует синтез различных по конфигурации феромонов и рецепторов к ним. Такой контроль спаривания также имеют только высшие базидиальные грибы. Он обеспечивает практически 100%-ю вероят-
ность аутбридинга, так как штаммы, имеющие разные аллели, взаимно совмес-
tимы, а аллелей очень много. Поскольку большинство диафторомиктческих
видов имеют тетраполярный гетеротализм, снижающий вероятность близко-
родственных скрещиваний, такие грибы подобно высшим эукариотам образуют
панмиксные гибридные популяции.

Плеоморфизм

Для многих грибов характерно явление плеоморфизма — формирование
в жизненном цикле нескольких спороношений разного облика. Половое споро-
ношение (телеоморфа) обычно бывает только одно, а бесполых спороношений
(анаморф) может быть одно или несколько. Например, гриб анаморфного рода
Fusarium образует два типа конидий — крупные, многоклеточные, серповидной
формы макроконидии и эллипсовидные одноклеточные микроконидии. Телеоморфа
может отсутствовать, так что спороношения представлены одной или несколь-
кими анаморфами. При этом найти правильное место таким грибам в системе
(которая строится преимущественно на основании строения телеоморф) бывает
иногда очень сложно. Поэтому для плеоморфных грибов допускается употребле-
ние самостоятельных названий каждой стадии, но при этом название телео-
морфы распространяется на все стадии, а название анаморфы относится только
к соответствующей стадии. В частности, такие широко известные грибы, как
аспегилл (Aspergillus) и пеницилл (Penicillium), — это, строго говоря, название
не грибов, а анаморф некоторых аскомицетов. Названия же этих грибов (телео-
морф) — Talaromyces, Eurotiум и др. У многих видов телеоморфа вообще не-
известна, и названия для нее нет. Совокупность анаморф высших грибов, прежде
всего аскомицетов, составляет группу (формальный отдел) несовершенных грибов,
или дейтеромицетов (Fungi imperfecti, Deuteromycota). При отсутствии телеомор-
фы единственная возможность установить принадлежность этих грибов к тому
или иному таксону аскомицетов — сравнение их рибосомальных генов со струк-
турой соответствующих генов аскомицетов.

ОБРАЗ ЖИЗНИ И РАСПРОСТРАНЕНИЕ ГРИБОВ
И ГРИБОПОДОБНЫХ ОРГАНИЗМОВ

Грибы и грибоподобные организмы входят практически во все наземные
и водные экосистемы как компоненты гетеротрофного блока, занимая в них
вместе с бактериями и другими группами организмов уровень редуцентов, или
деструкторов органического материала. Их можно повсеместно обнаружить в
почвах, пресных и соленых водоемах и водотоках; растениях, животных и их
остатках; предметах и материалах промышленного производства и т.п. Нередко
они встречаются в экстремальных условиях обитания — в термальных источни-
ках, вулканических почвах, во льдах Арктики и Антарктики и многих других.
Широкое распространение в биосфере Земли определяется рядом биологических
осоbenностей грибов, важнейшие из которых следующие.
1. Наличие у большинства грибов мицелиальной структуры таллома, обеспечивающей большую величину отношения поверхности гиф к их объему. Такая структура позволяет грибам быстро колонизировать субстрат, пронизывая его гифами по всему объему, и дает им высокую степень контакта со средой, что очень важно при осмотрофном питании.

2. Значительные скорости роста и размножения, позволяющие грибам в короткие сроки заселять большие массы субстратов, накапливать большое число спор и распространять их на огромные расстояния.

3. Высокая метаболическая активность, проявляющаяся в широком диапазоне действия различных факторов окружающей среды (температуры, влажности, света, аэрации и т.д.).

4. Значительная генетическая и биохимическая изменчивость (экологическая пластичность), позволяющая грибам быстро адаптироваться к меняющимся условиям среды обитания и к новым субстратам.

5. Способность быстро реагировать на действие неблагоприятных факторов среды переходом к покоящимся структурам (анабиозу), возможность длительно пребывать в этом состоянии, не теряя жизнеспособности, и также быстро переходить к активной жизнедеятельности при наступлении благоприятных условий.

Грибы как гетеротрофы нуждаются в готовом органическом веществе. В природе они находят его в виде разнообразных органических остатков растительного или животного происхождения, на которых развиваются как сапрофаги, либо в виде содержимого клеток живых организмов, на которых грибы паразитируют или с которыми вступают в симбиотрофные отношения. Экологические группы грибов выделяют по двум признакам — трофическому (на основе способа питания — паразитический, симбиотрофный, сапрофагный — и заселяемых субстратов — гумусовые сапрофаги, подстилочные сапрофаги и проч.) и топическом (на основе среды обитания, например почвенные, водные грибы).

Трофические группы грибов

ГРИБЫ-САПРОФОДЫ

Грибы-сапрофаги встречаются везде, где есть растительные остатки, например опавшие листья, разрушающаяся древесина, реже остатки животного происхождения, и вызывают их разложение и минерализацию, а также образование гумуса. Таким образом, грибы являются редуцентами, как бактерии и некоторые другие группы организмов. Сапрофаги часто относительно мало специализированы в отношении питания. Доступность для них тех или иных органических соединений сложного строения — полисахаридов, белков и др. — определяется способностью таких грибов синтезировать и выделять в окружающую среду ферменты (гидразы, оксидазы), разлагающие эти вещества на более простые компоненты — простые сахара, аминокислоты. По этой способности грибы сильно различаются: одни из них могут использовать только простые углеводы, органические кислоты, спирты и др. (их часто называют «сахарные грибы»), другие образуют гидролитические ферменты, разлагающие крахмал,
целлюлозу, белки, хитин, и могут развиваться на субстратах, содержащих эти вещества. Наконец, многие грибы, образующие различные оксидазы и другие ферменты, способны разрушать лигнин и стойкие лигоцеллюлозные комплексы, входящие в состав растительных тканей. Поэтому в процессе разложения растительных остатков, например опада или древесины, наблюдается закономерная смена одних видов грибов другими.

Среди сапротрофов иногда встречаются и довольно узкоспециализированные группы, например кератинофилы, разлагающие очень стойкий белок животного происхождения — кератин — и развивающиеся на содержащих его остатках — копытах, рогах, птичьих перьях, волосах и др. Специализация этих грибов в значительной мере определяется их малой способностью к конкуренции за питание с другими, более быстро растущими или образующими антибиотики микроорганизмами. Такие грибы «уходят» от конкуренции, занимая специфические субстраты, недоступные для других организмов.

Сапротрофные грибы являются важнейшим по разнообразию, биомассе и функциональной нагрузке компонентом наземных экосистем. Они, наряду с другими группами грибов, играют одну из центральных ролей в регенерации биофильтных элементов в биосфере и поддержании функционирования экосистем, представляют важное звено пищевых цепей, активно участвуют в гумусообразовании, детоксикации поллютантов, синтезе биологически активных метаболитов.

Глобальная экологическая роль сапротрофных грибов заключается в освоении углерода, связанного высшими растениями в процессе фотосинтеза. Грибы — основные компоненты гетеротрофного блока в круговороте углерода. Они возвращают в круговорот углерод, связанный в листвах, древесине, почве; через тело грибов проходит 2/3 связанного углерода на Земле.

Большинство сапротрофных грибов относится к следующим трофическим группам: гумусовые сапротрофы — почвообитающие грибы, которые питаются почвенным гумусом; подстилочные сапротрофы, разлагающие мертвые растительные остатки — лесной опад, отмершие части травянистых растений; ксилофаги — развивающиеся в мертвой древесине и разлагающие ее (например, тутовые грибы); копротрофы, питающиеся экскрементами травоядных животных.

Среди ксилофагов — грибов, обитающих на древесине, — особенно рас пространены базидиомицеты, дейтеромицеты и аскомицеты. Представители этой группы вызывают разложение древесины. Некоторые из них начинают свое развитие на живом дереве как паразиты и продолжают его после гибели дерева.

Ксилофаги образуют комплексы ферментов, разрушающих целлюлозу и лигнин древесины. Грибы, разлагающие преимущественно целлюлозу, вызывают деструктивную, или бурую, гниль древесины. Если же грибы разрушают лигнин, развивается коррозионная, или белая, гниль. Ксилофаги активно разлагают древесину и древесный опад в лесах, участвуя в круговороте веществ. Некоторые из них, например домовые грибы, развиваются в постройках и на дровяной древесине, вызывают их разрушение и приносят существенный ущерб хозяйству.

Копротрофы обитают на экскрементах животных, богатых органическими веществами; этот субстрат является для них постоянным и типичным местообитанием в природе. Таксономический состав этой группы разнообразен, но обычно
на экскрементах при соответствующих температуре и влажности последовательно развиваются представители зигомицетов (виды из родов *Pilobolus*, *Mucor*, *Chaetocladium* и др.), аскомицетов (преимущественно представители класса *Pezizomycetes* из семейств *Ascobolaceae* и др. и некоторые представители классов *Sordariomycetes* и *Loculoascomycetes*), агарикоидные базидиомицеты (из родов *Coprinus*, *Panaeolus* и др.) и многочисленные анаморфные грибы. В процессе эволюции в разных таксономических группах копротрофов независимо выработались адаптации к обитанию на экскрементах преимущественно травоядных животных: высокая устойчивость спор к повышенной температуре и воздействию ферментов пищеварительной системы животных; резко выраженный положительный фототропизм спорообразующих структур (спорангиеносцев, носика перитеция, сумок) и активное отбрасывание спор в сторону источника света, обеспечивающее более высокую вероятность попадания спор на траву, поедаемую затем животными.

Значительно меньше видов грибов обитает на мертвых животных. Часто это низшие водные грибы и грибподобные организмы — хитридиомицеты, оомицеты, живущие на мертвых водных беспозвоночных и рыбах. Некоторые из них способны поражать ослабленных живых рыб и развиваться на рыбной икре. Сюда же относятся и упоминавшиеся выше кератинофили, обитающие на субстратах животного происхождения, содержащих керatin.

В разложении остатков насекомых, а также отмерших микелия и других структур грибов, содержащих хитин, участвуют наряду с актиномицетами и бактериями многочисленные грибы, образующие хитиназы.

ГРИБЫ-ПАРАЗИТЫ

Грибы-паразиты развиваются на организмах из разных групп. Большинство из них паразитирует на растениях, преимущественно цветковых, но также на водорослях, папоротниках, голосеменных и др. Известно большое число грибов — паразитов животных (беспозвоночных, насекомых, рыб, птиц, мlekопитающих и др.). Некоторые грибы вызывают заболевания у человека. Грибы-микопаразиты, или миколофильные грибы, развиваются на других грибах.

Связь грибов с растениями возникла на ранних этапах эволюции растений и сыграла большую роль в становлении современных фитоценозов. В частности, грибы-паразиты регулируют численность отдельных видов растений и способствуют формированию сложных многовидовых фитоценозов. Они наиболее сильно поражают массовые виды и, снижая их численность, позволяют развиваться менее конкурентоспособным видам. Если последние становятся массовыми, то тоже начинают сильно поражаться. Так создается устойчивое равновесие видов в фитоценозах.

Хотя вопрос о первичности сапроотрофности или паразитизма остается до последнего времени предметом дискуссии, многие микологии считают, что для грибов первичен сапроотрофный способ питания, а паразитизм представляет собой один из путей их специализации при уходе от конкуренции.

Одни виды грибов-паразитов развиваются только на строго определенных хозяевах, часто одного или близких видов, т.е. характеризуются узкой специали-
зацией, например ржавчинные грибы (порядок ржавчинные — Uredinales, отдел Basidiomycota). Другие, наоборот, могут поражать широкий круг хозяев, относящихся к разным семействам и даже классам растений. Так, возбудитель серой гнили Botrytis cinerea поражает тюльпаны, пионы, землянику, малину и многие другие растения.

Среди грибов есть как облигатные (обязательные), так и факультативные паразиты. Факультативные паразиты обычно развиваются как сапрофоты, но способны паразитировать на ослабленных растениях и на невегетирующих частях растений, например плодах. Факультативными сапрофотами называют грибы, обычно развивающиеся как паразиты, но в определенных условиях способные к сапрофотному существованию (например, на растительных остатках или в почве). Наконец, облигатные паразиты в природе развиваются только на живых организмах. Некоторые из них, например мучнистые (порядок Erysiphales, отдел Ascomycota), не способны развиваться на искусственных питательных средах.

Грибы-паразиты могут получать питание из тканей хозяина различными путями. Среди хитридиомицетов (Chytridiomycota) и некоторых групп грибоподобных организмов встречаются внутримикотические паразиты: их одноклеточный таллом, лишенный клеточной стенки, развивается внутри клетки хозяина (рис. 184, A). У малоспециализированных паразитов мицелий распространяется как по межклетникам, так и в клетках хозяина, не образуя особых структур для поглощения питательных веществ (рис. 184, Б). Наконец, у наиболее специализированных паразитов — мучнистые, ржавчинные и др. — мицелий распространяется по межклетникам, а в клетки внедряются специализированные структуры — гаустории (рис. 184, B и 180).

По характеру воздействия паразита на хозяина различаются некротрофные паразиты, сначала убивающие ткани хозяина, а затем питающиеся ими, и биотрофные паразиты, питающиеся за счет живых тканей хозяина.

Отдельные группы грибов и грибоподобных организмов паразитируют на животных. Среди них есть как большие таксоны (например, порядки энтомофтормовые — Entomophthorales, отдел зигомицеты, яббульденевые — Laboulbeniales, отдел аскомицеты, септобазидиевые — Septobasidiales, отдел базидиомицеты), так и представители отдельных родов (например, род Cordyceps, отдел аскомицеты). Паразиты и хищники, улавливающие нематод и других беспозвоночных животных, обычно живут в почве или разлагающихся растительных субстратах, питаясь сапрофотно-растительными остатками и почвенным гумусом, но в условиях дефицита азота и при наличии жертвы могут нападать на нее (рис. 185), т. е. их паразитизм не облитатный, а факультативный (необязательный). Некоторые группы грибов могут паразитировать на позвоночных животных и человеке, вызывая у них такие заболевания, как дерматомикозы и глубокие микозы (например, аскомицеты из порядка онитеноидные — Onygenales и базидиомицеты из порядка фильтробазидиевые — Filobasidiales). Наконец, так называемые микофильные грибы паразитируют на других видах грибов — плодовых телах макромицетов (все грибники видели заплесневевшие «грибы»), мицелии, склероциях, стромах и плодовых телах микромицетов.
ГРИБЫ-СИМБИОТРОФЫ

Грибы-симбиотрофы связаны почти исключительно с растениями. Развиваясь в симбиозе с водорослями, они образуют лишайники, или лихенизированные грибы, отличающиеся от свободноживущих грибов комплексом морфолого-анатомических, физиолого-биохимических и экологических признаков и рассматривающиеся поэтому многими специалистами как своеобразная группа симбиотических организмов (см. разд. «Лишайники»).

Многочисленные грибы вступают в симбиотические отношения с высшими растениями. Как и паразиты, они питаются содержимым клеток растений, но при этом не только приносят растению-хозяину вред, но и придают ему ряд полезных свойств. Если польза превышает вред, зараженные растения становятся более жизнеспособными и конкурентоспособными. Известны две группы микосимбионтов растений — живущие в корнях микоризные грибы и живущие преимущественно в надземных частях растений эндомицетные грибы.
Микоризные грибы. Микориза (или, в переводе с греческого, грибокорень) представляет собой комплекс мицелия гриба и корней растения. Впервые симбиотические ассоциации корней растений с грибами были описаны Д.Ф. Каменским в 1881 г., а термин «микориза» был введен А.Б. Франком в 1885 г. Микосимбиотрофия широко распространена в природе — микоризы обнаружены более чем у 220 000 видов растений, как травянистых, так и деревьев, кустарников и кустарничков. Они известны у представителей всех отделов наземных растений — от мохообразных до покрытосеменных. Практически не образуют микоризы представители некоторых семейств (например, гвоздичные, маревые, крестоцветные), растения ливневых тропических лесов, многие гидрофиты, а также растения, произрастающие на почвах, богатых растворимыми фосфатами, и некоторые другие группы. Микоризообразователи известны среди представителей четырех отделов настоящих грибов — зигомицетов, аскомицетов, базидиомицетов и дейтеромицетов.

Длительное присутствие определенных грибов в ризосфере (участках почвы вокруг корней), ризоплане (на поверхности корней) и в клетках корня привело к возникновению симбиотических взаимоотношений, полезных как гриб, так и растению. Гриб питается продуктами фотосинтеза и частично защищен тканями корня. Для растения увеличивается объем всасывающей поверхности за счет мицелия, выходящего в окружающую почву, часто на большое расстояние от корня. Микоризные грибы переводят в усвоемую для растения форму труднодоступные соединения фосфора и других элементов, снабжая растения минеральными элементами питания, а также водой. Из мицелия в растения поступают синтезируемые грибом биологически активные соединения — витамины, гормоны и др. Микориза защищает корни от потенциальных почвенных патогенов вследствие образования механической преграды (мицелиального чехла вокруг корня), выделения антибиотиков и активизации защитных свойств самого растения. Мицелий микоризных грибов, распространяющийся в почве, осуществляет связь между растениями в экосистеме и участвует в перераспределении воды и органических и минеральных элементов питания в пределах всего растительного сообщества. Таким образом, значение микориз в природных сообществах чрезвычайно велико и разнообразно.

Наиболее полно преимущества микоризного симбиоза проявляются в условиях дефицита питания на бедных почвах (например, таежных и аридных почвах). Важную роль играют микоризы в лесовосстановлении, при колонизации растениями песчаных дюн, пустошей, рекультивации отвалов при разработках полезных ископаемых и других нарушенных территорий. Таким образом, микоризы позволяют растениям и гриbam совместно заселять все типы наземных мест обитания, в том числе и экстремальных.

По характеру контакта между гифами гриба и тканями корня растения различают эндотрофную, эктоптрофную и эктоэндотрофную микоризы. При образовании эндотрофных микориз мицелий гриба проникает в коровую паренхиму и распространяется по межклетникам и внутриклеточно; вне корня в почве часто образуется свободный мицелий. Морфологических изменений корня при этом не происходит, сохраняются корневые волоски и характер ветвления.

Типичные эндотрофные микоризы образуются у растений семейства орхидных грибами из анаморфного рода Rhizoctonia, телеоморфы которого принадлежат
к родам *Ceratobasidium*, *Thanatephorus* и др. из порядка Ceratobasidiales (отдел Basidiomycota, подкласс Heterobasidiomycetidae). Проникая в клетки первичной коры корней и корневищ, гриб образует клубочки гиф, которые постепенно переариваются растением (рис. 186, А). Образование микоризы у орхидных и некоторых других семейств обязательно для развития растений, так как их семена не содержат запасных питательных веществ и не могут в обычных условиях прорастать при отсутствии гриба. Компоненты микоризы взаимосвязаны также синезом витаминов. Обычно семена растений из этих семейств уже содержат мицелий гриба.

Рис. 186. Эндотрофная микориза.

A — микориза орхидных: 1 — клубочки гиф гриба; B — везикулярно-арбускулярная микориза: 1 — везикулы; 2 — арбускулы; 3 — свободный почвенный мицелий; 4 — клетки ризодермы; 5 — клетки первичной коры корня; 6 — почва
Наиболее распространенным типом эндотрофной микоризы является арбускулярная или везикулярно-арбускулярная микориза (BA-микориза), образуемая большинством травянистых растений, а также некоторыми деревьями и кустарниками. Грибы, образующие эту микоризу, принадлежат к порядку Glomerales (отдел Zygomycota). Для BA-микоризы характерно образование на кончиках гиф или по их ходу вазутий, или везикул, содержащих зернистую цитоплазму и капельки жира. В клетках корня формируются арбускулы — веточки гиф, многократно дихотомически ветвящиеся и напоминающие деревце (рис. 186, Б). Арбускулы, служащие для поглощения грибом питательных веществ из клетки, в дальнейшем постепенно перевариваются растением. Образование арбускула наблюдается не у всех микоризованных растений. Обычно у грибов BA-микоризы образуется хорошо развитый почвенный мицелий, активно поглощающий минеральные элементы питания и воду. Покоящиеся споры (азигоспоры) с многослойной стенкой формируются одиночно либо рыхлыми группами снаружи или, реже, в корнях растений. У некоторых представителей порядка Glomerales они образуются в компактных структурах, сходных со спорокарпами Endogonales.

BA-микориза — наиболее древний тип, ее имели вымершие растения — ринофиты, жившие в силуре и нижнем девоне. Мицоризные ассоциации способствовали адаптации первичных наземных растений к существованию вне воды.

В эктотрофных микоризах гифы гриба оплетают корневые окончания растений, образуя на них мицелиальный чехол, обычно с многочисленными, отходящими от него в почву свободными гифами. Корневые волоски на микоризованных кор-

Рис. 187. Морфологические типы эктотрофных микориз.
 А — вильчатая микориза; Б — коралловидная микориза; В — черная микориза
Cenococcum graminforme
Рис. 188. Эктотрофная микориза.
1 — свободный почвенный мицелий; 2 — микоризный чехол; 3 — сеть Гартига

нях отсутствуют. Корни претерпевают сильные морфологические изменения: микоризные сосущие окончания булавовидно вздуваются или характерно ветвятся (вильчато, коралловидно и т.п.), что значительно увеличивает их сосущую поверхность (рис. 187). Часть гиф проникает в межклетники коровой паренхимы корня, образуя в совокупности так называемую сеть Гартига (рис. 188).

Микоризы такого типа образуют большинство деревьев и кустарников. Грибы с эктотрофной микоризой принадлежат преимущественно к агарикоидным, реже гастеридным и афилофоридным базидиомицетам (отдел Basidiomycota), порядкам пезизовые — Pezizales и элафомицетовые — Elaphomycetales (отдел Ascomycota) и некоторым анаморфным грибам (например, широко распространенный по всему земному шару Cenococcum graminum, образующий микоризы более чем со 130 видами деревьев и кустарников).

К типу эндозоэктомикориз относятся так называемые эрикоидные микоризы, образуемые вересковыми и некоторыми аскомицетами. Микориза позволяла вересковым жить в экстремальных климатических условиях на очень бедных почвах — в тундре, высокогорье.

Эктотрофная микориза появилась позднее эндотрофной — в карбоне — и привела к возникновению лигнина, важнейшего растительного полимера, включающего 25% связанного углерода. Продукты разрушения лигнина базидиальными грибами дали начало почвенному гумусу.

Эндотрофные грибы. К этой группе относят грибы, развивающиеся в тканях надземных органов растений. Наиболее известные эндотрофы — аскомицеты из родов Epichloe, Balansia, анаморфного рода Neotyphodium, мицелий которых развивается в стеблях и влагалищах листьев пастибных злаков. Некоторые эндотрофы препятствуют образованию генеративных органов (метелок, колосьев), формируют аскоспоры и конидии, которые способны заражать здоровые растения и, следовательно, ведут себя как настоящие паразиты. Другие утратили все виды спороношения, поэтому передаются только вертикально — через зараженные семена (как хлоропласты и митохондрии) — и не оказывают патологического влияния на растения-хозяев. Более того, они усиливают вегетативный рост зараженных растений, повышают их устойчивость к засухе, улучшают корневое питание. Эндотрофы из этой группы образуют биологически активные вещества, которые защищают зараженные растения от выведения насекомыми и нематодами и заражения другими грибами. Однако, поскольку эндотрофные аскомицеты злаков относятся к семейству спорыньевых грибов, они, подобно спорынье, образуют ядовитые алкалоиды, при кормлении такими растениями домашнего скота наблюдались массовые отравления, часто с летальным исходом.
ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

У грибов, узкоспециализированных к определенному типу питания, в процессе эволюции выработались удивительные механизмы, обеспечивающие им максимальную вероятность успешного завершения своего жизненного цикла. Например, аскомицет Ophiostoma ulmi паразитирует в ксилеме вязов и вызывает их увядание (голландскую болезнь вязов). Ослабленные в результате болезни деревья теряют способность противостоять жукам-коредам и заражаются ими. В брачных галереях вредителей гриб образует конidiальное спороношение, так что выходящие из галерей взрослые жуки несут на своем теле споры гриба. Жуки питаются цветками вяза и заносят в него споры, которые подготавливают дерево для заселения вредителем. Таким образом, жизненные циклы двух патогенов — гриба и насекомого — скоординированы так, что жук распространяет споры гриба с больных деревьев на здоровые, а гриб подготавливает дерево для заселения жуком. Споры некоторых сумчатых (спорынь) и базидиальных (ржавчина) грибов также разносятся насекомыми, питающимися цветочным нектаром; для их привлечения спорогенные клетки этих грибов выделяют сладкую липкую жидкость (медянную росу), обладающую у некоторых ржавчинных грибов сильным цветочным ароматом. Есть виды ржавчинных грибов, у которых спороношения ярко окрашены и напоминают по внешнему виду цветки. У базидиальных гумусовых сапротрофов из порядка веселковых спороносящая ткань обладает сильнейшим грунтовым запахом, привлекающим мясных мух, которые распространяют споры. Удивительные приспособления имеют грибы зиго- и аскомицеты — копротрофы, постоянно развивающиеся на помете животных. Благодаря наличию светочувствительных молекул (каротиноидов) их спороносцы поворачиваются в направлении света (где выше вероятность наличия травы); быстрый перелет тургорного давления внутри спороносных структур обеспечивает активный выбор крупных спорантиев и спор на большее расстояние. Спорангии и споры покрыты клейкой слизью и прилипают к листьям; они имеют толстые оболочки, поэтому могут прорастать только после прохождения через желудок животного (разрыхления оболочек пищеварительными ферментами). Таким образом, у этих грибов выработан комплекс механизмов, обеспечивающих попадание на траву и прилипание к ней, поедание животными, выбрасывание способных к прорастанию спор вместе с пищевым субстратом (навозом).

Топическая классификация экологических групп грибов

Экологические группы грибов можно выделять по топическому признаку — на основе среды их обитания (например, почвенные или водные грибы). В этом случае экологическая группа объединяет грибы, принадлежащие к разным трофическим группам, развивающиеся на разных субстратах. Например, среди водных грибов есть и сапротрофы, обитающие на различных органических субстратах, и паразиты водных растений и животных.
ПОЧВЕННЫЕ ГРИБЫ

Одна из наиболее обширных и разнообразных экологических групп грибов — почвенные грибы. Эта группа разнородна как по таксономическому составу входящих в нее грибов, так и по характеру их питания. Почва — среда обитания гумусовых и подстилочных сапротрофов, микоризообразователей, многих паразитов растений и беспозвоночных животных, микрофилов и грибов из других трофических групп. В почве развиваются многочисленные микроскопические грибы и микелий грибов, образующих в почве или на ее поверхности крупные плодовые тела. Одни грибы являются постоянными обитателями почвы, другие проходят в ней только определенные стадии жизненного цикла.

В почвах всегда присутствует большое количество микелия и спор грибов, при этом в большинстве почв грибная биомасса преобладает над бактериальной. Например, в лесных почвах биомасса грибов нередко превышает 90% от биомассы всех обитающих там организмов. Протяженность грибных гиф в почве от сотен метров до десятков километров в 1 г почвы, что значительно превышает протяженность корней высших растений. В зоне химических выделений микелия (гифосфере), как в зоне химических выделений корней (и ризосфере), создается специфический микробоценоз. Л.Л. Великановым и И.И. Сидоровой показано, например, что в гифоферее базидиомицетов падает численность сумчатых и несовершенных грибов и увеличивается численность некоторых групп бактерий. Грибы в большом количестве развиваются в гумусовом и минеральных горизонтах почвы, заселяют ризосферу растений и лесную подстилку.

Грибы активно участвуют в деструкции и аккумуляции органических веществ почвы — гумуса. Они синтезируют циклические соединения, в том числе меланины, являющиеся предшественниками гумусовых веществ, продуцируют ферменты (полифенолоксидазы), участвующие в разложении и образовании гумусовых веществ. Накапливание органических кислот при разложении грибами растительного опада и образование комплексных соединений с минеральными элементами, перемещающимися с водой из подзолистого в аккумулятивный горизонт, являются важными факторами процессов подзолообразования в почвах. Иммобилизация биофильных элементов в грибной биомассе предотвращает их потери из биологического круговорота в экосистемах. Если учесть роль грибов в аэробной деструкции растительных полимеров, особенно лигнина и целлюлозы, их деятельность в трансформации органических веществ в почвах можно считать одной из ключевых.

ВОДНЫЕ ГРИБЫ

Грибы, как и большинство других групп организмов, вышли из воды, поэтому большинство водных грибов и грибоподобных организмов — древнейшие группы (хитридиомицеты, оомицеты, гифохитридиевые). Они встречаются в море и в пресных водоемах, обычно размножаются при помощи зооспор и питаются живыми и мертвыми водными организмами — водорослями, беспозвоночными животными и др. Однако есть высшие грибы — аскомицеты, дейтеромицеты,
очень редко базидиомицеты, вторично перешедшие в водную среду из наземной. У конидий, аскоспор и базидиоспор вторичноводных грибов образуются специальные приспособления (например, лучеобразные выросты и др., рис. 189), позволяющие им длительно находиться во взвешенном состоянии в толще воды (подобные приспособления характерны и для планктонных водорослей) и цепляться за субстраты (опавшие в воду листья, веточки).

Рис. 189. Конидии (A), аскоспора (B) и базидиоспоры (B) вторичноводных грибов

Среди водных грибов есть сапротрофы, развивающиеся на растительных остатках или обрастающие погруженные в воду предметы, паразиты водорослей, высших водных растений и животных. Водные сапротрофные грибы играют большую роль в разложении органического вещества в водоемах и обеспечении детритом водных беспозвоночных и рыб.

Роль грибов в биосфере

Таким образом, грибы занимают в наземных экосистемах ведущее положение деструкторов растительных полимеров и поддерживают тем самым круговорот биогенных элементов и энергии в биосфере. Они активно участвуют в почвообразовании, начиная с разрушения минералов и горных пород, в процессах образования гумуса, в оструктуривании почвы и подзолообразовательном процессе. Ниже приведены основные функции грибов, выполняемые ими в биосфере.

1. Разложение природных органических веществ до двуокиси углерода, в том числе разложение труднодоступных для других деструкторов соединений (лигнина, целлюлозы, хитина, кератина).

2. Иммобилизация биофильных элементов в грибной биомассе (закрепление, предотвращающее их потери из биологического круговорота в экосистемах).
Значение грибов в практической деятельности человека

3. Процессы почвообразования: гумусообразование, структурирование почвы, формирование почвенного профиля, подзолообразование и др.
5. Создание в почвах пула ферментов и биологически активных соединений.
6. Снабжение растений элементами минерального питания и водой, регуляция фотосинтеза (симбиотрофные грибы).
7. Разрушение горных пород и минералов.
8. Образование минералов: осаждение карбонатов кальция и гидроокисей металлов (Fe, Al), образование минералов в болотных почвах.
9. Участие в трофических цепях в экосистемах (пища для животных и других организмов).
10. Регуляция структуры сообществ и численности популяций растений, животных и микроорганизмов.
11. Детоксикация поллютантов.

ЗНАЧЕНИЕ ГРИБОВ
В ПРАКТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

Вред, причинимый грибами

Болезни растений. Как было сказано выше, в не нарушенных человеком фитоценозах вред, наносимый грибами травянистым и древесным растениям, не велик; более того, они выполняют важные функции регуляторов численности сочленов фитоценозов. Иная картина наблюдается в посевах сельскохозяйственных культур (агроценозах) и лесных массивах, испытывающих антропогенное воздействие. Такие растительные сообщества часто подвержены массовым заболеваниям (эпифитотиям), которые, если не проводить специальных защитных мероприятий (посев и посадка устойчивых сортов, обработка семян и вегетирующих растений химическими веществами — фунгицидами и др.), могут вызвать гибель всей популяции. Причины массовых болезней связаны с нарушением человеком природных факторов, регулирующих взаимоотношения растений и их паразитов.
1. Вместо сложных многовидовых фитоценозов, в которых случайно распределены различные по степени восприимчивости к тому или иному грибу виды, в сельскохозяйственных посевах и лесных посадках преобладают чистые культуры одного вида или даже сорта растений, на которых вирулентный для них вид или штам сам паразита развивается с быстрой лесного пожара.
2. Вместе с растениями, интродуцированными в новые регионы, туда попадают и их паразиты, которые могут перейти на местные растения, не обладающие выработанными в процессе козвовлюции механизмами устойчивости к этим паразитам.
3. Пахотная культура, применение удобрений и другие агротехнические приемы привели к коренным изменениям условий существования почвенных
микроорганизмов. Упала численность базидиальных грибов, мицелий которых, как было уже сказано, ингибитирует развитие сумчатых и несовершенных грибов — основных паразитов растений. Они не только увеличили свою численность, но и повысили патогенные свойства по отношению к растениям, становясь возбудителями корневых гнилей и других болезней растений.

4. Высокая рекреационная нагрузка на лесные массивы (вытаптывание и уплотнение почвы, приводящее к снижению аэрации корней), наличие вредных веществ — ксенобиотиков — в воздухе и почве снижают природные механизмы устойчивости к болезням.

Массовые болезни растений приводили к голоду и гибели населения в местах, где выращивалась одна пищевая культура. Так, в 40-х гг. XIX в. из-за неурожай картофеля, вызванного фитофторозом, умерло от голода или эмигрировало за океан большинство населения Ирландии, а через сто лет такое же бедствие — гибель 2 млн жителей — случилось в Бенгалии вследствие поражения риса гельминтоспориозным ожогом листьев. Грибные болезни растений, в частности ржавчина, сыграли решающую роль в перемещении центра выращивания кофе из Юго-Восточной Азии (Индия, Цейлон) в Южную Америку. На Западном побережье США рак каштанов, вызванный сумчатым грибом Cryphonectria parasitica, привел к изменению ландшафтов — каштановые леса сменились кустарниками зарослями.

Болезни животных и человека. Здесь сложилась та же ситуация, что и с грибными болезнями растений. Долгое время важнейшими грибными болезнями домашних животных и человека были дерматомикозы, поражающие кожу, ногти и волосы. От них очень страдал скот, часто заболевали комнатные животные, от которых болезни переходили и на людей (некоторые грибы способны поражать человека и без предварительного заражения животных). В последние годы благодаря применению противогрибных сывороток, разработанных известным микологом А.Х. Саркисовым, удалось снизить урон от дерматомикозов в животноводстве, а современные химические средства борьбы с грибными болезнями (фунгициды) позволяют успешно бороться и с поверхностными микозами человека. Однако значительно возросла роль внутренних — глубоких микозов. Их вызывают широко распространенные и всегда встречающиеся в бути грибы — дрожжевые из родов Candida и Cryptococcus и мицелиальные Rhizopus, Aspergillus и др. (оппортунистические инфекции). Их споры могут попасть в организм человека через дыхательные пути, ранки, половые органы. Если эти грибы способны расти при температуре человеческого тела (37°C) и имеют набор ферментов, необходимых для разрушения клеточного содержимого, они могут паразитировать в теле человека. Однако, не являясь специфическими паразитами, прошедшими длительную козволюцию с хозяевами, они не способны противостоять действию иммунной системы, и поэтому организм здоровых людей легко справляется с ними. Если же иммунная система ослаблена, что может быть вызвано ухудшением качества среды обитания (загрязнением окружающей среды), психологическими стрессами и вирусными болезнями, такими, как СПИД, гепатит и др., глубокие микозы могут приводить к чрезвычайно тяжелым болезням, часто с летальным исходом. Глубокие микозы вышли на одно из первых мест среди причин гибели ВИЧ-инфицированных.
Повреждение промышленных материалов и изделий. Обладая обширным набором ферментов, грибы могут развиваться на разнообразных субстратах и при благоприятных условиях (температура и влажность) вызывать быстрое их разрушение. На первом месте среди таких грибов стоят ксилофиты, разрушающие древесину. Выше было сказано, что эти грибы играют важную экологическую роль, разрушая мертвые части деревьев и освобождая связанный в них углерод. Однако они являются бичом для деревянных строений. Особенно опасна группа кортициевых базидиомицетов (с лепешкообразными плодовыми телами), которые чрезвычайно агрессивны и очень быстро превращают деревянные изделия в труху. Для их развития необходима высокая влажность воздуха, поэтому они сильно поражают деревянные полы в деревенских домах, в которых отсутствуют хорошо проветриваемые подвалы, а также бани, сваи мостов на границе вода—воздух и другие строения. Для защиты деревянных шпал на железнодорожных дорогах проводится дорогостоящая пропитка их защитными химическими веществами.

Грибы освоили и другие материалы, такие, как кожа и ее заменители, стекло, бумага, даже углеводородное топливо. Ежегодно во всем мире затрачивают огромные средства для борьбы с ними, создают специальные режимы хранения в библиотеках, архивах, чтобы препятствовать развитию грибов. Невосполнимый ущерб наносят грибы рапиретам (старинным манускриптам, например) и произведениям искусства (картинам, фрескам, историческим зданиям). Специальные лаборатории, в которых изучают грибы, вызывающие биокоррозию, и разрабатывают методы защиты от них, созданы на заводах, в научно-исследовательских институтах, крупных библиотеках.

Использование грибов человеком

Грибы — продуценты биологически активных веществ. Вследствие разнообразия первичных и вторичных метаболитов, высокой активности ферментов грибы в последние годы стали важнейшими объектами биотехнологии.

Многие грибы являются продуцентами различных лекарственных веществ, таких, как: 1) антибиотики — антибиотики. Как известно, первым антибиотиком, выделенным английским микробиологом А. Флемингом, был продукт гриба Penicillium — пенициллин. Этот антибиотик произвел революцию в фармакологии, так как позволил лечить ранее неизлечимые болезни: гангру, сепsis, перитонит и др.; 2) иммуномодуляторы. Некоторые из них (иммуносупрессоры) подавляют иммунную систему млекопитающих и поэтому широко используются при пересадке чужеродных органов, которые иммунная система организма без обработки подобными веществами отторгает. Таков циклоспорин, получаемый из грибов рода Tolypocladium. Другие, например полисахариды многих базидиомицетов (иммуноактиваторы), наоборот, стимулируют интенсивность иммунного ответа на микробную инфекцию; 3) противосклеротические препараты (ластаватин и другие продукты многих грибов), ингибирующие биосинтез холестерина и тем самым препятствующие отложению холестериновых бляшек на кровеносных сосудах; 4) противораковые вещества — полисахариды в плодовых телах некоторых трутовых и агариковых грибов (главным
образом ксильтрофов); 5) соединения, ингибирующие активные радикальные процессы в клетках, в том числе облученных, — каротиноиды, ликопины, фенольы и др., продуцируемые многими грибами в очень высоких концентрациях; 6) гормональные вещества. Алкалоиды некоторых грибов, например спорыньи, известна используют для получения гормональных препаратов; 7) хитин — поли-функциональное лекарственное вещество. Он обладает гораздо более высоким адсорбционными свойствами, чем активированный уголь, высокой рано- и ожогозащитной способностью. Все эти и другие препараты получают из разных видов грибов промышленными методами.

Многие грибы используют для получения активных ферментов, разрушающих биополимеры. Так, древоразрушающие базидиомы — источники активных целлюлаз и пероксидаз, облащающих способностью разлагать целлюлозу и лигнин. Их использование очень важно для целлюлозо-бумажной промышленности, так как позволяет заменить выделение и деградацию этих веществ химическими методами и избавиться от ядовитых отходов производства, загрязняющих окружающую среду (целлюлозная промышленность остается одним из самых грязных производств). Генно-инженерными методами гены, контролирующие эти ферменты, переносят из базидиальных грибов в более быстро растущие и технологически более удобные микромицеты (дрожжи и др.). Пектиназы (разла-гают пектин), протеазы (разрушают белки), лигазы (разрушают липиды) грибов широко используются в пищевой и легкой промышленности для осветления овощных и фруктовых соков, как добавки к моющим средствам и др.

Из грибов традиционно получают органические кислоты — лимонную, итаконовую и др.

Фитопатогенные грибы оказались активными продуцентами фитогормонов, таких, как гиббереллины, фузикоксины. Эти вещества регулируют ростовые процессы у растений, направляя их в нужную для паразита сторону. Сейчас ими обрабатывают сельскохозяйственные растения для получения более крупных плодов, ускорения роста и других целей.

Пищевые и кормовые грибы. Среди этих грибов наиболее важны представители двух групп.

1. Дрожжи Saccharomyces cerevisiae. Их способность в процессе брожения перерабатывать сахара в спирт и углекислый газ издавна используют в производстве многих пищевых продуктов, прежде всего хлеба, вина и пива, а также в спиртовом производстве. Благодаря быстрому размножению (клетки почкуются каждые 60—100 минут) и накоплению биомассы многие виды дрожжей выращивают для получения богатых питательными веществами кормов (белково-витаминный концентрат, БВК).

2. Плодовые тела сумчатых и базидиальных макромицетов. Один из наиболее любимых населением России природных продуктов, который используют в свежем, сушеном и консервированном виде. Однако их использование в пищу не безопасно и может привести к тяжелым отравлениям, часто с летальным исходом. Во-первых, многие виды грибов содержат токсины, описанные ранее (с. 268), и недостаточно знающий собиратель может спутать ядовитые грибы с внешне похожими на них съедобными. Во-вторых, в отличие от высших растений,
Значение грибов в практической деятельности человека

адсорбирующих почвенные растворы корневой системой, грибы всасывают питательные вещества всем вегетативным телом (мицелием), о чем уже было сказано. Поэтому они активно накапливают в мицелии и плодовых телах находящиеся в окружающей среде токсичные продукты (радионуклиды, тяжелые металлы, пестициды и т.д.). В связи с этим употребление в пищу вполне съедобных грибов, которые собраны в местах экологически неблагоприятных может привести к тяжелым отравлениям. Поэтому во многих промышленно развитых странах дикорастущие грибы вообще не собирают. Поскольку в России это не относится, сборщикам грибов необходимо соблюдать некоторые простые правила, позволяющие снизить риск от употребления дикорастущих грибов: а) не собирать неизвестные грибы, как бы аппетитно они ни выглядели; б) не собирать грибы в экологически неблагоприятных местах — в городах, вдоль оживленных автомобильных дорог, около свалок, промышленных объектов и т.п.; в) не собирать старые, «червивые» и особенно заплесневевшие грибы, так как в них могут развиваться токсигенные бактерии и грибы; г) собирать грибы в корзинки, а не в целлофановые пакеты, в которых плодовые тела быстро задыхаются и загнивают; д) собранные грибы следует сразу почистить, вымыть и переработать; е) консервировать грибы только в открытой посуде во избежание развития высокотоксичных анаэробных бактерий в закупоренных банках. Нужно также иметь в виду, что ксилотрофные (растущие на мертвой древесине) грибы обычно экологически чище грибов, растущих в почве.

Гораздо более безопасно использовать в пищу съедобные грибы, выращенные в искусственных условиях. Наиболее широко культивируется гумусовый сапротроф шампиньон двуспоровый, который разводят более чем в 70 странах. Его культивирование включает несколько этапов: стерильное выращивание грибницы; внесение ее в специально приготовленные компости, в которых грибница разрастается, охватывая весь объем субстрата; покрытие компоста нестерильной почвой (плодоношение индуцируют почвенные микроорганизмы), в которой при определенных температуре и влажности развиваются плодовые тела. Современные технологии позволяют получать с 1 м² почти 30 кг грибов при пяти урожаях в год, что значительно превышает выход продукции растениеводства и животноводства. Кроме шампиньона широко выращивают грибы-ксилотрофы, развивающиеся в природе на мертвой древесине: летний и зимний опенок, вешенка, японский гриб синтаке и др. Их можно культивировать на отходах деревообрабатывающей (обрубки, опилки лиственных пород), легкой и пищевой промышленности (хлопковые очесы, подсолочная лузга др.) и сельского хозяйства (солома). Это удешевляет их производство и попутно решает важную народнохозяйственную задачу — утилизацию промышленных, сельскохозяйственных и коммунальных отходов. После снятия урожая грибов эти отходы обогащены мицелиальным белком, в них частично или полностью разрушены трудноусвояемые или токсичные биополимеры (целлюлоза, линнин), поэтому они могут быть использованы в качестве добавок в корм скоту или для удобрений, что создает замкнутый цикл безотходного производства — идеал промышленной экологии. Большое достоинство грибов-ксилотрофов — их лекарственные свойства, описанные выше.
Использование грибов в агрокультуре. Важный прием, широко применяемый в современных сельскохозяйственных и лесотехнических технологиях, — микоризация растения (заражение культурами микоризных грибов). Этот прием повышает приживаемость, урожайность и устойчивость растений.

Многие грибы — паразиты сельскохозяйственных вредителей (насекомых, нематод), возбудителей грибных болезней (микофильы) и сорных растений используются как альтернатива пестицидам — в качестве биологических средств защиты растений. Для этого созданы микробиологические производства, в которых накапливают споры грибов, используемых в дальнейшем для опрыскивания посевов, обработки семян или внесения в почву.

СИСТЕМАТИКА ГРИБОВ

По комплексу признаков грибы и грибоподобные организмы относят к трем царствам живого мира: Stramenopila, Mycota — Fungi и Protozoa (табл. 5).

Три отдела грибов: лабиринтюломикота, или сетчатые слизевики (Labyrinthulomycota); гифохитридиомикота (Hyphochytridiomycota), оомикота (Oomycota), ныне трактуемые как грибоподобные организмы, или псевдогрибы, относятся к царству Stramenopila (страменоопилы). Они помещены сюда наряду с бурьми, золотистыми и желтозелеными водорослями, а также с некоторыми протистами. «Грибы», входящие в эти отделы, интерпретируются здесь как вторично бесцветные, потерявшие хлорофилл организмы или как группы, независимо эволюционирующие от первично бесцветных флагеллярных предков с гетероморфными вегетативными жгутиками. Последняя гипотеза частично подтверждается данными секвенирования рибосомальной ДНК отделных представителей этих групп. Представители этого царства имеют митохондрии в основном с трубчатыми кристами, перистые жгутики с трехчленными жгутиковыми волосками, или мастигонемами. Их клеточная стенка чаще содержит целлюлозу и β-глюкан, и в ней отсутствует хитин.

ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ
(STRAMENOPILA)

ОТДЕЛ ЛАБИРИНТУЛОМИКОТА,
ИЛИ СЕТЧАТЫЕ СЛИЗЕВИКИ
(LABYRINTHULOMYCOTA)

Представители этого отдела — сапрофиты и паразиты, встречающиеся на водных (чаще морских) растениях. Вегетативное тело (трофическая стадия) представляет собой эктоплазматическую слизистую сеть или систему ходов, на поверхности или внутри которой скользят отдельные клетки, лишенные собственной оболочки. Такая структура называется сетчатый плаズмодий, или филоплазмодий. В цикле развития имеются двухжгутиковые зооспоры. Жгутики гетероморфные (перистый и задний гладкий) и гетероконтные. Отдел включает два класса.
Основные признаки отделов грибов и грибоподобных организмов

<table>
<thead>
<tr>
<th>Признак</th>
<th>Mycota — Fungi</th>
<th>Stramenopila</th>
<th>Protozoa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Подвижная стадия</td>
<td>отсутствует за исключением Chytridiomycota с 1 гладким жгутиком</td>
<td>двуугутиковая гетероморфная за исключением Hyphochytridiomycota с 1 перистым жгутиком</td>
<td>двуугутиковая изоморфная</td>
</tr>
<tr>
<td>Полисахаридный состав клеточной стенки</td>
<td>хитин + глюкан за исключением Zygomycota, где хитин + хитозан</td>
<td>целлюлоза + глюкан; у Hyphochytridiomycota целлюлоза + хитин; у Labyrinthulomycota целлюлозы нет</td>
<td>целлюлоза целлюлоза целлюлозы нет целлюлозы нет</td>
</tr>
<tr>
<td>Синтез лизина</td>
<td>через α-аминоацидиновую кислоту</td>
<td>через диаминопиперидиновую кислоту</td>
<td>—</td>
</tr>
</tbody>
</table>

Класс лабиринтуловые (Labyrinthulomycetes)

Характеристика класса соответствует характеристике отдела. Большинство лабиринтуловых — паразиты водорослей-макрофитов: ламинарией, ульв, высшего водного растения зостеры (Zostera). В основном это паразиты — убиквисты, т.е. виды с широкой экологической амплиITUDEЙ. Среди них есть сапротрофы, использующие водные растения как опорный субстрат. Представитель группы Labyrinthula macrocystis (рис. 190) паразитирует на морской траве Zostera marina, вызывая ее гибель при массовом поражении (эпифитотиях). Вегетативное тело L. macrocystis — веретеновидные амёбы, одетые плазменным чехлом, который образуется за счет выделений из особых трубковидных клеточных органелл — сагеногенов, характерных для этой группы организмов. Они открываются наружу и выделяют вещество, одевающее слизистым чехлом веретеновидную клетку — амёбу. Слизистые чехлы, или футляры, увеличиваются, сливаются в ходы, в которых перемещаются отдельные амёбы, размножающиеся делением. За счет этих клеточных делений и расширения системы слизистых ходов формируется сетчатый плазмодий, или эктоплазматическая сеть. Такие вегетативные тела находятся в тканиях растения-хозяина. Слизистые чехлы переходят из клетки в клетку хозяина, и таким образом паразит распространяется в тканях или талломе хозяина. Амёбы могут выходить из чехлов, инцистироваться, т.е. образовывать плотную оболочку и превращаться в цисту.

Перед образованием зооспор амёбы собираются в группы в отдельных местах сети и несколько уменьшаются в размере, как бы сжимаются. Вокруг каждой группы формируется оболочка, в результате чего возникают специальные структуры — корусы, клетки которых представляют собой спороцисты. В спороцисте формируется по 6—8 и более двугутиковых зооспор. Жгутики гетероморфные и гетероконтные. В основании жгутиков зооспоры имеют сагеногены и оранжевый
Рис. 190. Цикл развития *Labyrinthula*.
1 — зооспоры; 2 — голые клетки, формирующие слизистый чехол; 3 — размножение инцистированных зооспор; 4 — начало образования сетчатого плазмодия и часть нити с веретеновидными клетками; 5 — фрагмент сетчатого плазмодия; 6 — начало образования спороцист; 7 — спороцисты с «пакетами» спор

gлазок — *стигму*. Зооспоры заражают новые растения-хозяева. Лабиринтуловые достаточно легко культивируются в лабораторных условиях.

Класс траустохитридиомицеты

(*Thraustochochytridiomycetes*)

Сапротрофы на морских водорослях, реже паразиты. Таллом одноклеточный микроскопический, моноцентрический, т.е. ризомицелий отходит от одной клетки, содержащей ядро. Зооспоры гетероконтные, жгутики гетероморфные (один гладкий, другой перистый). В клетках присутствуют сегеногены, вследст-
Отдел гифохитридиомикота (Hyphochytridiomycota)

299

Вие этого они одеты слизистым чехлом и могут формировать эндоплазматическую сеть. От типичных лабиринтуломицетов их отличает отсутствие стигмы и вздутия у основания жгутика. В настоящее время в класс включают 9 родов и более 40 видов.

Представитель класса — Thraustochytrium proliferum, поселяющийся как сапрофаг на поверхности таллома морской сифоновой водоросли бриопсис (Bryopsis). Вид эукариотический с моноцентрическим ризомицелем, т.е. имеется только одна клетка, содержащая ядро, которая в дальнейшем становится центром образования репродуктивных органов. Ризомицелий в их формировании не участвует. Попадая на поверхность растения-хозяина, зооспора образует ризомицелий, проникающий внутрь клеток. После периода вегетативного роста центральное тело особи (кроме ризомицеля) переворачивается в зооспорангий. Для данного вида характерна пролиферация зооспорангий, причем она начинается до выхода зооспор (рис. 191).

Отнесение траустрохитриевых к отделу лабиринтуломикота остается дискуссионным, так как последние значительно отличаются от лабиринтуловых по молекулярной структуре генома. Ранее траустрохитриевых относили к отделу Oomycota на основании строения жгутиков: направленного назад бичевидного — гладкого и направленного вперед — перистого.

Рис. 191. Цикл развития Thraustochytrium proliferum.
1 — таллом; 2 — образование зооспор и пролиферация таллома; 3 — выход зооспор; 4 — зооспоры

ОТДЕЛ ГИФОХИТРИДИОМИКОТА
(HYPHOCYHTHIDIOMYCOTA)

Гифохитридиевые — водные грибы, в основном внутриклеточные паразиты зеленых и бурых водорослей, водных грибов и беспозвоночных животных. Немногие из них живут сапрофагами на растительных остатках в воде или влажной почве. Вегетативное тело микроскопических размеров представляет собой гольный протопласт или у некоторых видов образуется зачаточный мицелий без собственных ядер — ризомицелий. На подвижных стадиях (зооспоры, гаметы) имеется один передний преристый жгутик. В клеточных оболочках содержится полисахаридный комплекс — целлюлоза + хитин. В отдел входит один класс — Hyphochytridiomycetes, включающий около полутора десятков видов, объединенных в один порядок Hyphochytridiales.

Представитель класса — Anisolpidium ectocarpi, паразитирует на бурых водорослях рода Ectocarpus (рис. 192). Холокарпический вид без ризомицеля, т.е. все вегетативное тело идет на формирование репродуктивного органа — зооспорангию или гаметангия. Зооспоры, осев на клетке растения-хозяина, теряют
жгутики и переливают одноядерные протоплазмы в клетку хозяина — интраматрикальный таллом. Затем они разрастаются и образуют зооспоры, освобождающиеся после разрушения клеточной стенки растения-хозяина. Половой процесс — хологамия. При этом в клетке хозяина, инфицированной разными зооспорами, происходит попарное слияние протопластов паразита. Вслед за глизомогамней следует кариогамия, и диплоидное ядро делится первоначально митотически. Образовавшаяся зигота разрастается в многоядерную покоящуюся спору, которая, предположительно, после редукционного деления ядер превращается в зооспорангий.

Другой представитель гифохитридиомицетов — *Rhizidiomyces apophysatus* эузакарпический вид с моноцентрическим ризомицелем, паразитирует на оогониях сапрогониевых грибов (рис. 193). Его зооспоры, оседая на клетке (оогонии) хозяина, инцидируются, т.е. одеваются оболочкой, и внедряют в клетку хозяина ризомицелий. Питающая за счет ризомицеля основная экстраматрикальная часть паразита, т.е. находящаяся на поверхности субстрата, в данном случае на поверхности оогония сапрогонии, разрастается и превращается в зооспорангий с зооспорами.

Состав клеточной стенки и строение перистого жгутика сближают гифохитридиомикота и оомикота. Для гифохитридиомикота отмечается низкая ступень организации талломов, который остается на уровне ризомицелия и не дает начала более высокоорганизованным видам с настоящим мицелем.

ОТДЕЛ ООМИКОТА (ООМУСОТА)

Подвижные стадии (зооспоры) двужгутиковые, гетероконтные, с гетероморфными (передний — перистый, задний — гладкий) жгутиками. Жгутики могут быть латеральными, но при этом перистый направлен вперед, а гладкий — назад. В клеточных стенках содержатся преимущественно полисахаридный комплекс глюкан — целлюлоза и редко — небольшое количество хитина (порядок *Leptomitailes*). Запасное вещество — водорасторимый глюкан миколоаминарин. Гликоген, типичный для настоящих грибов, отсутствует.

Вегетативное тело у большинства видов — хорошо развитый неклеточный (несептированный) многоядерный мицелий, микро- и макроскопический. Вегетативная стадия диплоидная. Редукционное деление происходит перед образо-
Ванилем польных элементов. Половой процесс — оогамия с дифференцированными полными органами: оогонием и антерилем. Оогоний содержит много или одну яйцеклетку. В антерилем — многоядерное, не дифференцированное на сперматозоиды содержимое. Бесполое размножение двуугутиковыми зооспорами или, у немногих видов, конидиями. Синтез лизина идет через диамино-пимелиновую кислоту.

Среди оомикота большую группу составляют водные грибы, растущие на растительных остатках, трупах водных животных. Есть среди них паразиты водорослей, водных грибов, беспозвоночных, амфиий и рыб. Некоторые виды живут в почве. Большая группа видов этой группы относится к облигатным паразитам высших наземных растений.

Отдел Oomycota включает один класс Oomycetes, повторяющий признаки отдела, 10 порядков, выделяемых по уровню организации таллома и особенностям полового и бесполого спороношений. В пределах класса прослеживается эволюция, связанная с выходом представителей группы на сушу. Важнейшие порядки: Saprolegniales, Peronosporales, Leptomitales, Lagenidiales.
ПОРЯДОК САПРОЛЕГНИЕВЫЕ
(SAPROLEGNIALES)

У большинства этих типично водных грибов хорошо развит субстратный и воздушный мицелий. Наиболее широко распространены в природе виды семей-ства сапролегниевые (Saprolegniaceae): их насчитывается около 150 видов. Это преимущественно сапротрофы, развивающиеся на трупах беспозвоночных, икре рыб и лягушек, т.е. на органических остатках животного происхождения. Грибы этого семейства вызывают заболевание рыб, известное под названием «сапро-легниоз». В природе в аквариумах, в водоемах со слабо текущей и недостаточно аэрируемой водой сапролегниевые грибы могут развиваться на икре рыб, мальках и взрослых ослабленных или пораненных рыбах, вызывая их гибель. Заболевание наносит большой ущерб при разведении таких ценных пород рыб, как осетровые, судак; он также часто оказывает вредное воздействие на аквариумном разведении декоративных рыб. Зооспоры сапролегниевых почти всегда присутствуют в воде различных, особенно стоячих водоемов. Если в такую воду поместить трупы насекомых (мух), личинки мушек («муравьиные яйца»), кусочки белка вареного куриного яйца или семена конопли, то через 4—6 дней вокруг них уже будет заметен белый пушок — мицелий сапролегниевого гриба. Очень часто в таких случаях выделяются грибы рода сапролегния — Saprolegnia (рис. 194, 1—5).

![Рис. 194. Saprolegnia.](image)

1 — мицелий на трупе мухи; 2 — зооспорангий; 3 — выход зооспор; 4 — пролиферация зооспорангия; 5 — диморфизм зооспор: первичные и вторичные зооспоры, циста; 6 — оогоний с яйцеклетками и два антеридии (стадия оплодотворения)

Субстратный питающий мицелий состоит из коротких тонких гиф, а воздушный, окружающий субстрат мицелий — из длинных (до 1 см), толстых (100—200 мкм), маловетвящихся гиф. На их концах довольно быстро образуются цилиндрические зооспорангии, отделяющиеся от несущей их гифы перегородкой.
Отдел оомикота (Oomycota)

Через отверстие на вершине зооспорангия выходят грушевидные зооспоры с двумя жгутиками на переднем конце. Поплавав некоторое время (в условиях эксперимента 30 мин), каждая зооспора останавливается, одевается оболочкой и переходит в состояние покоя, т.е. инцистируется. Затем циста прорастает в новую зооспору, но иного строения: почковидную, с двумя жгутиками, прикрепленными сбоку, — это явление диморфизма зооспор. Вторичные зооспоры обычно имеют значительно больший период двигательной активности, чем первичные, грушевидные, и, что особенно существенно в их биологии, они обладают определенным хемотаксисом, с помощью которого находят подходящий субстрат. Оседая на него, вторичные зооспоры прорастают в новый мицелий. У некоторых родов вторичные зооспоры в зависимости от условий могут повторно и даже несколько раз инцистироваться и вновь прорастать, т.е. обладают дихотомическим полипланетизмом.

У других родов сапрофитных грибов наблюдается последовательная редукция одной из двух стадий зооспор, чаще грушевидной, например у рода ахлия — Achlya, часто встречающегося вместе с сапротрофной. У Achlya грушевидные зооспоры, выйдя из зооспорангия, сейчас же одеваются оболочками, образуя скопление цист у отверстия зооспорангия. Новые зооспорангии у видов ахлия появляются обычно сбоку от основания опустевшего спорангия и затем сдвигают его в сторону, т.е. образуются симподиально (рис. 195, 1). У видов рода диктюхус Dictyuchus зооспоры одеваются оболочкой еще в зооспорангиях. Сформировавшиеся в этих оболочках почковидные зооспоры выходят каждая из своего отверстия в оболочке зооспорангия, а пустые оболочки зооспор остаются внутри зооспорангия в виде сеточки, в связи с этим его называют «сетчатый зооспорангий». У видов этого рода зооспорангии обычно развиваются цепочкой один за другим (рис. 195, 2). У рода Aplanes стадия зооспор полностью подавлена. Зооспоры здесь вообще не выходят

Рис. 195. Зооспорангии Achlya (1), Dictyuchus (2) и Aplanes (3)
из зооспорантии, а прорастают гифами, выходящими наружу через стенку зооспорантии (рис. 195, з). Чаше всего подвижная стадия зооспор подавлена или утрачена у видов, обитающих в почве, например у рода *Aplanopsis* (*A. terrestris*).

На гифах, расположенных ближе к субстрату, развиваются половые органы: оогонии и антеридии. Оогонии шаровидные, на короткой ножке, от которой отделены перегородкой. В оогонии обычно формируется несколько яйцеклеток, на образование которых идет весь протопласт. В его оболочке имеются поры, заметные в виде мелких колечек. Антеридии представляют собой небольшие многоядерные клетки, развивающиеся на вершине специальных гиф — антеридиальных ветвей (см. рис. 194, б).

Среди сапропелегниевых грибов есть гомоталличные и гетероталличные виды. Антеридиальные ветви подрастают к оогонию. Антеридий плотно прикладывается к нему и через поры в оболочке оогония пускает в него оплодотворяющие выросты. Таким путем ядро и часть цитоплазмы антеридия попадают в яйцеклетку. Один антеридий может дать несколько оплодотворяющих выростов и оплодотворить несколько яйцеклеток. После оплодотворения развиваются ооспоры, одетые толстой оболочкой. Обычно такие ооспоры переносят в состояние покоя и могут переносить неблагоприятные условия (высыхание, зимовку и т.д.). Исследования последних 15—20 лет показывают, что у ряда оомицетов, в том числе и некоторых сапропелегниевых, гаметическая редукция, т.е. мейоз, происходит в оогониях и антеридиях перед образованием гамет. Отсюда следует, что основную стадию жизненного цикла — вегетативную — и бесполое размножение они проходят в диплоидной, а не гаплоидной стадии, как предполагалось ранее. Вопрос требует дальнейшего изучения. Ооспоры после периода покоя прорастают в короткую гифу с зооспорантией на конце.

Некоторые виды сапропелегниевых из родов лептологения (*Leptolegnia*) и соммершторфия (*Sommersthorffia*) паразитируют на рачках, моллюсках, крабах, губках, коловратках (рис. 196). Летом 1950 и 1951 гг. отмечалась массовая гибель планктонного рачка *Eurytemora hirundoides* у шведского побережья Ботнического залива Балтийского моря, вызванная грибом *Leptolegnia baltica*. Это привело к значительному снижению промысла сельди, для которой эти планктонные организмы служат основной пищей, составляющей обычно более 50, а часто 80—90% всего зоопланктона.

Среди практически важных грибов порядка сапропелегниевых нужно отметить род афаномицес — *Aphanomyces*, виды которого хотя и развиваются в почве, но сохраняют диморфизм зооспор. *A. cochlrioides* вызывает заболевание высших растений, называемое «корнеедом», так как гриб развивается в основном в области корневой щелевой. Основной вред этот гриб приносит в парниках, а в полевых условиях в основном поражает всходы таких культур, как свекла, люцерна, горох и т.д. Сапропелегниевые грибы довольно легко культивируются, что позволило проводить с ними экспериментальные исследования. Классические работы с этой группой грибов были выполнены немецким ботаником С. Клебсом (Klebs) в конце XIX — начале XX в. Это позволило изучить их биологию, цикл развития, половой процесс и физиологию.
Рис. 196. Sommerstorffia spinosa — паразит коловраток.
1 — зооспоры; 2 — заглатывание спор гриба коловраткой; 3 — оогамный половой процесс (а) и ооспоры (б); 4 — прорастание зооспорангии; 5 — вторичные зооспоры; 6 — атакующие гифы

При оптимальных, постоянно возобновляемых источниках питания неограниченно долго происходит вегетативный рост гриба. Если его мицелий перенести в среду, бедную питательными веществами, то начинается процесс бесполого размножения и образуются зооспорангиа. Внесение в среду некоторых питательных веществ, например аминокислот, в определенных концентрациях может вызвать половой процесс с образованием оотониев и антеридиев. Таким образом можно управлять процессом развития этих грибов.

ПОРЯДОК ПЕРОНОСПОРОВЫЕ
(PERONOSPORALES)

Пероноспоро́вые — самый большой порядок в классе ооцистов, насчитывающий более 300 видов из 20 родов, очень разнообразных по экологии: водных и наземных, сапрофагов и паразитов. Среди них преобладают паразиты высших растений. В этой группе можно проследить эволюцию от факультативного паразитизма к облигатному. Вегетативное тело представляет собой неклеточный хорошо развитый мицелий, на котором у большинства видов развиваются морфологически обособленные от мицелия спорангииосцы с различным типом ветвления (рис. 197). Зооспоранги овальные, яйцевидные или шаровидные. Зооспоры только почковидного типа с двумя боковыми жгутиками, один из которых, перистый, направлен вперед, а другой, гладкий, — назад.

Половой процесс — типичная оогамия. В отличие от сапролегниевых в оогонии формируется всего одна яйцеклетка, и часть его содержимого остается в виде периплазмы, окружающей яйцеклетку. Образование периплазмы можно рассматривать как прогрессивный признак в эволюции этого класса, так как она обеспечивает лучшее развитие ооспоры и ее оболочки (рис. 198).
В эволюции пероноспоровых грибов хорошо прослеживаются два направления, или две тенденции: первая связана с выходом на сушу, вторая — с переходом от сапрофитизма к паразитизму на высших растениях. В результате выхода на сушу зооспоры постепенно заменяются конидиями, а в результате приспособления к паразитизму возникают специализированные приспособления к паразитному питанию — гаустории, характерные для облигатных паразитов.

По строению спорангиеносцев и способам прорастания зооспорангий порядок подразделяют на 4 семейства.

Семейство пятиевые (Pythiaceae) объединяет в основном водные и почвенные грибы, среди которых факультативные паразиты наземных растений, развивающиеся в условиях повышенной влажности.

Виды рода питиум (Pythium) имеют очень тонкий мицелий, спорангиеносцы мало отличаются от гиф, зооспорангии цилиндрические, прорастают прямо на мицелии особым пузырем, в котором и формируются зооспоры (рис. 199). P. debaryanum — возбудитель «корнеела», паразитирует на корнях сеянцев древесных пород и рассаде многих сельскохозяйственных растений (свекла, капуста, огурец, табак, кукуруза и др.). Мицелий гриба проходит через клетки растения-хозяина и быстро их убивает. При этом происходит уточнение и почернение
основания стеблей и растение гибнет. *P. irregulare* поражает сахарную свеклу в течение всей вегетации, вызывая черный сосудистый некроз, проявляющийся в отмирании сосудов листьев и корней. Он поражает также всходы древесных пород, особенно в питомниках.

Семейство фитофторовые (Phytophthoraceae) включает около 70 видов, объединяемых в один род фитофтора (*Phytophthora*). Спорангиеносцы обычно хорошо отличимы от мицелия, ветвятся симподиально. Зооспоранги лимоновидные или яйцевидные, с сосочком на вершине, который у части видов вскрывается крышечкой (рис. 200, 1—5). Зооспоранги обычно спадают с несущих их спорангиеносцев и распространяются ветром и токами воды. Зооспоранги прорастает зооспорами, которые выходят по одной или иногда сначала одеты общим пузырем. Такое прорастание имеет место при наличии капельно-жидкой воды. При ее отсутствии и высокой температуре зооспоранги прорастает как отдельная экзогенная спора — конидия, непосредственно в гифу, что рассматривается как приспособление к наземному образу жизни. Поэтому спорангиеносцы и споранги пероноспоровых (кроме семейства питаев) называют конидиеносцами и конидиями соответственно.

Виды рода фитофтора могут существовать сапрофитно, но чаще паразитируют на растениях. Они имеют очень важное практическое значение, особенно так называемый «картофельный» гриб *P. infestans*, паразитирующий на картофеле и томатах и вызывающий опаснейшее заболевание — фитофтороз. Этот гриб причиняет большой ущерб не только при выращивании, но и при хранении
Рис. 200. Картофельный гриб Phytophthora infestans.
1 — спорангиеносцы (конидиеносцы), высывающиеся через устьица листа; 2 — споранги (конидии); 3 — прорастание спорангиозооспорами; 4 — прорастание спорангия в гифу; 5 — зооспора и ее прорастание; 6 — пораженные листья и клубни картофеля

cартофеля (рис. 200, 1— б). Гриб поражает листья и клубни картофеля. Мицеллий идет по межклетникам, пуская внутрь клеток хозяина специализированные питающие ответвления — гаустории, но может пробивать и стенки клеток, вызывая быстрое отмирание тканей растения-хозяина, что проявляется в появлении на пораженных фитофторозом листьях картофеля бурых пятен. С нижней стороны пораженного листа в области пятен виден беловатый налет, состоящий из пучков спорангиеносцев со спорангиями (или конидиями), которые высываются из устьиц. Образование оссор в тканях отмерших листьев у P. infestans наблюдается редко. Гриб гетероталличен.
Отдел оомикота (Oomycota)

Паразит был завезен в Европу из Южной Америки вместе с картофелем в 30-е годы XIX столетия и уже в 1845 г. вызвал первое массовое заболевание, эпифитотию, этой культуры. Вспышки заболевания наблюдаются и в настоящее время. Один из основных способов борьбы с ним — выведение устойчивых к фитофторозу сортов картофеля и томатов.

Семейство пероноспоровые (Peronosporaceae) включает наземных облигатных паразитов высших растений. Конидиеносцы резко отличаются по морфологии от мицелия, определенным образом ветвятся (см. рис. 197). Спорангии отдельные - от спороносца и распространяются всегда как отдельная спора — конидия, прорастают они у разных рядов по-разному: зооспорами или гифой. Мицелий межклеточный, с гаусториями. Конидиеносцы с конидиями выходят пучками из устьиц обычно на нижней стороне пораженных листьев, образуя беловатый налет, особенно обильный во влажную прохладную погоду. За такой характер поражения грибы этого порядка получили название ложных мучнистосерных грибов, или ложная мучнистая роса. Оогонии, антеридии и ооспоры формируются в межклетниках растения-хозяина в основном на уже отмерших частях растений. Разграничение родов основано на типах ветвления конидиеносцев.

Род плазмопара (Plasmopara) имеет моноподиально ветвящиеся конидиеносцы (см. рис. 197, 1). P. viticola паразитирует на винограде, вызывая одно из наиболее вредоносных заболеваний этой культуры, известное под названием «милдью», или ложная мучнистая роса. Поражаются листья, ушики, ягоды и молодые побеги. Ооспоры зимуют в отмершей ткани листьев и ягод. Родина плазмопары виноградной Америка, откуда гриб был завезен в Европу еще в прошлом веке. Способ борьбы — многократное опрыскивание винограда бордосской жидкостью (смесь медного купороса со свежегашенной известью).

Уже в XX в. из Северной Америки был завезен другой фитопатогенный гриб этого рода, P. helianthi, паразитирующий на подсолнечнике.

Род пероноспора (Peronospora) имеет дихотомически ветвящиеся конидиеносцы и конидии, всегда прорастающие в гифу. Включает очень много опаснейших, наносящих огромный вред паразитов сельскохозяйственных растений: P. tabacina паразитирует на табаке; P. schachtii — на свекле; P. destructor — на луке; P. pisi — на горохе и т.д. (см. рис. 197).

Семейство альбутиевые (Albuginaceae), как и предыдущее, включает облигатных паразитов высших растений, но их конидии образуются цепочками на коротких булавовидных конидиеносцах, расположенных папиллярным слоем под эпидермисом растения-хозяина (рис. 201). По мере нарастания цепочек давление на эпидермис увеличивается, он разрывается и конидии, отрываясь от цепочки, разносятся токами воздуха. Прорастают они зооспорами. Вид Albugo candida паразитирует на растениях семейства крестоцветных, вызывая на стеблях и листьях беловатые вздутие пятна.

Порядок пероноспоровые — самый большой по числу видов и важнейший в практическом отношении в классе оомицетов.
Рис. 201. *Albugo candida.*

A — спорангиносы со спорангиями под эпидермисом растения;
B — оогонии (1), антеридии (2) и оспоры (3) в тканях растения-хозяина; *B* — мицелий и гаустории в тканях растения

ПОРЯДОК ЛЕПТОМИТОВЫЕ
(LEPTOMITALES)

Включает всего 20 видов из 8 родов, в основном сапротрофов, обитающих на растительных остатках в пресных водоемах, особенно загрязненных органическими веществами. Их мицелий имеет характерные перетяжки, или псевдосепты, придающие гифам септированный вид. Зооспорангии шаровидные или реже цилиндрические. В оогонии одна яйцеклетка с перiplазмой, что сближает эту группу грибов с пероноспоровыми. Репродуктивные органы часто располага-
ются на ножках. Для части видов известен диморфизм зооспор, как у сапролегниевых. Leptomitus lacteus — широко распространенный вид, часто встречающийся в сточных сильно загрязненных водах (полиспроб) (рис. 202). Из конечных участков его тонкого мицеля или из участков гиф на некотором протяжении образуются зооспоранги, иногда один за другим. Половой процесс у этого вида неизвестен. Гриб не может усваивать аммонийный азот, а источником углерода для него служат аминокислоты. При обильном развитии гриба мицелий забивает водоочистные сооружения, орудия лова рыб, чем наносит определенный вред.

У видов рода Rhipidi um имеется осевая часть в виде крупных цилиндрических или округлых клеток с ризоидами внизу и ветвями наверху. На этих ветвях располагаются овальные зооспоранги, шаровидные оогонии и ооспоры и мелкие слегка вытянутые клеточки-антеридии (рис. 203). Таким образом, у видов этого рода появляется морфофункциональная дифференцировка таллома, где ризоиды выполняют функции укрепления на субстрате и частично питания, осевая часть — опорную и питательную функции, а верхушечные ветви таллома выполняют генеративные функции. Виды рода рипидиум растут на поверхности разлагающихся плодов, попавших в воду или находящихся в условиях переувлажнения.

Рис. 202. Leptomitus: мицелий с перетяжками (1), зооспоранги и выход зооспор (2)
Рис. 203. Rhipidi um: таллом с зооспорангиями (1), оогониями (2), антеридиями (3), ооспорами (4)
ПОРЯДОК ЛАГЕНИДИЕВЫЕ
(LAGENIDIALES)

Включает около 80 видов из 15 родов, которые, за небольшим исключением, являются облитатными внутриклеточными паразитами водных ооциетов, водорослей, ракообразных, моллюсков, насекомых (личинок комаров). Мицелий короткий, слаборазвитый, что, вероятно, связано с внутриклеточным паразитизмом, зооспоры почковидные. Паразитирующий вид Lagenidium rabenhorstii часто встречается в клетках спирогиры и других нитчатых водорослей из порядка Zyg nematales (рис. 204).

При сравнении таксономически значимых признаков представителей отделов Hyphochytridiomycota и Oomycota прослеживается их значительное сходство, выражающееся в наличии перистого жгутика, целлюлозы, трубчатом строении крист митохондриев, типе синтеза триптофана, молекулярной структуре рибосомной РНК. Это, на наш взгляд, можно считать достаточным основанием для

![Diagram](image)

Рис. 204. Lagenidium rabenhorstii в клетках Spirogyra.
1 — зоосpora; 2 — проникновение паразита в клетку; 3 — образование и выход зооспор; 4 — половой процесс: а — ооогоний, б — антеридий
включения гифохитридиомицетов в ранг класса в отдел Oomycota, как это имеет место в системах Л. Олайва (1975) и Л.В. Гариповой (1980). Потерю в цикле развития или в определенных экологических условиях одного (гладкого) жгутика, наблюдающуюся среди низших эукариот, например у зоондов (Diatomeae), и наличие хитина, что иногда встречается и среди оомицетов, по нашему мнению, вряд ли можно считать достаточным основанием для выделения гифохитридиомицетов в самостоятельный отдел.

Настоящие грибы
(fungi, mycota, mycetalia)

В состав клеточной стенки настоящих грибов как основной компонент входит хитин в сочетании с глюканом, маннаном или, в отделе Zygomycota (зигомикота), с хитозаном. Подвижные стадии (зооспоры, гаметы) в цикле развития имеются только у представителей отдела Chytridiomycota (хитридиомикота). В последнем случае они имеют один гладкий бичевидный жгутик, направленный назад. Биосинтез лизина идет через α-аминоацидиновую кислоту. Царство настоящие грибы включает 4 отдела, предположительно филогенетически связанные между собой (табл. 6).

Грибы, входящие в отделы хитридиомикота (Chytridiomycota) и зигомикота (Zygomycota), имеют вегетативное тело, состоящее из неклеточного мицелия. У представителей отделов аскомикота (Ascomycota), базидиомикота (Basidiomycota) и группы мицелловых грибов (mitosporic fungi) (Dictionary..., 1995) или анаморфных грибов (anamorphic fungi) (Dictionary..., 2001) тело образовано клеточным мицелием.

Общие признаки отделов настоящих грибов представлены в табл. 5 (см. с. 297).

Таблица 6

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chytridiomycota</td>
<td>Chytridiomycetes</td>
<td>Chytridiomycetes</td>
</tr>
<tr>
<td>Zygomycota</td>
<td>Zygomycetes</td>
<td>Zygomycetes</td>
</tr>
<tr>
<td></td>
<td>Trichomycetes</td>
<td>Trichomycetes</td>
</tr>
<tr>
<td>Ascomycota</td>
<td>Классы не обозначены</td>
<td>Ascomycetes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neurosporomycetes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pneumocystidomycetes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saccharomycetes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schizosaccharomycetes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taphrinomycetes</td>
</tr>
<tr>
<td>Basidiomycota</td>
<td>Basidiomycetes</td>
<td>Basidiomycetes</td>
</tr>
<tr>
<td></td>
<td>Teliomycetes</td>
<td>Urediniomycetes</td>
</tr>
<tr>
<td></td>
<td>Ustomycetes</td>
<td>Ustilaginomycetes</td>
</tr>
<tr>
<td>Митоспоровые (анаморфные) грибы</td>
<td>Классы не обозначены</td>
<td>Классы не обозначены</td>
</tr>
</tbody>
</table>
ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

ОТДЕЛ ХИТРИДИОМИКОТА (CHYTRIDIOMYCOTA)

Отдел содержит один класс хитридиомицеты (Chytridiomycetes), включающий около 100 родов и 1000 видов. В цикле развития имеются подвижные стадии с одним гладким бичевидным жгутиком, направленным назад. В полисахаридный состав клеточной стенки входит комплекс хитин—глюкан. В пределах группы прослеживается эволюция таллома от голой плазменной массы — амёбоида, через одноклеточные формы с ризомицилем к хорошо развитому неклеточному мицелию с морфофункциональной дифференцировкой его ветвей на ризоидальную, осевую и репродуктивную части. Виды с ризомицелием могут быть моно- и полицентрическими, т.е. иметь один или несколько центров формирования генеративных органов (зооспорангий или гаметангий).

Половой процесс — холо-, изо-, гетеро- и оогамия. Бесполое размножение одножгутиковыми зооспорами.

Представители класса связаны в основном с водной средой обитания. Большинство из них — паразиты водорослей, водных грибов, беспозвоночных. Есть наземные почвенные виды, паразитирующие на высших растениях в условиях повышенной влажности. Значительно меньшую часть составляют сапрофиты, поселяющиеся в воде на растительных и животных остатках.

В состав класса включают 6 порядков, выделяемых в основном по уровню организации таллома и типу полового процесса. При выделении порядков хитридиомицетов в настоящее время существенное значение придается ультраструктурным особенностям зооспор: конфигурации митохондриев, расположению рибосом и микротрубочек, наличию и расположению липидных глобул, особенностям жгутикового аппарата (см. рис. 214).

Основные порядки: Chytridiales, Blastocladiales, Monoblepharidales.

ПОРЯДОК ХИТРИДИЕВЫЕ (CHYTRIDIALES)

Включает виды, имеющие микроскопический таллом, который представлен амёбоидом или клеткой с ризомицилем. Бесполое размножение — зооспорами, половое — изо- или гетерогамия. Сюда входят паразиты водорослей, водных грибов, беспозвоночных и высших растений. Немногие — сапрофиты в воде. Это самый большой порядок в классе, объединяющий около 400 видов из 80 родов.

У видов рода ольпидиум (Olpidium) таллом примитивный, в виде амёбоида, который, одеваясь оболочкой, целиком превращается в один зооспорангий. Хорошо изучен характерный (в общих чертах) для порядка цикл развития O. viciae — вида, паразитирующего на корнях, листьях и стеблях горошка Vicia unijuga (рис. 205). Одноядерная зооспора, попав на растение, теряет жгутик, ползает амёбообразно, затем одевается оболочкой и переливает свое содержимое в эпидермальную клетку хозяина. Здесь тело паразита разрastaется, становясь многоядерным за счет повторных митотических делений исходного ядра зооспоры, затем превращается в зооспорангий, одеваясь оболочкой. Его содержимое
распадается по числу ядер на зооспоры. Такой цикл может повторяться в течение лета. Его продолжительность 5—10 дней. При задержке прорастания спорангий или в условиях голодания зооспоры, вышедшие из зооспорангиев, функционируют как гаметы. Они попарно сливаются, образуя двухгутиковую подвижную планозиготу, которая переливает свое содержимое в эпидермальнюгую клетку растения-хозяина. Здесь образуется двухядерная зигота, которая одевается толстой двухслойной оболочкой, превращаясь в цисту. После периода покоя (зимовки) ядра цисты сливаются. Диплоидное ядро делится мейотически, затем следует ряд митозов, после чего циста прорастает в зооспорангиев с зооспорами. Таким
образом, у *O. viciae* имеются половой процесс и бесполое размножение со сме-ной ядерных фаз, где преобладает гаплоидное состояние.

Близкий вид *O. brassicae* (рис. 206) паразитирует на рассаде капусты, особенно в парниках, вызывая заболевание — «черную ножку». Гриб поражает корни и корневую шейку рассады, особенно в условиях загущенных посевов и избыточной влажности. Цикл развития в общих чертах сходен с ольпидиум. Зооспорангии расположены более глубоко в клетках растения-хозяина. Поэтому они образуют длинные выводные трубки для выхода зооспор.

Род синхитриум (*Synchytrium*) отличается от предыдущего тем, что из его многоядерного разросшегося в ткани хозяина амебоида образуется *corpus* (собрание) зооспорангийев. Виды этого рода паразитируют на высших растениях, вызывая образование небольших галлов на листьях и стеблях различных растений или опухоли на корнях, клубнях и столовах картофеля (рис. 207). Бытовое название последнего заболевания — рак картофеля (*S. endobioticum*). Болезнь относится к числу карантинных заболеваний. Образование опухоли происходит за счет интенсивного деления и разрастания клеток растения-хозяина под действием внедрившегося в ткань паразита. Потери урожая от рака могут составлять 40—60%. Основные меры борьбы — выведение устойчивых сортов, правильный севооборот. Виды родов ольпидиум и синхитриум могут быть переносчиками вирусов растений.

1 — зооспорангии в клетке хозяина; 2 — зооспоры; 3 — протопласты паразита; 4 — покоящиеся споры (цисты) в клетках хозяина

Рис. 207. Внешний вид растения, пораженного *Synchytrium endobioticum* (рак картофеля)

Этапами в эволюции талломов хитридиевых грибов считаются роды и виды с ризомицелем, отходящим от центральной первично-одноклеточной клетки. Такое строение имеет *Rhizophyllum pollinis-pini*, живущий на пыльце высших растений, попавшей в воду. Его одетое оболочкой одноклеточное вегетативное тело развивается из зооспоры, остается на поверхности субстрата — клетке пыльцы, а внутрь ее отходят тонкие разветвленные безъядерные нити ризоми-
Отдел хитридиомикота (Chytridiomycota)

cелия, обеспечивающие питание особи. Основная часть таллома, находящаяся на субстрате, затем целиком превращается в зооспорангий (рис. 208).

В ходе эволюции хитридиевых грибов ризомицелий получает все большее развитие. Примером этого может служить род полифагус (Polyphagus) с наиболее изученным видом P. euglenae, паразитирующим на эвленах. Его зооспора со светочувствительной глобулой золотистого цвета находит места неподвижных инфицирующихся эвлен, останавливается и одевается тонкой оболочкой. Она прорастает ризомицелием, внедряющимися кончиками своих ответвлений в эвлен, и может захватывать таким образом более 50 особей. Из разросшегося тела бывшей зооспоры развивается зооспорангий в виде мешковидного бокового выроста. В него переходит ядро, многократно там делится, после чего содержимое выроста распадается на зооспоры, выходящие через отверстие на вершине зооспоранги (рис. 209). При недостатке питания происходит половой процесс, при котором меньшая, предположительно мужская особь образует по направлению к более крупной, вероятно женской,

Рис. 208. Rhizophydidum pollinis-pini: зооспорангий с ризомицелием на пыльце сосны

Рис. 209. Polyphagus euglenae.
A: 1 — зооспора; 2 — ризомицелий, внедрившийся в эвлен; 3 — тело бывшей зооспоры. Б — половой процесс: 1, 2 — слияние мужской (меньшей) и женской (большей) особей; 3 — зигота; 4—8 — прорастание зиготы с образованием зооспоранги и выходом зооспор
особи длинный вырост. На конце этот вырост вздувается в удлиненный пузырь с шиповатой оболочкой. В него переходит содержащее обоих выростов, после чего пузырь отделяется от них перегородками и превращается в покоящуюся спору. Весь процесс, получивший название сифоногамии, длится примерно 12 часов. Через несколько месяцев зигота (покоящаяся спора) прорастает, образуя мешковидный зооспорангий. При этом два ядра зиготы сливаются в молодом зооспорангии и, предположительно, перед образованием зооспор происходит его редукционное деление с последующим митотическим делением образовавшихся при мейозе гаплоидных ядер.

У некоторых хитридиевых грибов, паразитирующих на высших растениях, на протяжении ризомицелия, обычно захватывающего несколько клеток растения-хозяина, образуются расширения, состоящие из одной или нескольких клеток с собственным ядром в каждой. Эти клетки называются собирательными, и каждая из них может прорастать в ризомицелии, зооспорангии или в цисту. Такой тип таллома хитридиевых называется полицентрическим. Он характерен для рода Physoderma с видом P. maydis, паразитирующим на кукурузе в тропических и субтропических областях и вызывающим пятнистость листьев под названием «оспа» кукурузы (рис. 210).

A — прорастание собирательных клеток внутри клетки растения-хозяина; B — прорастание собирательных клеток: вправо — вегетативно, влево — с образованием цисты; B — прорастание цисты зооспорами

Для видов рода физодерма характерен следующий цикл развития. Зооспоры, попадая на поверхность листьев или стеблей растения-хозяина, олеаются оболочкой, образуют ризомицелий, который внедряется в клетки, а затем центральная часть особи превращается в эфемерный гаметангий. При копуляции вышедших из гаметанга изогамет образуется подвижная планозигота, которая заражает ткань растения и разрастается там в ризомицелии с собирательными клетками. Из них развиваются многоядерные цисты, освобождающиеся после разрушения клеток ткани хозяина. Цисты прорастают, открываясь крышечкой,
и выпускают зооспоры, с которых цикл повторяется. Предполагается, что перед прорастанием цисты происходит редукционное деление. Таким образом, у видов рода физодерма в цикле развития присутствует смена гаплоидного и диплоидного поколений.

ПОРЯДКИ БЛАСТОКЛАДИЕВЫЕ (BLASTOCladiales) И МОНОБЛЕФАРИДОВЫЕ (MONoblepharidales)

Виды двух других, относительно небольших по объему и близких порядков: бластокладиеевые — Blastocladiales (около 50 видов) и моноблефаридовые — Monoblepharidales (около 20 видов) — представляют в классе хитридиомицеты дальнейшую эволюцию талломов в направлении морфофункциональной дифференциации. Они имеют в основном хорошо развитый макроскопический таллом из неклеточного мицелия, дифференцированный на осевую часть, ризоиды и боковые ветви, обычно несущие репродуктивные органы (зооспорангии, гаметангии). Такой типичный таллом имеют виды рода бластокладия — Blastocladia (рис. 211).

Бесполое размножение у представителей обоих порядков осуществляется типичными одножгутиковыми зооспорами. У бластокладиеевых половой процесс — изо- или гетерогамия, причем четко выражена смена гаплоидного и диплоидного поколений. Виды рода алломицес — Allomyces из порядка Blastocladiales обитают в воде и почве на остатках растений и трупах животных и широко распространены, но обычно не встречаются далее 40° с.ш. и ю.ш. Их мицелий образует на субстрате хорошо заметный пушок до 1 см длиной. Он состоит из коротких ветвящихся гиф с перетяжками и ложными перегородками, возникающими на местах перетяжек несептированных гиф с очень широкими порами. В местах таких перегородок на мицелии диплоидного спорофита формируются зооспорангии и коричневатые цисты. При прорастании зооспорангии образуются диплоидные зооспоры, дающие начало новым спорофитам. При прорастании цист происходит редукционное деление и формируются гаплоидные зооспоры. Они вырастают в гаплоидный гаметоэфит, по форме и степени развития такой же, как спорофит, но несущий женские и мужские гаметанги, обычно расположенные друг над другом (рис. 212). Женские гаметангии крупнее мужских и не окрашены, мужские имеют оранжевый цвет. Женские гаметы также крупнее мужских, в отличие от них не окрашены и менее подвижны. Женские гаметы выделяют половой гормон сиренин, привлекающий хемотаксически мужские гаметы. После слияния гамет образовавшаяся зигота, часто после периода покоя, прорастает в диплоидный спорофит.

У моноблефаридовых половой процесс — оогамия. В оогонии формируется одна или несколько яйцеклеток, а в антеридах развивается несколько подвижных одножгутиковых сперматозоидов. Смены поколений нет.
Порядок Monoblepharidales в классе хитридиомицеты наиболее высоко организованный по строению таллома и типу полового процесса (рис. 213). Его можно рассматривать как вершину эволюции в группе одножгутиковых грибов и одновременно как тупиковую ветвь, не давшую начала более высокоорганизованным формам. Бластокладиевые и моноблефаридовые — водные сапрофиты на органических остатках в воде. Их мицелием обрастают мелкие веточки, находящиеся в водоеме, трупы насекомых. Реже они паразитируют на водных беспозвоночных, водорослях, водных грибах. Распространены в пресных водоемах, некоторые обитают во влажной почве. Моноблефаридовые обычно появляются весной и осенью, когда у них меньше конкуренции с другими организмами водоемов.

ПОРЯДОК NEOCALLIMASTIGALES

Интересный, относительно мало изученный порядок, включающий 1 семейство, 5 родов, 16 видов. Талломы моно- или полицентрические. Зооспоры одно- или многохутутиковые. Жгутики изоморфные, гладкие, без мастигонем, как у всех хитридиев. Представляет собой очень специализированную группу, которая включает облигатные анаэробные грибы, обитающие в кишечном тракте травоядных. Вероятно, эти микроскопические грибы участвуют в расщеплении и усвоении животными клетчатки растительных организмов.
Рис. 213. *Monoblepharis*.

1 — бесполое размножение: 1—6 — зооспорангий и выход зооспор, 7 — зооспоры; 2 — симподиальное ветвление зооспорангий. 3 — половой процесс: 1—6 — ооогоний с яйцеклеткой, антеридий и выход сперматозоидов; 7, 8 — внедрение сперматозоидов в ооогоний; 9—3 — выход оплодотворенной яйцеклетки из ооогония и образование оспоры; 4 — часть таллома с полыми органами, экзогенными и эндогенными оспорами.
Ультраструктурные особенности зооспор описанных порядков значительно различаются, особенно по расположению липидных глобул (L) и рибосом (R) (рис. 214).

Рис. 214. Ультраструктура зооспор хитридиевых грибов.
A — Blastocladiales; B — Monoblepharidales; B — Spizellomycetales; Η — Chytridiales. Обозначения: er — эндоплазматический ретикулум, f — жгутики, k — кинетосомы, L — липидные глобулы, M — митохондрии, m — микротела, mt — микротрубочки, N — ядро, NC — ядерный колпачок (рибосомы), SD — исчерченный диск, RU — риумпосомы, nfc — покоящаяся (нефункционирующая) кинетосома, R — рибосомы.
ОТДЕЛ ЗИГОМИКОТА
(ZYGOMYCOTA)

Подвижные стадии в цикле развития отсутствуют. Вегетативное тело — обильно развителеный неклеточный многоядерный мицелий, субстратный и воздушный. У части видов в зрелом состоянии образуются клеточные перегородки, разделяющие мицелий на отдельные многоядерные фрагменты. Клеточные перегородки возникают также при формировании генеративных органов, отделяя их от вегетативного мицелия. У немногих видов, в основном узкоспециализированных, таких, как паразиты насекомых (энтomoфторовые грибы) или паразиты других беспозвоночных (зоопаговые грибы), мицелий с самого начала его существования многоклеточный. В оболочках клеток содержится хитин в комплексе с хитозаном, что значительно отличает эту группу от двух других отделов неподвижных хитинсодержащих грибов с клеточным мицелием — аскомицетов и базидиомицетов, у которых второй компонент клеточной стенки в основном глюкан, как и у хитридиомицетов. Запасное вещество — гликоген.

Бесполое размножение осуществляется неподвижными эндогенными спорангиспорами, образующимися в спорантиях, или, реже, экзогенными конидиями. В ряде семейств можно проследить эволюцию бесполого спороношения — аналогоф от эндогенных спорангиспор через малоспоровые спорангии к экзогенным конидиям, вероятно, в связи с переходом этих грибов к наземному образу жизни.

Половой процесс — зигогамия: слияние нидиферментированного на гаметы содержимого двух клеток, отделяющихся перегородками от несущих их гиф (рис. 215). По типу половогого процесса отдел получил название «зигомикота». Сливаться могут как одноядерные, так и многоядерные клетки. На месте слияния клеток формируется зигота, или покоящаяся зигоспора, которая одета толстой, часто скульптурированной оболочкой. На зиготе обычно остаются участки гиф, отделяющихся гаметангии. Они отличаются по морфологии от остального мицелия и называются суспензорами или подвесками и часто как бы приподнимают зиготу над субстратом. При прорастании зигоспоры после периода покоя происходит редукционное деление диплоидного ядра, и из нее вырастает короткая нить мицелия с зародышевым спорангием на конце. В отличие от обычных спорангий бесполого размножения, в нем содержатся генетически разнокачественные.

Рис. 215. Развитие зигоспор при зигогамии Phycomyces blakesleanus.

1 — начальная стадия образования зигоспоры: а — сливающиеся клетки, б — суспензоры; 2 — зрела зигоспора: а — зигота, б — дихотомически развителенные на концах отростки
ные, постмейотические спорангииоспоры. Таким образом, эти грибы проходят жизненный цикл в гаплоидной фазе.
Отдел зигомикота включает более 500 видов, относящихся к двум классам: зигомицеты (*Zygomycetes*) и трихомицеты (*Trichomycetes*). Почти все они наземные организмы. В основном это почвенные сапрофотофы, в меньшей степени — паразиты насекомых и других беспозвоночных, грибов, высших растений, теплокровных животных и человека.

Класс зигомицеты
(*Zygomycetes*)

В общих чертах класс зигомицеты повторяет характеристику отдела. По уровню организации и дифференцировки таллома, особенностям развития, морфологии анаморф и отчасти по эколого-трофическим признакам (специализация к субстрату или хозяину для паразитных видов в значительной степени влияет на дифференцировку таллома и может приводить к изменениям в бесполом и отчасти половом процессах) класс подразделяют на 6 порядков.

Основные порядки: *Mucorales, Endogonales, Glomerales, Entomophthorales, Zoopagales*.

ПОРЯДОК МУКОРОВЫЕ
(*MUCORALES*)

Самый большой по числу видов порядок (около 400 видов) содержит в основном почвенные сапрофотофы, особенно обильно развивающиеся в окультуренных почвах, где они активно участвуют в круговороте органических веществ. Они обильно развиваются также на растительных остатках, навозе травяных (кoproфильные виды), на других грибах, в основном шляпочных или других мукуровых (микофильные виды). Некоторые паразитируют на теплокровных животных и человеке.

Наиболее широко в природе распространены виды рода мукор — *Mucor*. Его мицеллий пронизывает субстрат (почву, растительные остатки, а также многие продукты питания: хлеб, овощи и т.д.), образуя на поверхности сероватый воздушный налет. Мицеллий в основном состоит из бесцветных гиф, сильно ветвится и не имеет перегородок, которые появляются у некоторых видов только при старении или при культивировании в жидкой среде. В последнем случае мицеллий часто распадается по перегородкам на отдельные клетки, которые затем размножаются посредством (так называемые мукуровые дрожжи, например у *M. racemosus*). На мицелии в большом количестве формируются одночные или сильноразветвленные спорангиецисы с темноокрашенными шаровидными спорангиями на вершине. Эти спорангии хорошо заметны даже невооруженным глазом в виде буроватых и черных точек. В них содержатся многочисленные
споры, которые освобождаются после расплывания или разрыва оболочки спорангия. Каждая спора даст начало новому мицелию. У видов рода *Mucor* спорангионосец обычно вздувается внутри спорангия, образуя колонку. У многих видов при разрушении оболочки спорангия у основания колонки остается ее кутиницированная часть, образуя так называемый воротничок (рис. 216).

Для близкого и столь же широко распространенном рода ризопус (*Rhizopus*) характерно образование толстых воздушных гиф — столонов, которые переки- дываются над субстратом. В месте их соприкосновения с субстратом образуются ризоиды, внедряющиеся в субстрат, а вверх отходят пучки неразветвлённых спорангиеносцев со спорангиями (рис. 217). Виды рода ризопус вызывают серую, или головчатую, плесень овощей и фруктов, нанося значительный ущерб при их хранении. Являются возбудителями сухой гнили початков кукурузы, корзинок подсолнечника. При неблагоприятных условиях вызывают плесневение семян культурных растений как при их хранении, так и при высе в грунт. *R. stolonifer* развивается на коробочках и волокне хлопчатника, значительн ого повреждая.

Таким образом, мукоровые грибы часто являются причиной значительных потерь урожая различных сельскохозяйственных культур, особенно при хранении. Среди патогенных для человека и животных видов мукоровых грибов
Рис. 218. Absidia.
1 — столон с пучком спорангиосецов со спорангиями; 2 — расплывшийся спорангий; 3 — зигота с суспензорами (с) и придатками (п)

нужно отметить как наиболее опасных: *Mucor pusillus* — поражает центральную нервную систему или органы слуха у людей; *Absidia corymbifera* — вызывает заболевания бронхов и легких у человека и животных; *A. septata* — вызывает легочную микозу у людей.

Для рода абсидия также типично наличие столонов, но, в отличие от рода ризопус, спорангиосцы отходят пучком от середины дуги, а спорангии имеют грушевидную форму (рис. 218).

Наиболее крупные спорангиосцы и спорангии у видов рода фикомицес *Phycomyces*. Темные сине-зеленые, отливающие характерным металлическим блеском спорангиосцы этих грибов достигают 30 см высоты и характеризуются положительным фототропизмом, а крупные, сначала ярко-желтые, а в зрелости черные спорангии содержат до 70 тыс. спор. *P. blakesleianus* и другие виды рода широко используются для биохимических, генетических и биофизических исследований.

Своеобразно устроен спорангиосец копротрофного рода пилоболус (*Pilobolus*), который легко обнаружить невооруженным глазом на навозе травоядных (рис. 219). Он растет вверх от находящейся в субстрате воздушной жиловатой клетки — трофоцисты. Спорангиосцы вздут на вершине в блестящий пузырь, на котором располагается черный, шаровидный, немного приплоснутый спorangий. Он отбрасывается целиком на расстояние до 2 м в сторону источника света за счет тurgорного давления, развивающегося в пузыре и достигающего 5,5 атм. В основании пузыря имеются цитоплазматическое кольцо и отложение β-каротина. Ко времени созревания спорангия в этом пузыре развивается такое высокое тurgорное давление, что на его поверхность выдавливаются блестящие капельки жидкости.

При одностоянном освещении пузыря световые лучи преломляются в нем и на цитоплазматическом кольце с противоположной от источника света стороны образуют световое пятно. В этом месте накапливаются ростовые вещества, и начинается интенсивный рост, приводящий к положительному фототропическому изгибу спорангиосца. В это время набухает слизистое кольцо, расположенное непосредственно под спорангием. Пузырь спорангиосца лопается на вершине, спорангии отрываются и с силой отбрасывается в сторону источника света. Особенно резкие фототропические изгибы наблюдаются при действии лучей сине-фиолетовой части спектра. При падении спорангий переворачивается таким образом, что его нижняя уплощенная часть с остатками жидкости обращена книзу. Спорангий плотно прилипают к траве и вместе с ней попадает в пищеварительный тракт животного. Под действием пищеварительных ферментов кутинизированная оболочка спорангия разрушается, споры освобождаются и,
Оказавшись на навозе травоядных, прорастают в мицелии. Необходимость попадания на траву с последующим попаданием на специфический субстрат объясняет экологический смысл фототропических изгибов спорангииеносца у пилоболус, как и у большинства других копротрофных грибов.

У части мукуровых наблюдается переход от спорангiosпор к конидиям через малоспоровые и односпоровые споранги, называемые спорангиялиями. В качестве примера такого перехода можно привести род тамнидиум — *Thamnidium*. Виды этого рода копротрофы часто встречаются на конском навозе. У них на конце очень длинного спорангииеносца расположен крупный многоспоровый споранги с колонкой. На концах боковых ответвлений этого же спорангииеносца сидят многочисленные мелкие спорангииоли, не имеющие колонки, с малым количеством спор: от 4 до 10 (рис. 220).

У видов рода хетокладиум (*Chaetocladium*) (рис. 221), паразитирующих на других мукуровых грибах, формируются только односпоровые спорангииоли, которые можно сравнить с конидиями. От настоящих экзогенно формирующихся конидий они отличаются двойной оболочкой: один слой — собственно споры, второй — сохранившаяся оболочка споранги (рис. 221, A). Интересен механизм паразитизма видов хетокладиум. Уже на некотором расстоянии от мицелия паразита гифа хозяина начинает расти по направлению к ней и сильно ветвится, особенно если мицелий хозяина принадлежит к противоположному типу спаривания. После соприкосновения с гифой хозяина кончик гифы паразита отделяется перегородкой, а перегородка между гифой хозяина и отделявшейся клеткой паразита исчезает. При этом содержимое гифы хозяина (цитоплазма, ядра и т.д.) переходит в разрастающуюся клетку паразита и формируется так называемая насасывающая клетка (рис. 221, B).
Спорангийи могут приобретать вытянутую форму, например виды рода пиптоцефалис (Piptocephalis) (рис. 222). В этом случае они имеют наибольшее морфологическое сходство с цепочками конидий на конидиеносце.

Половой процесс в порядке мукоровых более однообразен. Он соответствует описанному выше для отдела зигомикота. Некоторые морфологические особенности отличают зиготы отдельных родов. Так, у видов гетероталличного рода фикомицес (Phycomyces) от суспензоров (подвесков) или зигофоров, отдающих связывающие клетки-гаметангии от остального мицеля, отходят выросты-придатки, окружающие зиготу (см. рис. 215). У видов рода мортиерелла (Mortierella) зиготы окружены рыхлым сплетением таких придатков, которые часто переплетаются с ответвлениями вегетативных гиф, образуя рыхлую обертку вокруг зиготы. В результате образуется как бы зачаточное плодовое тело — зигокарп (рис. 223).

ПОРЯДОК ЭНДОГОНОВЫЕ
(ENDOCONALES)

У видов порядка эндогоновые зиготы и многоспоровые спорангии без колонки формируются внутри плотной обертки из гиф, в результате чего образуются плодовые тела — спорокарпы. Они имеют вид плотных желтоватых клубеньков в диаметре от нескольких миллиметров до 2—3 см (рис. 224, 1, 2). Обычно спорокарпы развиваются в почве. Эндогоновые — почвенные грибы или сапрофиты...
Рис. 222. _Piptocephalis._
1 — спорангиеносц со спорангиолями; 2 — детали строения одной ветви

Рис. 223. _Mortierella._
А — спорангиеносц с многоспоровыми спорангиями; Б — зигота с окружающими ее гифами (зачаточное «плодовое тело»)

Рис. 224. _Endogone._
1 — спорокарп; 2 — спорангий со спорами; 3 — зигота (в разрезе)
на растительных остатках. Наиболее распространен вид *Endogone lactiflua*, обитающий на мертвой древесине мелких валежных веточек. Его желтые спорокарпы достигают в диамetre 1—2 см. Если разрезать неразрезанный спорокарп этого гриба, то на разрезе выступает бледно-розовая жидкость («млечный сок»). Половой процесс у *E. lactiflua* — гаметангиогамия. Две соседние гифы, из которых одна более тонкая, отделяют конечные клетки, в которых остается по одному ядру. Ядро из меньшей клетки переходит в большую, а затем оба ядра вместе с цитоплазмой переходят в ядро, образующийся из большей, предположительно женской, клетки. Из выроста развивается зигота, одевающаяся несколькими оболочками (рис. 224, 3). После периода покоя, в течение которого зигота сохраняет двухъядерность, она прорастает, чему предшествует слияние ядер и последующее редукционное деление диплоидного ядра. Здесь необходимо отметить значительную продолжительность периода двухъядерности, столь характерную для грибов с клеточным мицелием аскомикот и базидиомикот.

ПОРЯДОК ГЛОМОВЫЕ
(GLOMERALES)

ПОРЯДОК ЭНТОМОФТОРОВЫЕ
(ENTOMOPHTHORALES)

Виды порядка энтомофторовые — в основном паразиты насекомых, откуда произошло их название. Немногие виды — паразиты шляпочных грибов.

Рис. 225. Glomus.

1 — споры на поверхности корня растения; 2 — аппрессории (a) и арбускулы (b) в корне; 3 — споры
Отдел зигомикота (Zygomycota)

водорослей, заростков папоротников. Есть копрофилы. Мицелий в зрелом состоянии многоклеточный, а сами клетки многоядерные. Бесполое размножение осуществляется конидиами, которые часто активно отбрасываются от конидиеносца.

Порядок включает около 70 видов, относимых к 6—7 родам. Наиболее распространен и хорошо изучен возбудитель «осенной болезни мух» Entomophthora muscae (рис. 226). Его конидия, попадая на муху, прорастает в ростковую трубку — гифу, внедряющуюся в тело насекомого. В жировом теле мухи гифа разрастается и затем распадается на многоядерные клетки «гифенные тела», которые разносятся гемолимфой по всему телу насекомого. Их количество увеличивается за счет деления или почкования, и пораженная муха погибает через 2—3 дня после заражения. Из дыхательных отверстий ее хитинового покрова высвобождаются неветвящиеся булловидные конидиеносцы, несущие на конце шаровидную многоядерную конидию. При созревании она отбрасывается, как бы отстреливается на расстояние до 2 см. Эти конидии образуют вокруг погибшей мухи мучнистый налет. Такую картину часто можно наблюдать осенью на оконных стеклах. Конидия энтомофторы имеет слизистый слой оболочки, который обеспечивает ей прилипание к телу мухи. Если же конидия не попадает на насекомое, то она вновь прорастает в конидиеносец с новой конидией, и так может повторяться несколько раз, что обеспечивает в конечном результате попадание на нужный для развития гриба субстрат — муху. Половой процесс у E. muscae не выявлен, но у других видов рода энтомофтора он известен и заключается в слиянии двух одноядерных клеток.

Энтомофторовые грибы отличаются довольно узкой специализацией к насекомым-хозяевам. Большинство — облигатные паразиты; их не удастся выращивать в чистой культуре, что значительно ограничивает применение этих грибов для биологической борьбы с насекомыми—вредителями сельскохозяйственных растений и лесных пород. Однако инфекционный материал удастся накопить, заражая насекомых искусственно. Выпущенные в природные очаги скопления вредителей (тлей, совок, сарапчи и т.д.) зараженные насекомые вызывают у них искусственную эпизоотию, т.е. массовое заболевание и гибель.

Basidiobolus ranarum обитает на экскрементах лягушек и ящериц. У него многоклеточный одноядерный мицелий. На конидиеносце формируется одна овальная крупная конидия, которая активно отбрасывается по принципу ракеты. Зигота образуется при слиянии двух клеток по типу коньюгации (рис. 227).

Энтомофторовые грибы близки к мукоровым, но представляют собой их самостоятельную эволюционную ветвь, уклонившуюся по ряду признаков в связи с узкой специализацией — паразитизмом на насекомых.

ПОРЯДОК ЗООПАГОВЫЕ
(ZOOPAGALES)

Зоопаговые — это узкоспециализированная группа грибов, находящихся в почве, навозе, листовом опаде. Они являются облигатными паразитами или, возможно, хищниками почвенных амёб, нематод, личинок насекомых. Порядок включает около 10 видов из 3—4 родов. Мицелий очень тонкий, сначала неклеточный, но быстро становится многоклеточным. Поверхность гиф клейкая, что связано с улавливанием подвижных животных-хозяев: нематод, амёб и т.д.
Таллом у всех видов редуцирован. Он состоит из коротких гиф, развивающихся в теле хозяина, и конидиеносцев, выступающих наружу. Конидии бывают одиночными — они обычно образуются по бокам конидиеносца — или в цепочках, если формируются на его вершине. У некоторых видов конидии имеют отростки в виде закрученных нитей, что обеспечивает лучшее прикрепление к тelu хозяина. На амёбах паразитируют виды рода зоопаге — Zoopage, у которых конидии развиваются в цепочках (рис. 228), и рода эндохоклус Endocochlus с одиночными конидиями (рис. 229).

На основе изложенного обзора класса зигомиты можно предположить, что эта группа грибов филогенетически связана с какими-то более примитивными, возможно, хитридиевыми грибами, утратившими подвижные стадии в связи с переходом к наземному образу жизни, что в свою очередь привело к морфологическим изменениям: развитию обильного неклеточного мицелия, возникновению спорангиоспор и конидий, зигогамии.

Класс трихомицеты
(Trichomycetes)

Класс Trichomycetes включает организмы, объединяемые скорее по эколого-трофическому признаку, чем по морфологии и циклам развития. Все они эндосимбионты или сапротрофы, обитатели кишечника или хитиновых покровов членистоногих, в основном насекомых. Относительно мало изученная группа.
Вегетативное тело — многоядерный несептированный ветвящийся мицелий, реже — септированный с перфорированными перегородками.

Класс включает четыре порядка. Только у одного порядка — Harpellales известны типичный половой процесс (зигогамия) и типичные трихоспоры (конидии или односпоровые спорангиоли), несущие у места своего прикрепления к гифе 1 или 4 нитевидных тонкоисчерченных придатка. В начале развития придатки сначала скручены, а при созревании и отделении трихоспоры раскрываются и, вероятно, служат для захвата соответствующего животного или прикрепления к нему (например, у Harpella melusina, растущего на мошках) (рис. 230). В состав клеточных стенок представителей этого порядка входит хитин. У представителей других порядков половой процесс может быть сильно упрощен. Это может быть слияние двух протопластов с ядрами, обособившимися в пределах одной нити, или могут сливаться 2 ядра, находящиеся в одной клетке.

Представители порядка Asellariales при бесполом размножении образуют цепочки «артроспор», развивающиеся из сегментов гиф (рис. 231, 2). Химический состав клеточных стенок сходен с предыдущим порядком. Эти два порядка в последнее время помещают в класс Zygomycetes (Мюллер, Леффлер, 1995), оставляя в классе Trichomycetes 2 порядка.
Виды порядка Eccrionales образуют небольшие одноосевые талломы, прикрепляющиеся к кишечнику или хитиновому покрову членистоногих подушкообразной присоской. Бесполое размножение осуществляется эндогенными спорангигоспорами в односпоровых или многоспоровых спорангиях. В клеточных стенках содержится целлюлоза. Хитина нет.

Для бесполого размножения видов порядка Amoebidales характерна амёбоидная стадия наряду со спорангигоспорами. Клеточные стенки состоят из галактозамина и галактана, что определяет изолированное положение амёбидовых в системе грибов.

Трихомицеты рассматривают как формальный таксон, объединяющий организмы с неизвестными филогенетическими связями. Хотя эта группа известна уже почти 150 лет, ее биология и тем более происхождение остаются неясными. Неясен также и характер их взаимоотношений с членистоногими, на которых они поселяются: паразитизм или комменсализм? Существует
предположение, что это не грибы, а водоросли, утратившие хлорофилл и при-
способившиеся к жизни на водных членистоногих.

По разнообразию полового и особенно бесполого размножения, а также соста-
vу клеточной стенки можно предположить, что это сборная группа. Сходство в
строении таллома может быть связано со сходным образом жизни на членисто-
ногих.

НАДОТДЕЛ ДИКАРИОМИЦЕТЫ
(DIKARYOMYCOTERA)

Надотдел дикариоциметы включает два отдела: аскомицеты (Ascomycota) и
базидиоциметы (Basidiomycota). Аскомицеты и базидиоциметы, несомненно,
очень близкие группы. Это уже давно признавалось микологами, выдвигавшими
гипотезы происхождения базидиоциметов от тех или иных групп аскомицетов
или от их общего предка.

Можно отметить ряд важных таксономических признаков, объединяющих
эти группы грибов:
— наличие в их циклах развития дикариотической фазы разной продолжи-
tельности;
— мицелий с септами разного строения, имеющими центральную пору;
— таллом преимущественно мицелиального строения, в отдельных группах —
дрожжеподобный или имеет дрожжеподобную стадию в цикле развития;
— клеточная стенка хитин-глюканового типа с разной долей участия хитина;
в дрожжеподобной фазе в клеточных стенках присутствуют маннаны;
— бесполое размножение конидиями;
— отсутствие подвижных стадий;
— тенденция к образованию плодовых тел.

Современные исследования в области молекулярной филогении подтвердили
общее происхождение аскомицетов и базидиоциметов (рис. 232). В настоящее
время дикариоциметы как таксон, объединяющий аскомицеты и базидиоциметы,
признаются многими микологами.

Формально в надотдел дикариоциметы не входят дейтеромицеты (Deuteromycota), так как в их цикле развития нет дикариотической стадии, половой
процесс утрачен, однако по происхождению эта полифилетическая группа свя-
зана с дикариоциметами, поскольку произошла в результате утраты половых
стадий — телеоморф в разных группах аскомицетов и реже базидиоциметов.

Отделы различаются по: характеру образования мейоспор — эндогенному,
в сумке (аскомицеты), или экзогенному — на базидиях (базидиоциметы), продол-
жительности дикариофазы в цикле развития, строению септ в мицелии, ультра-
структуре клеточной стенки, ряду биохимических признаков (количественное
соотношение хитина и глюканов в клеточной стенке, образование уреазы, на-
личие сидерохромов и др.) и ряду других особенностей.
Рис. 232. Филогения Dicaryomycota (схема дана по: Берби, Тейлор, 2001)
ОТДЕЛ АСКОМИЦЕТЫ, ИЛИ СУМЧАТЫЕ ГРИБЫ (ASCOMYCOTA)

Аскомицеты — одна из обширнейших групп грибов, включающая около 30 000 видов, что составляет более 30% всех известных видов грибов. Многие микологи считают, что это самая большая по числу видов группа грибов (до 75% всех известных видов), если учитывать, что в нее включают лихенизированные грибы (рассматриваемые обычно как лишайники: см. с. 495), а в последнее время — также и дейтеромицеты (митотические, или анаморфные, грибы), связанные по происхождению с аскомицетами, даже если это анаморфные виды. Группа объединяет сапрофитные виды из разнообразных эколого-трофических групп, большое число паразитов, преимущественно растений, реже животных и грибов, а также симбиотрофов, к числу которых кроме лихенизированных грибов принаследжат микоризообразующие и эндофитные грибы.

Аскомицеты чрезвычайно разнообразны как по строению, так и по образу жизни. Сюда относятся, например, дрожжи, представленные одиночными почковывающимися клетками, многочисленные микроскопические грибы и грибы с крупными плодовыми телами (аскомами), размер которых нередко достигает нескольких сантиметров, а у некоторых видов — 10—30 см (сморчки, строчки и др.). Однако при всем разнообразии эти грибы связаны общим происхождением и наличием ряда общих признаков, что позволяет объединять их в один отдел.

Основной признак аскомицетов — образование мейospор эндогенно, в сумках, или асках. Сумки — одноклеточные структуры, образующиеся в результате полового процесса и содержащие фиксированное число аскоспор, обычно восемь (см. рис. 234, Г).

Вегетативное тело аскомицетов — это разветвленный гаплодиыйй мицелий, состоящий из одноядерных или многоядерных клеток. Перегородки (септы) в мицелии образуются упорядоченно. Септы неслоистые, с простой центральной порой и тельцами Воронина. Септа развивается центрально — от стенок гифы к центру. В центре септы остается пора (рис. 233), через которую перемещается цитоплазма, а также могут мигрировать органеллы клетки, включая ядра. Поры в септах играют также важную роль в переносе питательных веществ по гифам в зону роста. Немногие сахаромицеты (например, виды Dipodascus) образуют септы с микроперфорацией (рис. 233, Б).

У некоторых низших аскомицетов (дрожжи) настоящего мицелия нет, и вегетативное тело представлено один...
ночными почками или делаясь клетками, иногда образующими певсдомицеляй (см. рис. 240). Дрожжеподобный рост при определенных усло-
виях наблюдается и у некоторых микелиальных аскомицетов, например у пред-
ставителей порядков тафриновые (Taphrinales), оныгеновые (Onygenales) и др.

Настоящие ткани у аскомицетов формируются редко. Исключение составляют
высокоспециализированные паразиты из класса лябульбениомицеты (Laboul-
beniomycetes), развивающиеся на членистоногих, преимущественно насекомых
(порядок лябульбениевые — Laboulbeniales), а также представители порядка
спатулоспоровые (Spathulosporales), паразиты красных водорослей. Их вегетативное
tело состоит из настоящей ткани (см. рис. 267, A).

Основные полисахариды, входящие в состав клеточных стенок аскомицетов,—
хитин и глюкана (полимеры D-глюкозы с β-1—3- и β-1—6-связями). Содержа-
ние хитина у аскомицетов ниже, чем у хитридиомицетов и базидиомицетов, и
составляет не более 20—25% полисахаридов клеточной стенки (у некоторых
хитридиомицетов — до 60%). У дрожжей хитин содержится в небольших коли-
чествах (например, у Saccharomyces около 1%), а у некоторых аскомицетов он
отсутствует (схиозосахаромицеты (Schizosaccaromyces)). Большую часть полиса-
харидов клеточной стенки составляют глюкана (до 80—90%). У дрожжей в кле-
точных стенках кроме глюканов обнаружены маннаны — полимеры маннозы.

В цикле развития многих аскомицетов большую роль играет бесполое
размножение. Стадия бесполого размножения — аноморфа, или аноморфная
стадия, — представлена конидиями, образующимися на гаплоидном микелии
экзогенно (реже эндогенно), на конидиеносцах разного строения. Конидиеносцы
могут быть расположены на микелии по-разному: одиночно, соединяясь в пучки
(коремии) или подушечки (спородихи), а также образуя плотный слой на поверх-
ности сплетения гиф (ложа) или внутри шаровидных или грушевидных структур
с отверстием на вершине (пикниды). Типы конидиальных спороношений и спо-
собы образования конидий подробно описаны в разделе «Дейтеромицеты (Deute-
romycota)» (с. 482).

Конидиальные спороношения развиваются в период вегетации грибов и
служат для их массового расселения. У аскомицетов-паразитов они обычно об-
разуются на живых растениях, а половье стадии — телеморфы (за немногими
исключениями) — после отмирания растения или его частей в конце вегетации
или после перезимовки.

У некоторых аскомицетов аноморфы неизвестны, у других они преобладают
в цикле развития. Иногда аноморфы образуются редко, их трудно обнаружить
в природе и получить в искусственной культуре грибов, поэтому многие аско-
мицеты как в природе, так и в коллекциях культур чаще встречаются в конди-
циальной стадии.

Аноморфные стадии многих аскомицетов (а также базидиомицетов) имеют
самостоятельные видовые наименования, нередко более распространенные, чем
названия телеморф. Например, многие пенициллы (Penicillium) и аспергиллы
(Aspergillus), образующие телеморфы, более известны под названием их ана-
морф. Так, широко используемый в генетических исследованиях аскомицет
Emericella nidulans обычно называют Aspergillus nidulans.
В Международном кодексе ботанической номенклатуры, который регулирует употребление названий растений и грибов, содержится специальный параграф, разрешающий использовать наряду с основным видовым названием аскомицета (или базидиомицета), данным по его телеоморфе и относящимся ко всем его стадиям — холоморфе, также и название анаморфной стадии в тех случаях, когда речь идет именно об этой стадии гриба (более подробно правила использования названий растений и грибов приведены в Приложении, с. 539).

У большого числа грибов, встречающихся в природе в анаморфной стадии, половые стадии неизвестны. Такие грибы относятся к отделу дейтеромицеты, или анаморфные грибы (с. 482).

Типичный для аскомицетов половой процесс — слияние двух специализированных клеток мицелия, не дифференцированных на гаметы. Такие клетки обычно называют гаметангиями, а тип полового процесса — гаметангиомицеты. Однако «гаметангии» аскомицетов не гомологичны настоящим гаметангиям, в которых развиваются гаметы, а происходят, вероятно, от недифференцированных копуляющих ветвей мицелия соматомицетов. У мицелиальных низших аскомицетов из подотдела сахаромицеты (Saccharomycotina) половой процесс сходен с зигогамией зигомицетов. Гаметангию разного поля морфологически сходны (или малоразличимы) и представляют собой одноядерные или, реже, многоядерные выросты или веточки мицелия. После их слияния сразу наступает иригамия, и сумка развивается непосредственно из зиготы. В многоядерных гаметангиях аскомицетов сливаются только два ядра. Зигота не переходит в состояние покоя, а сразу развивается в сумку. В цикле развития этой группы имеются, таким образом, только гаплоидная и диплоидная стадии.

У высших аскомицетов из подотдела эуаскомицеты (Euscomycotina) наблюдаются дифференциация и усложнение строения гаметангцев. Женский гаметангий состоит обычно из двух частей — аскогена и нитевидной вытянутой трихогины, мужской гаметангий — антеридий — одноклеточный. При слиянии содержимое антеридия по трихогине переходит в аскоген. После плазмогамии гаплоидные ядра разного поля сразу не сливаются, а объединяются попарно, образуя дикарион. Из аскогена вырастают аскогенные гифы, в которых ядра дикариона синхронно делятся. Эти гифы ветвятся и разделяются септами на двухядерные клетки. На аскогенных гифах развиваются сумки (рис. 234, A—Г). При этом конечная клетка аскогенной гифы загибается крючком, ядра дикариона располагаются в месте перегиба и одновременно делятся. Пара ядер разных типов спаривания остается в месте перегиба крючка, одно ядро переходит в кончик крючка, еще одно — в его основание. Затем образуются две перегородки, отделяющие одноядерные конечную и базальную клетки крючка. В результате слияния этих клеток восстанавливается дикарион и крючок может сформироваться повторно. Средняя двухядерная клетка крючка развивается в сумку (рис. 234, В—Г; 235). Сумка увеличивается в размерах, ядра дикариона сливаются, диплоидное ядро делится редукционно и митотически, вокруг восьми гаплоидных ядер формируются аскоспоры.
Типичный способ развития сумок был впервые описан П. Клауссеном у дискомицета _Pyronema omphalodes_ в начале XX в. У некоторых аскомицетов, например в порядках онигеновые (Onygenales) и эвроциевые (Eurotiales), сумки образуются на аскогенных гифах инными способами: цепочками по ходу аскогенных гиф, из их конечных клеток или боковых выростов.

По способу формирования аскоспоры аскомицетов отличаются от спорантиспор зародышевого спорантия зигомицетов. Если при образовании спорантиспор происходит раскалывание цитоплазмы спорантия, аскоспоры развиваются по способу так называемого «свободного образования клеток»: часть цитоплазмы сумки обособляется вокруг ядер и одевается клеточной стенкой. При этом аскоспоры у низших аскомицетов и эуаскомицетов формируются по-разному: у первых наблюдается индивидуальное выделение каждой аскоспоры мембраной, у последних аскоспоры обособляются в результате инвагинации первоначально общей мембраны. В сумке аскоспоры окружены неиспользованной на их формирование цитоплазмой — эпицеллой. К моменту созревания аскоспор в цитоплазме гликоген превращается в сахар, тургорное давление в сумке резко возрастает, и аскоспоры с силой выбрасываются на расстояние от долей миллиметра до 10 см и более.

В результате образования аскогенных гиф увеличивается число сумок, а следовательно, и аскоспор, развивающихся из одного аскогона. Формирование сумок по способу крючка с восстановлением дикариона в его базальной клетке и повторным образованием крючков обеспечивается расположение сумок пучком или слоем, что облегчает активное освобождение аскоспор.
Отдел аскомицеты, или сумчатые грибы (Ascomycota)

В цикле развития высших аскомицетов чередуются, таким образом, три фазы: длительная — гаплоидная, в течение которой происходит бесполое размножение, непродолжительная — дикариотическая (аскогенные гифы) и очень короткая — диплоидная (молодая сумка с диплоидным ядром).

Для многих аскомицетов характерна морфологическая редукция полового процесса. У некоторых представителей этого отдела антеридии отсутствуют или не функционируют. В этом случае их функции могут выполнять конидии, вегетативные гифы или мелкие специализированные клетки, называемые спермациами. Спермации часто образуются на другом мицелии, на значительном расстоянии от аскогона, и переносятся каплями дождя, насекомыми или токами воздуха. У многих аскомицетов трихогина хемотропична и подрастает к спермациям или конидиям совместимого типа (см. рис. 234, Д).

В том случае, когда отсутствуют оба гаметангии, дикарниозизация происходит в результате слияния клеток вегетативных гиф одного или совместимых мицелиев — соматогамии. Иногда дикарионы формируются без слияния клеток — в результате попарной ассоциации ядер в аскогоне или в вегетативных клетках гифы.

Среди аскомицетов встречаются как гомоталличные, так и гетероталличные виды, причем гетероталлизм здесь биполярный.

По строению стенки и функциям сумки аскомицетов подразделяют на две большие группы: протутуникатные и эутуникатные. Протутуникатные сумки имеют тонкую недифференцированную стенку, которая разрушается или растворяется, пассивно освобождая аскоспоры. Такая сумка служит только местом формирования спор, но не участвует активно в их распространении. Эутуникатные сумки характеризуются более плотными стенками, часто со специальными приспособлениями для вскрывания сумки. Строение стенки эутуникатных сумок может быть двух типов. Стенка унитуникатных сумок (рис. 235, А) относительно тонкая, однородная и выглядит однолойной, хотя и состоит из двух слоев; на вершине сумок имеется апикальный аппарат различного строения, служащий для их вскрывания. Битуникатные сумки имеют ясно двухслойную стенку, состоящую из жесткого наружного и эластичного внутреннего слоев (рис. 235, Б). При созревании аскоспор наружный слой стенки разрываются начиная с вершины, внутренний слой под действием повышенного тургорного давления расправляется, и аскоспоры активно выбрасываются из сумки. Битуникатные сумки с полостью расслаивающейся стенкой называют также фисситуникатными. Эутуникатные сумки, вторично утратившие способность к активному освобождению аскоспор, называют псевдопротутуникатными.
У большинства низших аскомицетов и аскомицетов с замкнутыми плодовыми телами форма сумок округлая или элипсоидная, а у групп с активным выбрасыванием аскоспор — буллововидная или цилиндрическая.

В сумке аскомицетов обычно образуется восемь аскоспор, однако наблюдаются многочисленные отклонения от типа. Сокращение числа аскоспор происходит в результате уменьшения числа делений ядра (например, образование четырех аскоспор у Magnusiomyces magnusii) или дегенерации части гаплоидных ядер в формирующейся молодой сумке (например, развитие двух аскоспор у сморчки шапочки (Verpa bohemica)). Число аскоспор увеличивается или при возрастаннии числа делений ядер в сумке (например, у некоторых представителей порядка Sordariales, семейства Thelebolaceae и др.), или в результате почкования аскоспор в сумке (например, у порядка тафриновых (Taphrinales)).

Форма аскоспор разнообразна — от шаровидных или элипсоидных до нитевидных. Они могут быть одноклеточными или иметь поперечные перегородки, реже — поперечные и продольные перегородки (муральные аскоспоры). У некоторых аскомицетов аскоспоры имеют разнообразные придачи, играющие роль в их распространении, например, слизистые обертки и придачи у копротрофных грибов.

У низших аскомицетов сумки образуются непосредственно на мицелии или как одиночные клетки, а у высших — в специальных вместилищах: плодовых телах (аскомах) и аскостромах. Различают следующие типы плодовых тел (см. рис. 241): клейстотеций — полностью замкнутое плодовое тело, перитеций — полузамкнутое, обычно кувшиновидное плодовое тело с отверстием на вершине, и апотеций — открытое, обычно часшевидное плодовое тело, на верхней стороне которого расположен гимений — слой сумок и стерильных элементов — парафиз. Клейстотеции, перитеции и апотеции — настоящие плодовые тела, развивающиеся по аскогимениальному типу. Период (оболочка) такого плодового тела образуется после плазмогамии: гаплоидные вегетативные гифы оплетают аскогенные гифы и сумки, формируя плетчатую плектенхиму.

Настоящие плодовые тела могут развиваться непосредственно на мицелии или в стромах — плотных сплетениях гиф различной формы, размера и консистенции. Однако в отличие от аскостром они всегда имеют собственный период, заметный хотя бы на ранних стадиях развития.

Аскострома развивается по аскокулярному типу. Сначала закладывается строма из переплетающихся гиф. В ней образуются аскогены и происходит по- ловой процесс. Аскогенные гифы и появляющиеся на них сумки разделяются или разрушают плектенхиму стромы, освобождая в ней полость — локулу. Каждая локула содержит одну или несколько сумок. Строма над локулою разрушается, образуя отверстие, через которое освобождаются аскоспоры. В аскостроме формируются от одной до многочисленных локул. По внешнему виду аскостромы часто похожи на настоящие перитеции, но отличаются от них отсутствием собственного периода: их оболочкой служит ткань стромы. Такие аскостромы называют также псевдоперитециями.

Аскомицеты широко распространены в природе во всех географических зонах. Они обитают как сапротрофы в почве, лесной подстилке, на разнообразных растительных субстратах (древесина, отмершие части растений и т.д.). Некоторые группы аскомицетов заняли экологические ниши, недоступные для других грибов.
Так, кератинофильные грибы развиваются на субстратах животного происхождения, содержащих керatin. Некоторые аскомицеты обитают в морях или пресноводных водоемах на погруженной в воду древесине. Большая группа аскомицетов из разных таксономических групп приспособлена к развитию на экскрементах различных животных, преимущественно травоядных. Сапрофитные аскомицеты активно участвуют в минерализации органических веществ в природе, особенно в разложении растительных остатков, содержащих целлюлозу. Ряд аскомицетов вызывает плесневение и порчу разнообразных материалов и изделий, а также пищевых продуктов.

Многочисленные аскомицеты паразитируют на высших растениях, грибах, водорослях, лишайниках, животных и человеке. Они вызывают серьезные заболевания культурных и дикорастущих растений (мучнистую росу, паршу яблони и груши и многие другие), болезни человека и животных (дерматомикозы, глубокие мицозы, миктоксикозы и др.).

В то же время многие представители этого отдела широко используются в биотехнологии как продуценты биологически активных веществ — антибиотиков, витаминов, ферментов, алкалоидов, кормового белка, как возбудители спиртового брожения в хлебопечении, пивоварении и виноделии, а также как агенты биологического контроля болезней и вредителей растений. Наконец, некоторые аскомицеты используются как модельные объекты в биохимических и генетических исследованиях.

Система аскомицетов претерпела существенные изменения в течение последнего десятилетия. В прошлом аскомицеты подразделяли на основе наличия или отсутствия плодовых тел на две группы: гемиаскомицеты, или голосоматые (плодовые тела отсутствуют, сумки образуются непосредственно на мицелии, прототуникатые), и эуаскомицеты, или плодосоматые (сумки образуются в аскомах или аскостромах, преимущественно эутуникатые). В некоторых системах эуаскомицеты понимали в более узком смысле и выделяли в этот таксон только аскомицеты с настоящими плодовыми телами, принимая таксоны такого же ранга для локулоаскомицетов (аскомицеты с аскостромами) и лябульбениомицетов (аскомицеты с тканевыми талломами). Наконец, некоторые микологи подразделяли эуаскомицеты на таксоны соответственно типам плодовых тел — плектомицеты, пиреномицеты и дискомицеты, ограничивали таксоны такого же ранга для локулоаскомицетов и лябульбениомицетов (табл. 7).

Таблица 7

Системы аскомицетов, наиболее распространенные во второй половине XX в.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascomycetes*</td>
<td>Ascomycotina*</td>
</tr>
<tr>
<td>Hemiascomycetidae</td>
<td>Hemiascomycetes</td>
</tr>
<tr>
<td>Euscomycetidae</td>
<td>Plectomycetes</td>
</tr>
<tr>
<td>Loculoascomycetida</td>
<td>Pyrenomycetes</td>
</tr>
<tr>
<td></td>
<td>Discomycetes</td>
</tr>
<tr>
<td></td>
<td>Loculoascomycetes</td>
</tr>
<tr>
<td></td>
<td>Laboulbeniomycetes</td>
</tr>
</tbody>
</table>

* В таблице сохранены ранги таксонов оригинальных работ.
С 90-х годов прошлого века в систематике аскомицетов начинают широко использовать молекулярные методы. Молекулярная систематика, или геносистематика, на основании определения нуклеотидных последовательностей отдельных генов или участков ДНК и построения методами кладистики филогенетических деревьев и оценки их достоверности позволяет с той или иной степенью вероятности судить о филогенетических связях таксонов любого ранга и их монафилии или полифилии.

По данным анализа нуклеотидных последовательностей гена 18S rРНК и ряда других генов (28S rРНК, РНК полимеразы II, β-тубулина и др.) были выделены три группы аскомицетов, принятые в современной системе в ранге подотделов:

1. Базальная группа, включающая часть гемиаскомицетов — порядки тафриновые (Taphrinales), протомицетовые (Protomycetales), схизосахаромицетовые (Schizosaccharomycetales) и некоторые другие группы, выделяемая в подотдел тафриномицеты, или архисакомицеты (Taphrinomycotina = Archiascomycotina). Это наиболее древняя группа, исходная для остальных аскомицетов (см. рис. 232). Предполагают, что ее расхождение с остальными группами аскомицетов произошло в силуре (около 410 млн лет назад), а расхождение групп самих архисакомицетов — в карбоне (около 320 млн лет назад). Результат этого — значительное расхождение порядков архисакомицетов и невозможность дать их общую характеристику.

2. Подотдел гемиаскомицеты, или сахаромицеты (Hemiascomycotina, или Saccharomycotina), принимаемый в сокращенном виде после исключения таксонов, вошедших в архисакомицеты. Объединяет как почущиеся дрожжи, так и разнообразную группу мицелиальных грибов.

3. Подотдел эусакомицеты, или пенизоомицеты (Euascomycotina, или Pezizomycotina), объединяющий все аскомицеты с настоящими плодовыми телами или аскостромами и наличием в цикле развития дикардиотической фазы. Включает эусакомицеты, локулоаскомицеты и лябультениомицеты предыдущих систем (табл. 7).

ПОДОТДЕЛ ТАФРИНОМИЦЕТЫ, ИЛИ АРХИСАКОМИЦЕТЫ (TAPHRINOMYCOTINA, ИЛИ ARCHIASCOMYCOTINA)

Подотдел Taphrinomycotina — очень разнородная по морфологии и другим признакам группа аскомицетов, выделенная на основании данных молекулярных исследований. Включает хорошо известные микологам порядки тафриновые (Taphrinales) и протомицетовые (Protomycetales), объединяемые в класс тафриномицеты (Taphrinomycetes), а также делящиеся дрожжи схизосахаромицеты (класс Schizosaccharomycetes с одним порядком), классы пневмоцистидномицеты (Pneumocystidomycetes) — паразиты животных, ранее относимые к протистам, и неолектомицеты (Neolectomycetes) — аскомицеты с булавовидными плодовыми телями, покрытыми гимений, состоящим только из сумок.
Класс тафриномицеты
(Taphrinomycetes)

Класс тафриномицеты включает два порядка: тафриновые (Taphrinales) и протомицетовые (Protomycetales).

ПОРЯДОК ТАФРИНОВЫЕ
(TAPHRINALES)

Порядок объединяет около 100 видов грибов — паразитов высших растений, вызывающих гипертрофию и деформацию органов. Сумки располагаются на мицелии плотным слоем под кутикулой пораженных органов. Плодовых тел нет. Дикарийтнческий мицелий распространяется под эпидермисом и по межклетникам в тканях растений. Мицелий однолетний или многолетний, зимующий в трещинах коры или в почках пораженных растений.

К порядку тафриновые относится один род тафрина (Taphrina), виды которого паразитируют на представителях разных семей растений, но особенно часто на розоцветных, а также березовых, ивовых, буковых и др. Это высоко-специализированные паразиты, поражающие лишь определенные органы одного или близкородственных растений. Развиваясь на них, тафриновые вызывают разнообразные деформации пораженных органов: курчавость листьев (рис. 236), «дюте плоды», или «кармашки» (рис. 237), «ведьмины метлы» и галлы. Возникновение таких деформаций вызвано тем, что тафриновые способны синтезировать фитогормоны, стимулирующие рост, — β-индолилуксусную кислоту и вещества типа цитокининов, а также стимулировать их синтез самим растением. Под действием фитогормонов клетки растений гипертрофируются, увеличивается скорость их деления при одновременном нарушении процессов дифференциации, что приводит к изменению размеров и деформации пораженных органов.

Рис. 236. Курчавость листьев персика, вызываемая Taphrina deformans
Рис. 237. Ветка сливы с плодами, пораженными Taphrina pruni
Цикл развития тафриновых можно рассмотреть на примере *Taphrina deformans* — возбудителя курчавости листьев персика (рис. 238). Аскоспоры этого гриба зимуют в трещинах коры и в почках растения, где могут почковаться в гаплоидной фазе. Дикарийотизация у тафриновых происходит весной в результате копуляции гаплоидных аскоспор или продуктов их почкования. У многих из них обнаружен гетеротализм. У некоторых видов дикарион образуется при делении ядра в посаживающихся клетках. Дикарийотический мицелий заражает листья при распускании почек. Пораженные листья увеличиваются в размерах, их листовые пластинки утолщаются, хотя жилки листьев недоразвиваются и остаются укороченными. Такие листья имеют волнистую «курчавую» поверхность и желтую, розоватую, а позднее бурую окраску. Дикарийотический мицелий гриба распространяется по межклетникам в ткани листа, а на его гифах, расположенных под кутикулой на нижней поверхности листа, развиваются сумки. В двухядерных аскогенных клетках гиф, расположенных между эпидермисом и кутикулой листа, происходит кариогамия. В верхней части аскогенной клетки образуется вырост, и аскогенная клетка делится на две. Ядро в нижней клетке-ножке дегенерирует, а верхняя клетка развивается в сумку. В ней происходят мейоз и митотическое деление ядер, и вокруг восьми гаплоидных ядер формируются аскоспоры. Аскоспоры способны почковаться, поэтому сумки тафриновых нередко бывают вторично-многоспоровыми. Сумки образуют под кутикулой плотный слой. Созревая, они прорывают кутикулу листа и оказываются на его поверхности.

Другой широко распространенный вид тафриновых, *T. pruni*, поражает сливу, вишню, алычу, грушу и черешню, вызывая у них образование так называемых «дубых плодов», или «кармашков». У пораженных плодов разрастается перикарпий (рис. 237), косточку не развивается, вместо нее остается полость. У черешни кроме этого появляется махровость цветков, утолщаются тычинки и чашелистики. Мицелий у *T. pruni* многолетний; он зимует в тканях побегов, а также в почках растения.

У вишни, пораженной видом *T. cerasi*, образуется «ведьмина метла» — густые скопления укороченных, сильноразветвленных побегов с мелкими, быстро опадающими листьями. Многочисленные тафриновые вызывают деформацию листьев у целого ряда листевых деревьев — березы, ольхи, клена. Кроме того, у березы, клена, граба, а также у других деревьев образуются «ведьмьины метлы».

Тафриновые — одна из наиболее древних групп аскомицетов (см. рис. 232). Предполагают, что близкий к ним гипотетический гриб *Prototaphrina*, имевший дикарийотический мицелий и паразитировавший на папоротниках, был общим предком аско- и базидиомицетов.

ПОДОТДЕЛ САХАРОМИЦЕТЫ, ИЛИ ГЕМИАСКОМИЦЕТЫ (SACCHAROMYCOTINA, HEMIASCOMYCOTINA)

Этот небольшой подотдел объединяет примитивные аскомицеты, у которых нет плодовых тел и сумки развиваются непосредственно на мицелии или из одиночных клеток. В цикле развития отсутствует дикарийотическая фаза. Подотдел
включает только один класс — сахаромицеты (Saccharomyces) с одним порядком и несколькими семействами.

Для мицеллярных сахаромицетов (диподасковые — Dipodascaceae и сахаромикопсидные — Saccharomycopsidaceae) характерно образование на мицелии одиночных сумок, развивающихся непосредственно из зиготы без участия аскогенных гиф. У относящихся к этому классу дрожжей настоящий мицелий отсутствует, клетки размножаются почкованием, и сумки формируются как одиночные свободные клетки. Смена ядерных фаз в цикле развития сахаромицетов может быть разных типов. Сюда относятся как типичные гаплобионты (Dipodascus, Saccharomycopsis и многие другие), так и грибы с продолжительной диплоидной фазой (например, пекарские дрожжи — Saccharomyces cerevisiae) и даже представители, у которых гаплоидны только аскоспоры (например, виды рода Saccharomyces).
Большинство сахаромицетов — сапротрофы, обитающие на поверхности плодов и вегетативных частей растений, в нектаре цветков, в истечениях растений, на древесине, в почве, некоторые из них развиваются в ассоциациях с насекомыми. Паразитов в этой группе немного, например виды рода Eremothecium, развивающиеся на лесном орехе и фисташках, на коробочках хлопчатника и плодах других растений, и Dipodascus — на пластинках осеннего опенка. Большое практическое значение имеют дрожжи — возбудители спиртового брожения, а также продуценты некоторых витаминов, например широко используемые для производства рибофлавина Eremothecium ashyi и Ashbya gossypii.

У небольшого рода Dipodascus образуется хорошо развитый мицелий, а на нем — цилиндрические, обычно многопоровые сумки. Виды этого рода встречаются в истечениях растений, на древесине, в почве, на других грибах и не имеют практического значения. Однако этот род хорошо изучен, так как обнаруживает черты сходства с зигомицетами, и в течение многих лет рассматривался как возможное связующее звено между аскомицетами и их гипотетическими предками, близкими к современным зигомицетам. В дальнейшем было показано, что многие признаки (например, состав полисахаридов клеточных стенок и др.), а также данные молекулярной филогенетики не подтверждают эту гипотезу.

У D. albidus, обитающего в истечениях различных растений, хорошо развит мицелий, состоящий из крупных многоядерных клеток до 100 мкм длиной. На нем закладываются многоядерные гаметангии, различающиеся по размеру. После слияния гаметангий образовавшаяся зигота сразу же развивается в удлиненную многопоровую сумку (рис. 239). Аксоспоры освобождаются из сумки пассивно. Они окруженны слизистой обверткой, и при ее набухании сумка раставивается и разрывается на вершине. Аксоспоры выходят из сумки и собираются на ее вершине в шарик, склеенный слизью. У другого вида этого рода — D. aggregatus, обитающего в личиночных ходах некоторых жуков-кошередов, мицелий состоит из одноядерных клеток, и гаметангии также одноядерны.

Половое размножение Dipodascus при большом внешнем сходстве с наблюдаемым у зигомицетов существенно отлича-
есть тем, что зигота у представителей этого рода не переходит в состояние покоя и непосредственно развивается в сумку, а аскоспоры образуются по способу свободного образования клеток, типичному для аскомицетов.

Рис. 240. Дрожжи.
A — почкующиеся клетки; B — сумка Saccharomyces cerevisiae; В — псевдомицелий; Г — половой процесс у Schizosaccharomyces octosporus

Название «дрожжи» используется для группы грибов, которые на протяжении всего цикла развития или большей его части существуют в виде одиночных клеток, почкующихся или делящихся. Дрожжи не представляют филогенетически единой группы. Кроме грибов, образующих сумчатую телеоморфу (класс сахаромицеты, объединяющий более половины известных родов дрожшей, класс схизо- сахаромицеты — Schizosaccharomyces, или делящиеся дрожжи), к ней относятся также и базидиомицеты: порядки споридиевые (Sporidiales) и филобазидиевые (Filobasidiales) (см. с. 418, 434). Наконец, известны дрожжи, у которых телеоморфа в цикле развития отсутствует (так называемые «аспорогенные дрожжи»). В цикле развития некоторых мицелиальных грибов при определенных условиях среды также может наблюдаться дрожжеподобная стадия — такие грибы называют диморфными.

В отличие от семейств диподасковые и сахаромикопсидовые, все представители которых гаплобионты, сахаромицетовые объединяют грибы с разной продолжительностью гаплоидной и диплоидной фаз в цикле развития. У одних,
например у видов из родов Debaryomyces и Nadsonia, наблюдается длительная гаплоидная фаза, а диплоидизация происходит непосредственно перед образованием сумки. Пекарские дрожжи (Saccharomyces cervisiae) после образования аскоспор в течение некоторого времени появляются в гаплоидной фазе, после чего следует половинной процесс — копуляция соматических клеток, и почкование продолжается уже в диплоидной фазе. В условиях голодания и хорошей аэрации среди такие диплоидные клетки превращаются в сумки. Наконец, среди сахаромицетовых есть представители, у которых гаплоидная фаза сокращена до аскоспоры, а иногда наблюдается копуляция аскоспор уже в сумке. Примером таких диплоибийтов может служить Saccharomyces ludwigii.

Дрожжи широко распространены на разнообразных субстратах, богатых сахарами: на поверхности плодов, в нектаре цветков, в сахаристых истечениях деревьев и др. Известны виды, которые хорошо растут на субстратах с высокой концентрацией сахара (осмофильные дрожжи); они часто встречаются в меде, вареньях и других подобных субстратах, вызывающих их порчу. Дрожжи из рода Debaryomyces устойчивы к повышенной концентрации солей и часто выделяются из морской воды, рассолов, обитающих на солнечных, на поверхности коньонаков колбас, сыров и на других белковых субстратах, необычных для дрожжей. Представители некоторых родов, например Lipomyces, обитают в почвах.

Развиваясь на субстратах, содержащих сахар, многие дрожжи вызывают спиртовое брожение — превращение сахара в этиловый спирт и углекислый газ с выделением энергии в отсутствие кислорода. Хотя этот процесс уже в древности (Египет и Двуречье) использовался для приготовления алкогольных напитков и в хлебопечении, его связь с развитием дрожжей была обнаружена лишь в 1876 г. Л. Пастером. Спиртовое брожение лежит в основе целого ряда пищевых производств — хлебопечения, виноделия, пивоварения, а также производства технического спирта из отходов целлюлозно-бумажной промышленности или мелассы.

Известны многие виды дрожжей, например из рода Lipomyces, неспособные сбраживать сахар, но окисляющие их. Представители этого рода обитают только в почвах. Их клетки имеют крупные размеры, содержат много жира и окружены слизистой полисахаридной капсулой. Сумки образуются после копуляции клеток-пчек, часто на одной материнской клетке.

Среди дрожжей, вызывающих спиртовое брожение, наибольшее значение имеют представители рода Saccharomyces. Этот род объединяет как виды, встречающиеся в природе, так и «культурные» виды, представленные многочисленными производственными расами. Сахаромицеты способны к активному сбраживанию сахаров и накоплению большого количества спирта (10—19% по объему).

Пекарские дрожжи (S. cerevisiae) не выделяются из природных субстратов и существуют только в культуре. Их слегка овальные клетки размножаются почкованием. На поверхности клетки образуется сферический вырост, увеличивающийся в размерах и отделяющийся перетяжкой от материнской клетки. После отделения клетки на ней и на материнской клетке остаются рубцы. По их числу можно определить относительный возраст почекующейся клетки (иногда число их доходит до 30—40). Сумки обычно содержат четыре аскоспоры (рис. 240, Б). Вид гетероталильчен.
Пекарские дрожжи представлены несколькими сотнями рас — винными, хлебопекарными, пивными и спиртовыми. Для получения спирта путем брожения используют картофель, зерно, патоку, а также сульфитный щелок — отходы деревообрабатывающей и целлюлозной промышленности. Это сырье предварительно осахаривают путем обработки солодом или кислотами, так как дрожжи не способны использовать полисахариды.

Вина получают из виноградных и плодово-ягодных соков. В зависимости от степени использования сахара при брожении различают сухие и сладкие вина. В крепленые вина после брожения добавляют спирт. При производстве игристых вин брожение завершают в герметически закрытых бутылках, где накапливается углекислый газ. В процессе брожения кроме основных продуктов (этилового спирта и углекислого газа) в небольших количествах образуются и другие вещества, от которых зависят специфический аромат и вкус вина. Разные вина получают из определенных сортов винограда и рас дрожжей, применяя соответствующую технологию производства.

В пивоварении охмеленное сусло из зерна ячменя сбраживают дрожжами. Пиво содержит до 6% спирта.

Хлебопекарные дрожжи употребляют в хлебопечении и кондитерской промышленности. В тесте под действием дрожжей происходит спиртовое брожение, и образующийся углекислый газ вызывает его подъем. В закваске ржаного теста кроме дрожжей содержатся молочнокислые бактерии. В нем идет смешанное брожение — молочнокислое, вызываемое бактериями, и спиртовое, вызываемое дрожжами. Поэтому в ржаном хлебе содержится молочная кислота, придающая ему характерный кисловатый вкус.

Биомасса дрожжей, накапливающаяся в бродильных производствах в качестве отходов, содержит большое количество белков, углеводов и жиров и представляет ценный кормовой продукт. Некоторые виды дрожжей используют для производства кормовых белков. Кормовые дрожжи хорошо растут на разнообразных средах, содержащих как гексозы, так и пентозы. Для их промышленного получения применяют отходы различных производств — гидролизаты древесины, мелассу, сульфитные щелоки и др. Биомасса кормовых дрожжей богата белками, содержащими все необходимые для животных аминокислоты.

Дрожжи легко культивируются и быстро растут, поэтому они нашли широкое применение для изучения разнообразных процессов в биохимии, генетике и других областях биологии. На этих объектах проведены многочисленные исследования по локализации в клетке и регуляции активности ферментов, механизмам действия антибиотиков на грибную клетку и многим другим вопросам.

Eremothecium ashbyi и *E. gossypii* — представители небольшого семейства эремотечевые (*Eremotheciaceae*), сверхсингетики рибофлавина, в природе встречаются как паразиты на коробочках хлопчатника. Их ярко-желтый ветвящийся мицелий состоит из многоядерных клеток. Окраска мицелия обусловлена присутствием рибофлавина, который накапливается в нем в таком количестве, что выпадает в виде кристаллов в вакуолях. На мицелии образуются сумки, содержащие от 4 до 32 веретеновидных или илловидных двухклеточных аскоспор. Эти виды используются в микробиологической промышленности для производства рибофлавина.
У эуаскомицетов сумки образуются в плодовых телах разного происхождения. Лишь у немногих представителей этого подотдела сумки формируются группами или одинично на мицелии и не окружены перидием. По типу развития плодовые тела этой группы разделяются на настоящие плодовые тела, или аскомы, образующиеся по аскогимениальному типу, и аскостромы — по аскокулярному типу (см. с. 342).

Различают три типа настоящих плодовых тел (аском): клейстотеций, перитеций и апотеций.

Клейстотеций — обычно округлое, полностью замкнутое плодовое тело, содержащее только сумки. Стерильные элементы парафизы в них всегда отсутствуют. Сумки в клейстотециях располагаются неупорядоченно во внутренней плектенхиме (например, у представителей порядка эвропнеевые — Eurotiiales, рис. 241, A). Сумки прототуникатные, их стенка быстро лизируется, и созревшие аскоспоры пассивно освобождаются из клейстотеция после разрушения перидиа.

![Изображение](image.png)

Рис. 241. Типы плодовых тел аскомицетов:
A, B — клейстотеций; В — перитеций; Г, Д — апотеций; 1 — сумки, 2 — парафизы, 3 — перифизы
Отдел аскомицеты, или сумчатые грибы (Ascomycota)

Плодовые тела порядка мучнистоорощенные — *Erysiphales* (рис. 241, B) формально относятся к клейстотециям, так как не имеют отверстия — остиолы, однако сумки в них расположены упорядоченно, образуя пучок или слой, и освобождение аскоспор из унитуникатных сумок происходит активно после разрыва перидия под давлением набухающих сумок. В микологической литературе плодовые тела этой группы поэтому часто называют перитециями.

Перитеции — полузамкнутые плодовые тела, большей частью округлые или кувшиновидные, с узким отверстием — **остиолой** — на вершине (рис. 241, B). Со дня перитеция, а иногда и от его боковых стенок пучком или слоем отходят сумки обычно цилиндрической или булловидной формы. Между сумками развиваются **паразизы**. Часто паразизы недолговечны и к моменту созревания сумок разрушаются. Кроме паразиз в перитециях имеются обычно **перифизы** — нитевидные короткие гифы, расположенные в носике перитеция и направленные к выходу из него.

Аскоспоры из перитеций обычно выбрасываются активно. Упорядоченное расположение сумок в перитеции позволяет им поочередно, удилинаясь за счет роста или растяжения стенки, достигать остиолы и выбрасывать аскоспоры. Аскоспоры выбрасываются из сумки или одновременно, или поочередно, как это наблюдается, например, у видов рода *Cordyceps* из порядка гипокрейные. У диапортовых (*Diaporthales*), перитеции которых часто имеют очень длинные носики, сумки образуются на короткой, быстро лизирующейся ножке и в зрелости свободно лежат в полости перитеция. При набухании сумок в перитеции создается давление, в результате которого они поочередно выталкиваются к остиолу и активно выбрасывают аскоспоры. У большинства аскомицетов, образующих перитеции, сумки унитуникатные и имеют специальный **апикальный аппарат** (пору, кольцо и др.), служащий для вскрывания сумки. Лишь у немногих грибов в перитециях развиваются псевдопрототуникатные сумки с быстро лизирующимися стенками, напоминающие сумки клейстотециальных аскомицетов. У таких грибов зрелый перитеций содержит массу аскоспор, погруженных в слизь. При ее набухании споровая масса выделяется через остиол перитеция и образует на его вершине слизистую каплю или нить.

Апотеции — широко открытые при созревании плодовые тела, обычно блюдцевидные или чашевидные. На их верхней стороне располагается слой сумок и паразиз — гимений. Под гимением находится тонкий слой переплетающихся гиф — гипотеций, или субгимений. Мякоть стерильная часть апотеция — **эксципул** — обычно состоит из двух частей: оболочки апотеция, или внешнего экскипула, и его мякоти — внутреннего, или **медуллярного, экскипула** (рис. 241, Г, Д). Иногда мякоть в апотеции может отсутствовать. У некоторых групп аскомицетов строение апотециев отличается от типичного. Они могут иметь булловидную или шпательвидную форму или расчленяться на шляпку и ножку, как, например, у сороков и строчков. У представителей семейства трюфелевые (*Tuberaceae*) апотеции вторично-замкнутые в связи с обитанием под землей.

Аскоспоры из апотеция выбрасываются активно. Расположение сумок в виде широко открытого гимения дает возможность одновременного освобождения аскоспор из многих сумок в виде «взрыва» или «запала». Прикосование к крупным апотециям некоторых пезизовых (*Pezizales*) вызывает появление над ними
легкого облачка выброшенных аскоспор и даже характерный звук щелчка. Лишь у немногих аскомицетов, образующих апотеции, аскоспоры освобождаются из сумок последовательно (например, у видов из рода Geoglossum). Аскоспоры выбрасываются из апотециев на расстояние 0,5—20 см, а у некоторых видов — до 60 см.

В прежних системах аскомицетов для удобства эуаскомицеты, образующие настоящие плодовые тела, часто подразделяли по их типам на группы: плекто-мицеты (клейстотеции), пиреномицеты (перитеции) и дискомицеты (апотеции). В некоторых системах эти группы выделяли в таксоны разного ранга (классы или подклассы) (ср. табл. 7).

У многих эуаскомицетов плодовые тела, прежде всего перитеции, образуются не на мицелии, а в стромах, различных по форме, размерам, окраске и консистенции, состоящих из сплетения гиф. Однако и в этом случае каждое плодовое тело имеет собственный перидий, хорошо различимый хотя бы на ранних стадиях развития.

У большой группы аскомицетов — локулоаскомицетов (класс локулоаско-мицеты — Loculoascomycetes) сумки образуются не в настоящих плодовых телах, а в аскостромах, развивающихся по асколокулярному типу (см. с. 342). Сумки формируются в ткани стромы, в полостях (локулах), появляющихся в результате вытеснения ткани разрастающимися сумками и ее частичного разрушения. В простейшем случае каждая сумка располагается в самостоятельной локуле и отделена от других сумок участком интераскальной, или межсумочной, ткани. Однако чаще каждая локула содержит много сумок, а интераскальная ткань обычно полностью разрушается. У некоторых локулоаскомицетов наблюдает образование псевдопарафиз. Локулы не имеют собственного перидия — их оболочкой служит ткань стромы. В аскостромах образуются обычно билуччатые сумки, т.е. имеющие двухслойную стенку с функционально различными слоями (см. рис. 235, Б).

Для стерильных элементов, присутствующих в плодовых телях (аскомах и аскостромах), было предложено общее название хаматеций. Он включает такие структуры, как интераскальная псевдопарафенихима, парафизы, перифизы, апикальные парафизы и псевдопарафизы. Хаматеций может отсутствовать, тогда в плодовом теле развиваются только сумки.

В цикле развития эуаскомицетов всегда присутствует дикариотическая фаза, представленная аскогенными гифами. Таким образом, в нем наблюдается продолжительная гаплоидная фаза: аскоспоры и развивающийся из них гаплоидный мицелий, на котором образуются анаморфы, а затем — аскогонь и антеридии (или заменяющие их структуры). После дикариотизации формируются аскогенные гифы, относящиеся к дикариотической фазе, которая продолжается до слияния ядер дикариона в молодой сумке. Диплоидная фаза очень короткая и ограничена диплоидным ядром развивающейся сумки. В результате его мейотического деления и последующего митоза появляются гаплоидные ядра, вокруг которых формируются аскоспоры.
В отличие от базидиомицетов дикариотическая фаза аскомицетов не представлена самостоятельным мицелием, а развивается на гаплоидном вегетативном мицелии. Все структуры аском и аскостром, за исключением аскогенных гиф, также формируются гаплоидным мицелием. Этим они отличаются от плодовых тел базидиомицетов, образующихся из гиф дикариотического мицелия.

Анатомофы играют важную роль в цикле развития многих эуаскомицетов, однако в некоторых группах (например, порядок пезизовые — Pezizales) они редки или отсутствуют. Во многих группах этого подотдела, например в порядке эвроциевые (Eurotiales), гипокреевые (Hypocreales) и др., прослеживается тенденция к увеличению морфологического разнообразия анатомоф, их продуктивности и связанной с этим утрате ведущей роли телеоморф в цикле развития, к снижению роли рекомбинации и в конечном результате к полной потере телеоморф и переходу к анатомовым видам, развивающимся клонально (например, анатомовые виды из родов Aspergillus, Penicillium, Fusarium и многих других, произошедшие от различных групп холоморфных аскомицетов в результате утраты ими телеоморф). Такие анатомовые виды относятся к формальному отделу дейтеромицеты (Deuteromycota).

Система эуаскомицетов основана на строении плодовых тел, типе их развития, строении сумок, наличии и характере стромы и других признаках. С 90-х годов XX в. в построении современной системы группы используют данные молекулярной филогенетики — анализ нуклеотидных последовательностей некоторых генов, чаще всего гена 18S rРНК, позволяющий определить монофилетичность или полифилетичность того или иного таксона.

На основании перечисленных критериев к подотделу эуаскомицеты (Euascomycetes) относят десять классов, два из которых (Arthoniomycetes и Lecanoromycetes) включают исключительно лихенизированные грибы и соответственно рассмотрены в разделе «Лишайники». Остальные восемь классов объединяют около 20 порядков. Ниже приводятся наиболее важные из них.

Класс эвроциомицеты (Eurotiomycetes).
К этому классу относят аскомицеты с клейстотециями, в которых беспорядочно располагаются прототунникатные или псевдопрототунникатные сумки. Аскоспоры у этой группы всегда освобождаются пассивно. Основные порядки класса:
• порядок оннегеновые (Onygenales) — клейстотеции с перидием, выраженным в разной степени, часто рыхлым, сетчатым, или с разнообразными признаками; анатомофы всегда талического типа — атропокониди или алевриокониди;
• порядок эвроциевые (Eurotiales) — клейстотеции чаще с хорошо развитым перидием; анатомофы — всегда филалокониди.

Класс сордариомицеты (Sordariomycetes).
Этот класс объединяет аскомицеты с перитециями, изредка без остиолы, в которых пучком или гимением располагаются унитунникатные, у некоторых групп — псевдопрототунникатные сумки. Аскоспоры обычно освобождаются активно. Класс включает несколько порядков, основные из них следующие:
порядок сордариевые (Sordariales) — перитеции темноокрашенные или черные, обычно с кожистым или твердым перидием, образуются на мицелии;
порядок диапортовые (Diaporthales) — перитеции темноокрашенные или черные, с кожистым или твердым перидием, часто образуются в стромах; сумки с быстро лизирующейся ножкой, в зрелости свободно расположены в слизы в полости перитеция;
порядок офистомовые (Ophiostomatales) — перитеции темноокрашенные, обычно с длинным носиком, образуются на мицелии; сумки рано разрушаются, и погруженные в слизь аскоспоры пассивно освобождаются из перитеций;
порядок ксилариевые (Xylariales) — преимущественно строматические грибы; перитеции погружены в стромы. Перитеции и стромы темноокрашенные, жесткие, деревянистые до углистых; сумки образуют широкий гимений, парафизы отходят от боковых стенок и дна перитеция;
порядок гипокреевые (Hypocreales) — перитеции ярко- или светлоокрашенные, мясистой консистенции, образующиеся на мицелии или стромах такого же характера, как и перитеции; у трех семейств порядка присутствуют апикальные парафизы.

Класс леоциомицеты (Leotiomyceses).
Плодовые тела — апотеции. Аскоспоры освобождаются активно. Сумки иноперкульятные — открывающиеся на вершине трещиной или разрывом (см. рис. 254, А). В классе три порядка:
порядок леоциевые (Leotiales) — апотеции обычно типичного строения, образуются на мицелии либо из склероциев или стром;
порядок ритимовые (Rhytismatales) — апотеции образуются в стромах. Как стромы, так и апотеции темноокрашенные;
порядок циттариевые (Cytariales) — апотеции образуются в мясистых стromaх, обычно светлоокрашенных; диск апотеция оранжевый.

Класс пезизомицеты (Pezizomycetes).
Апотеции типичного строения, реже расчлененные на ножку и шляпку, или вторично-замкнутые, образуются на мицелии или, редко, из склероциев. Сумки оперкулятные, вскрываются на вершине крышекой (см. рис. 254, Б). Класс включает один порядок — пезизовые (Peziales) с шестнадцатью семействами.

Класс эризиомицеты (Erysiphomycetes).
Класс включает настоящие мучнисторосльные грибы, образующие клейстотеции с одной или несколькими упорядоченно расположенными сумками. Освобождение аскоспор происходит активно. Один порядок — мучнисторосльные, или эризивые (Erysiphales). Ранее его относили по типу плодового тела к клейстотециальным аскомицетам (плектомицетам) или, на основании расположения унитуникатных сумок пучком или гимением и активного освобождения аскоспор, к перитециальным аскомицетам (пиреномицетам). Многочисленные исследования нуклеотидных последовательностей нескольких генов не подтвердили близости мучнисторосльных к эвротомицетам или сордариомицетам, поэтому в современной системе этот порядок выделяется как самостоятельный класс.
Класс локулоаскомицеты (Loculoascomycetes).
Этот класс объединяет аскомицеты, образующие сумки в аскостромах; сумки битуннитные. Класс включает пять порядков, выделяемых на основе строения аскостром и типов их развития. Основные из них следующие:
• порядок мириангиевые (Myriangiales) — аскостромы подушковидные, локулы расположены в них беспорядочно или в один ряд; каждая локула содержит только одну сумку;
• порядок дотидейные (Dothideales) — аскостромы содержат одну или несколько локул; псевдопарафизы обычно отсутствуют;
• порядок плеоспоровые (Pleosporales) — аскостромы содержат одну или несколько локул; псевдопарафизы обычно имеются.

Класс лябульбениомицеты (Laboulbeniomycetes).
Лябульбениомицеты — группа высокоспециализированных облигатных паразитов членистоногих, преимущественно насекомых (порядок лябульбениевые — Laboulbeniales), отличающихся по морфологии от остальных аскомицетов. Лябульбениомицеты не образуют мицелия, их вегетативное тело имеет тканевое строение. На нем развиваются аскогоны с триhogинами и антеридиями, в которых формируются сперматии. После оплодотворения путем сперматизаций образуются микроскопические перитеции с прототуннитыми (или псевдопрототуннитными) сумками, расположенными пучком. Аскоспоры освобождаются пассивно.

Грибы из подотдела эуаскомицеты были объектами многочисленных исследований по молекулярной филогенетике, позволивших оценить его систему с позиций кладистики. В результате анализа нуклеотидных последовательностей генов 18S и реже 28S rPHK в пределах этой группы была установлена монофилия эуарциомицетов и сордариомицетов, четко разделены монофилетичные группы оперкуляриных (класс пазизомицеты) и иноперкуляриных (класс лециомицеты) дискомицетов. Относимый некоторыми микологами к лябульбениомицетам порядок спатулоспоровые (Spathulisporales), представители которого паразитируют на красных водорослях и также образуют тканевые талломы, сейчас на основании молекулярных данных сближаются с сордариомицетами. Представители Ophioticsomatales, ранее относившиеся многими микологами к клейстотециальным аскомицетам (плектомицетам) на основании псевдопрототуннитных сумок и их неупорядоченного расположения в перитеции, близки к другим перитециальным аскомицетам из класса сордариомицеты, куда они и включены в современной системе группы.

При анализе генов 18S и 28S rPHK у представителей двух порядков пиреномицетов (Hypocreales и Clavicipitales), имеющих ярко- или светлоокрашенные перитеции и стромы, но разделяемых ранее по типу развития перитеций и морфологии аскоспор, показано, что они образуют монофилетическую группу и должны быть объединены в один порядок Hypocreales.

По данным молекулярной филогенетики, полученному при анализе нескольких генов (18S rPHK, 28S rPHK, РНК полимеразы II), локулоаскомицеты представляют полифилетичную группу, включающую монофилетичную кладу
(ветвь) Pleosporales и полифилетичную группу Dothideales. Однако недавно было показано, что среди Dothideomycetes можно выделить полифилетичные клады *Dothideales s. str.* и *Myriangiales*. Таким образом, хотя выделяемый класс и является полифилетическим, входящие в него основные порядки полифилетичны и отвечают требованиям к таксонам филогенетической системы.

Класс эвроциомицеты, или плектомицеты *(Eurotiomycetes, Plectomycetes)*

Плодовые тела у входящих в этот класс грибов — клейстотеции с беспорядочно расположенными в них прототуникатными или псевдопрототуникатными сумками. Освобождение аскоспор всегда пассивное.

ПОРЯДОК ОНИГЕНОВЫЕ *(ONYGENALES)*

Клейстотеции у большинства онигеновых микроскопические (от 100 мкм до 1—2 мм в диаметре), лишь у немногих их размеры более крупные. Перидий клейстотециев выражен в разной степени, иногда рыхлый, сетчатый, часто с придатками разнообразной формы. Анаморфы известны не у всех представителей порядка, хотя у многих занимают важное место в цикле развития. Конидии всегда таллического типа — артроконидии или алевриоконидии.

Большинство онигеновых — сапроотрофы на различных субстратах растительного и животного происхождения. Среди них большое число кератинофилов, образующих кератинолитические ферменты и способных поэтому развиваться на субстратах, содержащих нерастворимый фибриллярный белок керatin (на перьях, волосах, рогах, копытах), принимая участие в их разложении. Среди онигеновых есть грибы, вызывающие заболевания человека и животных — дерматомикозы и так называемые глубокие микозы — эндемические респираторные микозы (бластомикоз, гистоплазмоз и др.), вызываемые диморфными грибами из рода *Ajellomyces* и близкими к ним анаморфными видами.

Дерматофиты — одни из первых обнаруженных патогенных грибов, однако заболевания, вызываемые ими, были известны задолго до открытия их возбудителей, в течение нескольких столетий. Грибы из этой группы обитают на волосах, ногтях, коже, иногда в тканях и вызывают дерматомикозы — заболевания человека и многих животных (трихофитию, микроспорию, фавус и др.). Они обладают кератинолитической активностью, играющей важную роль в патогенезе. В зависимости от обычной среды обитания дерматофиты могут быть геофильными (обычно обитают в почве), зоофильными (заражают животных и способны от них передаваться человеку) и антропофильными (заражают только человека). Представители всех трех групп могут вызывать дерматомикозы у человека, но различаются природными резервуарами инфекции и эпидемиологическими особенностями. По данным Ю.В. Сергеева и А.Ю. Сергеева (2003), наиболее распространенными микозами человека являются дерматомикозы, вызываемые антропофильными дерматофитами.
Возбудители глубоких микозов — бластомикоза и гистоплазмоза — являются диморфными грибами, существующими в природе (в почве, в экскрементах летучих мышей и птиц и т.п.) в мицелиальной фазе, а в тканях макроорганизма — в дрожжевой. В лабораторных условиях дрожжевая фаза развивается при температуре 37°C. Оба заболевания представляют эндемические респираторные микозы, относимые к особо опасным инфекциям. Заражение людей происходит при вдыхании конидий мицелиальной фазы. Эндемичные очаги заболеваний известны в Северной Америке и Африке, а гистоплазмоза — также в Центральной и Южной Америке и в Юго-Восточной Азии, однако возможны случаи их завоза в другие регионы.

ПОРЯДОК ЭВРОЦИЕВЫЕ
(EUROTIALES)

К этому порядку относятся аскомицеты с хорошо развитыми клейстотециями, образующимися на мицелии. Лишь у немногих его представителей клейстотеции развиваются в стромах, напоминаяющих склероции. У большинства эвроциевых клейстотеции мелкие, не превышающие 1—2 мм в диаметре. Исключение составляют только оленьи трюфели (род Elaphomyces), клубневидные подземные клейстотеции которых достигают нескольких сантиметров в диаметре. У отдельных видов порядка перидий клейстотеций отсутствует, и сумки образуются группами на мицелии.

Перидий клейстотециев имеет разнообразное строение: от рыхлого паутинистого сплетения гиф, мало отличающихся от вегетативных, до плотного псевдопаренхиматического. Сумки у эвроциевых имеют быстро разрушающиеся стенки, шаровидные или эллипсоидные, с двумя—восемью аскоспорами. Аскоспоры всегда одноклеточные, бесцветные или окрашенные, часто орнаментированные. Они освобождаются пассивно, после разрушения стенки сумки и перидия клейстотеция.

В распространении эвроциевых существенную роль играет бесполое размножение конидиями, которые у представителей этого порядка всегда являются фиалоконидиями. Лишь немногие виды, например семейство элафомицетовые (Elaphomycetaceae), имеют в цикле развития только телеморфу.

Большинство эвроциевых — сапрофиты. Они обитают в почвах различных климатических областей, а также на разнообразных субстратах растительного, реже животного происхождения, на которых они образуют плесени. Некоторые эвроциевые — термофилы, развивающиеся в саморазогревающихся субстратах (например, в компосте, влажном сене и др.) при температуре 30—60°C. Отдельные виды вызывают заболевания животных (например, аспергиллезы) и растений (например, Penicillium italicum и P. digitatum на плодах цитрусовых). Некоторые представители этой группы, поселяясь на пищевых продуктах, зерне, промышленных материалах и изделиях, вызывают их плесневение и порчу. В благоприятных для их развития условиях, особенно в тропиках, они за короткий срок могут разрушать различные материалы, в том числе синтетические (например, электроизоляцию), ускоряя процессы коррозии металлов, повреждать приборы, оптику и многие другие изделия. При развитии на зерне и пищевых продуктах
эвтрофные образуют многочисленные микотоксины (афлатоксины, рубратоксины, патулин и др.), вызывающие токсикозы у человека и животных.

Многие эвтрофные и родственные им анаморфные грибы синтезируют антибиотики, ферменты, органические кислоты и используются для их промышленного получения.

Одну из наиболее важных групп эвтрофных составляют грибы, анаморфы которых относятся к формальным родам дейтеромицетов Aspergillus и Penicillium. Она объединяет многочисленные виды, повсеместно распространенные в почвах от Арктики до тропиков, а также на разнообразных субстратах растительного происхождения. У многих из них известны только анаморфы. Такие виды обычно относят к отделу дейтеромицеты Deuteromycota (см. с. 482). Однако многие микологии относят такие анаморфные виды к родственным им телеоморфным таксонам. Это грибы, обычно обитающие в почвах, где они активно разрушают органические остатки. Многие из них вызывают плесневение пищевых продуктов (черная и зеленая плесени), повреждение изделий из пластмасс, металлов и других материалов. Некоторые аспергиллы, например A. fumigatus, являются причиной заболеваний человека и животных — так называемых аспергиллезов. Другой вид этого рода — A. flavus, часто развивающийся на арахисе, зерне и различных кормах, образует афлатоксин — микотоксин, вызывающий тяжелые поражения печени и других органов. Афлатоксин подавляет синтез ДНК и митоз, стимулирует развитие гигантских клеток и обладает канцерогенным действием. Некоторые виды пенициллов поражают плоды (яблоки, цитрусовые) в период хранения. Пенициллы и аспергиллы широко используются в биотехнологии — в производстве органических кислот (лимонной, фумаровой, глюконовой и др.), ферментов (амилаз, протеиназ и др.) и антибиотиков (пенициллинов, грязеоффулина, фумагиллина). Из последних особое значение имеет пенициллин, образуемый грибом Penicillium chrysogenum. Это первый антибиотик грибного происхождения, широко применяемый в медицине. На основе природных пенициллинов получены полусинтетические производные, которые активны в отношении групп организмов, устойчивых к природным пенициллинам, — грамотрицательных бактерий и устойчивых к пенициллину стафилококков.

Для рода Aspergillus характерны простые конидиосы, вздутые на вершине в виде пузыря (везикулы) различной формы (от шаровидной до булавовидной) и размера. За счет пузыря увеличивается поверхность, на которой развиваются конидиогенные клетки — фиалиды. Они образуются синхронно на поверхности пузыря или на метулах (профиалидах) — клетках, предшествующих фиалидам. На каждой из них возникает 2–5 фиалид. Фиалоконидии образуются энтреробластически; они одноклеточные, имеют шаровидную или эллипсоидную форму, различны по окраске, размерам и орнаментации. Конидии образуют цепочки, свободные или соединенные в колонку (рис. 242).
Отдел аскомицеты, или сумчатые грибы (Ascomycota)

Род Aspergillus является анаморфным, однако среди его представителей есть виды, имеющие в цикле развития и телеоморфную стадию, относящуюся к разным родам эволютивных. К настоящему времени известны одиннадцать родов из этого порядка, имеющих виды Aspergillus как анаморфы. Важнейшие из них — Emericella и Eurotiurn.

Представители рода Eurotiurn часто встречаются в природе на разлагающихся растительных субстратах. В зависимости от условий среды (температуры и влажности) и соответственно преимущественного развития анаморфной или телеоморфной стадии они образуют зеленые, желтоватые или красновато-желтые плесени. Клейстотеции у видов этого рода шаровидные, очень мелкие, желтые, с однослоинным перидием, покрыты рыхлой сетью гиф с желтыми или красноватыми гранулами. Сумки образуются на аскогенных гифах по способу крючка. Стенки сумок разрушаются очень рано, и зрелые клейстотеции содержат массу бесцветных или желтоватых линзовидных аскоспор с экваториальной бороздкой. Обычный субстрат для многих видов из этого рода — хранящиеся растительные продукты (зерно и др.). Многие его представители ксерофилы, развивающиеся в условиях пониженной влажности, неблагоприятных для роста других грибов. Например, Eurotiurn repens вызывает плесневение зерна и многих других продуктов при влажности 13—15%.

Большое значение имеют виды этого рода и как возбудители биоповреждений промышленных изделий и материалов. Развиваясь при низкой влажности и минимуме питания, они вызывают разложение текстиля, целлофана, резины, пластмасс, встречаются даже на стекле оптических приборов, что приводит к их порче. Они ускоряют также процессы коррозии металлов вследствие образования большого количества органических кислот.

Виды рода Eurotiurn обычно осмофильны, т. е. могут развиваться на средах с высоким осмотическим давлением, например с повышенным содержанием сахара (до 20% и более). E. repens, например, часто встречается на заплесневелых джемах и вареньях, где образует обильные конидии и клейстотеции.

Для второго крупного рода эволютивных с анаморфой Aspergillus — Emericella характерны шаровидные, довольно крупные клейстотеции, обычно ярко-желтые, окруженные массой крупных толстостенных покровных клеток. Перидии клейстотеций состоят из нескольких слоев переплетающихся гиф. Аскоспоры линзовидные, с экваториальными гребнями, красные или фиолетовые. Виды этого рода встречаются повсеместно в почвах.

Один из наиболее распространенных видов этого рода — E. nidulans (анаморфа — Aspergillus nidulans) — при росте на питательных агаризованных средах образует быстрорастущие колонии, окраска которых варьирует от зеленой до ярко-желтой в зависимости от степени развития конидий и клейстотеции. Клейстотеции желтые, хорошо видны невооруженным глазом. Этот вид обычен в почвах умеренной зоны и субтропиков, на растительных субстратах, иногда развивается в дыхательных путях теплокровных животных. Он широко используется как объект в генетических исследованиях.

У видов рода Penicillium конидиеносцы имеют вид кисточки (рис. 243). Их строение разнообразно. Наиболее простые кисточки состоят из мутовки фиалид на вершине конидиеносца. Более сложные кисточки состоят из веточек и метул —
более или менее удлиненных клеток, на каждой из которых в свою очередь располагается мутовка фиаляд. Такие кисточки бывают как симметричными, так и асимметричными. Телеоморфы известны у относительно немногих видов этого рода.

Примером эвоцированных с анаморфной стадией *Penicillium* может служить род *Talaromyces*, виды которого образуют мелкие шаровидные или неправильной формы клейстотеции. Клейстотеции имеют ярко-желтую или оранжево-желтую окраску и, появляясь в изобилии, придают характерную желтую окраску колониям грибов этого рода.

У широко распространенного в почвах *T. flavus* в культуре образуется сначала анаморфная стадия — *Penicillium vermiculatum*. Затем на гифах развиваются спирально закрученные аскогоны и антеридии. После дикариотизации вырастают аскогенные гифы, а на них цепочками по ходу гиф образуются сумки. Этот вид часто вызывает биоповреждения различного оборудования и материалов, особенно в тропиках и субтропиках. Нередко *T. flavus* паразитирует на разнообразных грибах, в том числе и фитопатогенных.

Класс сордариомицеты
(Sordariomycetes)

Плодовые тела у сордариомицетов — перитекции, иногда без остиолы, образующиеся на мицелии на субстрате или в стromaх различного строения. Перидий перитезиев и стромы (если они имеются) разнообразны в разных порядках по окраске (темная до черной, светлая или яркая) и консистенции (пленчатая, жесткая, жесткая деревянистая до углистой или мягкую, мясистую).

Перитеций содержит сумки и парафизы, образующие пучок или гимений. Настоящие парафизы отходят от субгимениального диска, находящегося в основании перитекия, а если он отсутствует, — от внутренних слоев стенки периция; они обычно нитевидные, многоклеточные. У многих представителей порядка гипокерные (Hypocreales) образуются апикальные парафизы — стерильные гифы, вращающие в полость развивающегося перитекция сверху. В этом случае сумки развиваются между апикальными парафизмами. Часто парафизы недолговечны и к моменту созревания сумок разрушаются, иногда парафизы в перитекции отсутствуют. Кроме парафиз в перитекии имеются обычно перифизы — нитевидные короткие гифы, расположенные в носике перитекция и направленные к выходу из него. Сумки, парафизы и внутренние слои периция перитекия называют его центром. Развитие центра перитекия — важный признак в систематике перитекциальных эуаскомицетов, часто используемый при разграничении порядков.
Аскоспоры у сордариомицетов освобождаются активно, исключение составляют немногие грибы с быстро разрушающимися стенками сумок, например офиостомовые (порядок Ophiostomatales).

В цикле развития большинства сордариомицетов образуются аноморфы разных типов. В отличие от эвтроциомицетов, у которых обычно образуются одиночные конидиосцилы, редко — коремии, у некоторых сордариомицетов (например, из порядка диапортовых (Diaporthales)) наблюдается агрегация конидиосцили — образование лож и пикнид. У многих представителей порядка сордариевые (Sordariales) аноморфы отсутствуют.

ПОРЯДОК СОРДАРИЕВЫЕ
SORDARIALES

Для порядка сордариевые характерны типичные кувшиновидные перитеции с хорошо развитым темноокрашенным перидием, обычно плетчатым, кожистым или твердым. Иногда остиола отсутствует. В перитециях содержатся цилиндрические, реже булловидные сумки, и у большинства представителей порядка — парафизы. Перитеции образуются поодиночке или группами на мицелии на субстрате.

При полевом процессе у сордариевых наблюдаются как типичная для аскомицетов гаметантигония, так и разнообразные отклонения от типа. Так, у многих видов антеридии не функционируют или вообще утрачены. В этом случае часто имеет место сперматизация (например, у видов родов *Podospora*, *Neurospora*). У большинства сордариевых аскоспоры выбрасываются из перитеция активно: сумки поочередно вытягиваются, высвиваются в отверстие перитеция и выбрасывают аскоспоры. После этого стенка пустой сумки спадает, и ее место занимает следующая сумка. У семейства хетомиев (Chaetomiaceae) активного выбрасывания аскоспор не происходит.

Сордариевые — сапротрофы, обитающие на растительных остатках, в почве, на навозе травоядных животных. Они играют определенную роль в минерализации растительного опада в подстилке, могут вызывать биоповреждения различных материалов. Копротрофные представители этого порядка развиваются в суккессии грибов на навозе после мукоровых.

Центральный род семейства хетомиев — *Chaetomium*. Виды этого рода распространены на растительных остатках и в почве, где они играют существенную роль в разложении растительного опада. Нередко они встречаются и на разнообразных целлюлозосодержащих материалах и изделиях, например на бумаге, книгах и др., которые они могут повреждать. Перитеции у представителей этого рода щавидные или грушевидные, покрыты волосками (рис. 244), форма которых служит здесь видовым диагностическим признаком.

Рис. 244. *Chaetomium*: перитеция
Стенка сумок у них быстро лизируется, и зрелый перитеций содержит массу аскоспор, погруженных в слизь. Слизь набухает, и аскоспоры выходят из перитеция в виде длинного слизистого шнура.

У копротрофных грибов из рода *Sordaria* (семейство *Sordariaceae*) перитеции имеют тонкий пленчатый перидий бурого цвета и образуются на мицелии. Парафизы рано разрушаются, и зрелый перитеций содержит только сумки. Аскоспоры у видов этого рода темноокрашенные, со слизистой обверткой (рис. 245). Наиболее распространенный вид этого рода *S. fimicola* не образует анаморфной стадии и размножается только аскоспорами. Как у многих других копротрофных грибов, у видов рода *Sordaria* и других сордариевых, обитающих на экскрементах животных, преимущественно травоядных, имеются многочисленные адаптации к такому образу жизни. Носик перитеция у сордариев положительно фототропичен. Выброшенные из перитеция аскоспоры благодаря слизистым оберткам прилипают к траве, попадают вместе с ней в пищеварительный тракт травоядных животных, а затем, попав на навоз, прорастают.

![Рис. 245. Sordaria: перитеций.](image)

А — внешний вид; Б — разрез; В — сумка; Г — аскоспора

Представители копротрофного рода *Podospora* образуют перитеции с тонким просвечивающим перидием. Их аскоспоры состоят из двух клеток — темноокрашенной и гиалиновой — и несут длинные слизистые придатки. Число аскоспор в сумке варьирует в широких пределах — от 4 (у *P. anserina*) до 128 (у *P. tarvesina*). У *P. anserina* образуются четыре аскоспоры, каждая из которых содержит по два ядра, поэтому этот вид псевдогомоталличен.

Виды рода *Sordaria* и близких родов хорошо растут в культуре на питательных средах, образуя многочисленные перитеции, поэтому их широко используют для изучения физиологии и генетики аскомицетов. Они представляют очень удобный объект для генетических исследований. Аскоспоры у них крупные и расположены в сумках в один ряд, оттуда их можно легко извлечь в определенной
последовательности при помощи микроманипулятора. Получены мутанты с различной окраской аскоспор.

Особенно широко используют в генетических исследованиях виды близкого к сордации рода *Neurospora*. Его перитекции содержат многочисленные сумки и быстро исчезающие парафизы, аскоспоры коричневые, с орнаментацией в виде продольной исчерченности. Наиболее популярный объект генетики грибов — *N. crassa*. Этот вид гетероталичен. На мицелии гриба образуются протоперитекции — аскогоньи, окруженные стерильными гифами. От аскогона отходят длинные ветвящиеся гифы, так называемые «поисковые гифы», функционирующие как трехгина. Если поисковые гифы встречают конидию или вегетативную гифу совместимого типа, происходит дикариотизация. Из оплодотворенного аскогона развиваются аскогенные гифы, а из них — сумки.

Другой вид этого рода — *N. sitophila* — благодаря образованию многочисленных, легко распространяющихся конидий и быстрому росту часто вызывает заражение культур в лабораториях.

Для грибов из семейства Sordariaceae разработана методика тетрадного гибридологического анализа. Она позволила обнаружить явление генной конверсии, послужившее основой для объяснения молекулярных механизмов генетической рекомбинации; получены первые биохимические мутанты и разработаны методы анализа отдельных этапов клеточного метаболизма; выяснена молекулярная природа старения мицелия.

ПОРЯДОК ОФИОСТОМОВЫЕ

(ORPHIOSTOMATALES)

Небольшой порядок офизостомовые объединяет аскомицеты с темноокрашенными перитекциями, содержащими беспорядочно расположенные сумки. Перитекции образуются на мицелии на поверхности субстрата или частично в нем погружены. Они имеют шаровидную или грушевидную форму, обычно с длинным носиком, по длине в несколько раз превышающим диаметр перитекция. Парафизы в перитекциях отсутствуют, но в их остиолах имеются перифизы. Стенки сумок рано лизируются, и зрелые перитекции содержат массу аскоспор, погруженных в слизь. При ее набухании аскоспоры вместе со слизью выходят из перитекция в виде слизистых капель. В цикле развития многих офизостомовых обычно присутствует анаморфная стадия, конидии которой представляют симподиоконидии, иногда аннелоконидии или алевриоконидии. Важное отличие офизостомовых от других групп аскомицетов — химический состав клеточных стенок, в которых обнаружены целлюлоза и рамноза.

Офизостомовые развиваются как паразиты высших растений или сапротрофы на растительных субстратах. Некоторые из них вызывают серьезные болезни растений, приносящие большой ущерб лесному хозяйству, например голландскую болезнь вязов.

Возбудитель голландской болезни вязов *O. ulmi* — один из наиболее известных и важных видов офизостомовых. Эта болезнь распространена в Европе и Северной Америке и наносит большой ущерб лесам, парковым и защитным насаждениям. У пораженных этим грибом деревьев внезапно желтеют и увядают.
листья и усыхают концы ветвей. При сильном поражении все дерево может усохнуть в течение нескольких дней. Увядание вязов вызывается закупоркой сосудов молодых ветвей и действием токсина цератоульмина. Болезнь впервые появилась в Голландии в начале прошлого века, а затем распространилась по всей Европе и была завезена с бревнами на Американский континент. Сейчас как в Европе, так и в Северной Америке широко распространялся близкий к O. ulmi вид O. novo-ulmi, отличающийся более высокой агрессивностью и более обильным образованием цератоульмина.

Весной под корой больных деревьев и в брачных галереях жуков-кореодов развиваются черные коремии анаморфы этого гриба — Graphium ulmi. Конидии гриба переносятся на теле жуков-кореодов (ильмовых заболевников) и вызывают заражение цветков, которыми питаются жуки. Ослабленное дерево заселяют кореоды. Перитеции образуются в трещинах коры и в ходах жуков-кореодов, но они менее обильны, чем коремии анаморфной стадии. Как конидии, так и аскоспоры гриба погружены в слизь, что облегчает их перенос насекомыми.

ПОРЯДОК ДИАПОРТОВЫЕ (DIAPORTHALES)

Перитеции диапортовых имеют плотный кожистый перидий бурой или черной окраски. В носике перитеции находятся перифизы, однако парафизы всегда отсутствуют. Центр перитеция сначала псевдопаренхиматический, но по мере развития сумок псевдопаренхима разрушается. Сумки диапортовых имеют ножку, лизирующуюся при созревании, поэтому в зрелом перитеции сумки свободно лежат в его полости, погруженные в слизь. Они поочередно выталкиваются к остиолу перитеция и активно выбрасывают аскоспоры. Верхняя часть стенки сумки утолщена, и аскоспоры выходят из сумок через узкий канал.

В цикле развития диапортовых большую роль играют анаморфные стадии, причем в отличие от других групп сордариомицетов у представителей этого порядка обычно наблюдается агрессия конидиеносцев — образование лож и пикнид.

Как и у большинства других аскомицетов, паразитирующих на растениях, у диапортовых анаморфы образуются на живом растении, а перитеции развиваются после гибели растения или его частей на отмерших листьях, коре и ветвях деревьев и других растительных субстратах и обычно погружены в них. У многих представителей этого порядка перитеции формируются в стромах.

К этому порядку относятся многие возбудители болезней растений, например Gnomonia erythrostoma, вызывающая скручивание листьев вишни и черешни, Cryphonectria parasitica — возбудитель рака каштанов, Magnaporte grisea — телеоморфа возбудителя пиркуляриоза риса Pyricularia oryzae, возбудители антракноза (сухой гнили) многих растений.

Cryphonectria parasitica, паразитирующая на каштанах, вызывает у них серьезное заболевание — рак коры, поражающий ствол и ветви деревьев. Мицелий гриба распространяется в камбии, вызывая гипертрофию тканей, проявляющуюся в виде утолщений ствола и ветвей, а также опухолей. На некротизированной коре под перицермой находятся стromы гриба. Сначала в них образуются одна
или несколько крупных пикнид, из которых конидии выходят в виде слизистых шнуров. Позднее, после разрушения верхней части стromы с пикнидами, в ее нижней части развиваются перитции с очень длинными носиками, полностью погруженные в строму (рис. 246). На пораженных деревьях отмирает кора, которая опадает, обнажая древесину. *C. parasitica* была завезена в Северную Америку и вызвала там гибель насаждений настоящего каштана. Этот вид приносит большой ущерб и в странах Европы, например в Швейцарии.

ПОРЯДОК КСИЛАРИЕВЫЕ (XYLARIALES)

Преимущественно строматические грибы. Перитции обычно погружены в стromы разнообразной формы; иногда (например, у рода *Rosellinia*) хорошо выраженные стromы отсутствуют, и перитции образуются в субикюлюме — рыхлом мицелиальном сплетении. Как перитции, так и стromы темноокрашенные, жесткие, деревянистые до углистых. Сумки образуют широкий гимений, парафизы отходят от боковых стенок и dna перитции. Аскоспоры бесцветные или темноокрашенные, одно- клеточные или с перегородками. Анаморфы имеются в цикле развития многих представителей ксилариевых.

Большинство представителей порядка — сапротрофы, преимущественно на ветвях, коре и древесине, немногие — копротрофы (род *Poronia*). Немногочисленные паразиты из этого порядка вызывают заболевания деревьев и виноградной лозы (например, возбудитель рака плодовых деревьев и винограда *Eutypa armeniacae*, некоторые виды рода *Hypoxylon*, *Rosellinia necatrix*, вызывающая белую гниль винограда и многих других растений).

У видов рода *Hypoxylon*, часто обитающих сапротрофно на древесине, коре, сухих ветвях деревьев и кустарников, стромы имеют полушаровидную или клубневидную форму (рис. 247, A). Конидиеносцы анаморфной стадии образуются на мицелии или на поверхности молодой стромы, после завершения конидиального спороношения в строме развиваются перитции.

Представители рода *Xylaria* образуют хорошо дифференцированные стромы, расчлененные на стерильную и фертильную части. Виды этого рода обитают преимущественно на мертвой древесине, значительно реже — на других субстратах (сухих плодах, навозе) и особенно распространены в тропиках. Их стромы имеют
Рис. 247. Строматические представители порядка Xylariales.

\textit{Hypoxylon}: \(A\) — внешний вид стром, \(B\) — разрез стромы с перитециями; \(B\) — \textit{Xylaria}: строма

булавовидную форму (как у обычного в умеренной зоне вида \textit{X. polymorpha}) или разветвленны в виде оленьих рогов (рис. 247, \(B\)). На стромах сначала развивается анаморфа, а затем перитеции.

ПОРЯДОК ГИПОКРЕЙНЫЕ (HYPOCREALES)

Гипокреиные — большая и разнообразная группа кордариомицетов, для которой характерны перитеции с мягким или мясистым перидием яркой или светлой окраски. Перитеции образуются на маточнике на поверхности или внутри субстрата, на рыхлом мицелиальном слепении, называемом субикулемом, или в стромах такой же консистенции и окраски, как и перитеции.

В старых системах аскомицетов (первая половина прошлого века) в этот порядок включали и спорыньевые (семейство Clavicipitaceae), также образующие ярко- или светлоокрашенные мягкие перитеции и стромы. С 50-х годов прошлого века положение спорыньевых в системе было пересмотрено, и они были выделены в самостоятельный порядок Clavicipitales. Основанием для этого послужили существенные различия в развитии перитециев у этих групп. Если по характеру развития перитецев спорыньевые сходны с кордариевыми, то гипокреевые имеют уникальный тип развития перитециев, свойственный только этой группе. Настоящие паразиты у них отсутствуют, а образуются апикальные паразиты — стерильные гифы, вращающиеся в полость молодого перитеция сверху. Цилиндрические или булавовидные сумки вращают снизу между апикальными паразитами.

Однако анализ нуклеотидных последовательностей генов 18S и 28S rPHK у представителей гипокреевых и спорыньевых, проведенный в середине 90-х годов XX в., не поддержал выделение этих двух порядков. Было показано, что они образуют монофилетичную группу и должны быть объединены в один порядок Hypocreales.

Свободные перитеции гипокреевых образуются на поверхности субстрата одиночно или группами либо погружены в него. У многих гипокреевых перитеции развиваются в субикулеме или в стромах. Субикулем представляет собой поверхностное мицелиальное слепение на субстрате. Он образуется, например, у многих видов рода \textit{Hypomyces}, паразитирующих на других грибах.

По характеру расположения перитециев стромы гипокреевых могут быть двух типов. У одних представителей этого порядка формируются базальные...
стромы с поверхностными перитециями, погруженными в строму только основаниями. Базальные стромы часто мелкие, не более 1 см, подушковидные или полушаровидные. Стромы такого типа встречаются у некоторых видов из рода *Nectria* (рис. 248). Второй тип — компактные стромы с погруженными в них перитециями. Их форма разнообразна: они могут быть распростертными или подушковидными (виды рода *Hypocrea*), цилиндрическими, булавовидными, головчатыми (роды *Podostroma*, *Claviceps*, *Cordyceps*). Булавовидные и головчатые стромы обычно дифференцированы на стерильную ножку и расширенную часть, несущую перитеции. Перитеции чаще всего погружены в стромы, так что на поверхность выступают только носики перитеций в виде конических бугорков, редко значительная их часть поднимается над стромой (некоторые виды *Cordyceps*).

Стромы развиваются на субстрате — древесине, коре, пораженных органах хозяина (например, у *Epichloe typhina*, см. рис. 251) и др. или из склероциев (род *Claviceps*, см. рис. 252) либо из мумифицированных, пронизанных гифами гриба тканей хозяина (род *Cordyceps*, см. рис. 253). Стромы гипокрений имеют светлую (белую или желтоватую) или яркую окраску, обычно желтую, оранжевую, красную, реже синюю, фиолетовую или темную.

В цикле развития гипокрений часто присутствует анаморфа, нередко играющая важную роль в распространении того или иного вида, а иногда почти полностью замещающая телеоморфу. Многие дейтеромицеты произошли от гипокрений, полностью утративших телеоморфы (например, формальные роды *Fusarium*, *Trichoderma*).

У многих гипокрений отмечен плеоморфизм. Часто в цикле развития у грибов этого порядка образуются две конидиальные стадии (например, макро- и микроконидии анаморфы *Fusarium*).

Гипокренийные паразитируют на растениях, грибах и членостопных, встречаются как сапротрофы в почве, на древесине, растительных остатках. Сапротрофы из этого порядка чаще всего обитают на древесине, коре, отмерших ветвях (виды из родов *Nectria*, *Hypocrea*, *Podocrea* и др.), а также в почве. Некоторые представители этого порядка — копротрофы. Многие гипокренийные паразитируют на миксосмитах, грибах и лишайниках. Паразиты растений развиваются на морских водорослях, мхах, папоротниках, однако большинство их поражает цветковые растения. Это виды рода *Nectria*, вызывающие серьезные болезни деревьев, виды родов *Gibberella*, *Epichloe* и *Claviceps*, часто паразитирующие на злаках, и др. Некоторые представители порядка, например виды рода *Cordyceps*, паразитируют на членестоногих, преимущественно насекомых.
Гипокреиные можно найти во всех зонах земного шара, многие из них распространены в умеренной зоне, однако наиболее разнообразно они представлены в тропиках.

Порядок объединяет четыре семейства.

- У представителей семейства нектриевые (Nectriaceae) перитиции образуются свободно на субстрате или в базальных стромах. У видов рода Nectria перитиции образуются поодиночке или группами на субстрате или на маленьких подушкообразных стромах. Самый обычный вид этого рода — N. cinnabarina, встречающийся повсеместно на отмерших ветвях кустарников и деревьев, преимущественно лиственных. Обычно он обитает как сапротроф, однако может развиваться и как раневой паразит.

Мицелий гриба развивается под корой ветвей. Весной и летом на нем образуется анаморфа — Tubercularia vulgaris. Конидиальные стромы имеют вид маленьких оранжево-розовых подушечек (рис. 248, A), на которых располагается слой простых или слабоветвящихся конидиеносцев с конидиями. Конидии гриба очень эффективно распространяются каплями дождя. Конидиальное спороношение у N. cinnabarina более обильно, чем сумчатое. Во время периода вегетации гриб размножается конидиями, а в районах с мягкой зимой конидии обычно образуются весь год.

Темно-красные перитиции гриба образуются в конце лета или осенью на тех же стромах или рядом с ними. Они закладываются по краям конидиальной стромы, у ее основания, и образуют большие группы (до 30 перитиций). С развитием перитиций вид стром меняется: они приобретают темно-красную окраску и зернистый вид (рис. 248, A). Аскоспоры чаще освобождаются весной.

N. cinnabarina способна поражать деревья, вызывая у старых экземпляров гибель отдельных ветвей, а у молодых сеянцев — полную гибель. Заращение обычно происходит через раны различного происхождения и морозобоины.

Из паразитов, относящихся к этому роду, наибольшее значение имеет Nectria galligena, распространенная в Европе и Северной Америке и вызывающая так называемый европейский, или обыкновенный, рак яблони. Заболевание наблюдается в районах с сильным увлажнением. Европейский рак кроме яблони поражает грушу, вишню и черешню, а также бук, дуб, клен и др. Возбудитель вызывает некроз коры, сопровождающийся появлением наплывов и глубоких ран. Гриб поражает стволы и ветви деревьев, иногда и плоды.

На мертвой коре и поверхности ран развивается анаморфа — конидии на мицелии или на небольших стромах кремово-белого цвета. Перитиции паразита формируются на пораженной коре и по краям ран. В отличие от N. cinnabarina у этого вида нет стром, и его темно-красные перитиции располагаются одиночно или группами непосредственно на субстрате. Гриб зимует в пораженной коре и древесине в виде мицелия, перитицев или аскоспор. Развитие паразита благоприятствует мягкий климат — продолжительное теплое лето и мягкая зима с достаточным количеством осадков.

Для другого важного рода из семейства нектриевых — Gibberella — характерны мягкие кожистые перитиции черного или черно-коричневого цвета. Если их рассматривать под микроскопом в лактофеноле, они имеют синюю окраску. Перитиции у представителей этого рода образуются непосредственно на субстрате или стромах темно-синего цвета.
Широко распространенный вид этого рода *G. fujikuroi* встречается во влажных теплых районах умеренной зоны, тропиках и субтропиках. Его можно обнаружить в окультуренных и неокультуренных почвах и на растениях из большого числа семейств, у которых он поражает корни, стебли, семена. Этот вид распространён преимущественно в конидиальной стадии — *Fusarium moniliforme* с очень обильными микроконидиями, образующими порошковидный налет, и небольшим количеством макроконидий изогнутой веретеновидной формы с тремя—шестью перегородками. Перитеции гриба развиваются только на отмерших частях растений.

Особенно часто *G. fujikuroi* вызывает заболевания злаков — риса, сахарного тростника, кукурузы, сорго. У больных растений вытягиваются междоузия, листва становятся более узкими и длинными, а при сильном поражении растения становятся хлоротичными и гибнут. Эти симптомы вызывают ростовые вещества — гибереллины, которые гриб образует в тканях пораженных растений. Гибереллины были выделены из культуры гриба. Они обнаружены также у многих высших растений. Эти соединения стимулируют рост и цветение растений, образование α-амилазы при прорастании зерна ячменя и приготовлении солода, развитие плодов, не содержащих семян. Другой вид этого рода — *Gibberella zeae* — распространен как паразит на злаках по всему земному шару. Он развивается на пшенице, ячмене, ржи, овсе, в тропиках и субтропиках — на рисе и кукурузе, поражая всходы, корни, стебли и соцветия взрослых растений. Во влажных районах гриб вызывает заболевание пшеницы, приводящее к снижению урожая, ухудшению качества зерна. Пораженное зерно содержит микотоксин из группы трихокотенов и при употреблении его в пищу вызывает отравление (так называемый «пьяный хлеб»). На колосьях и соломине образуется розовый налет конидий анаморфы этого вида — *Fusarium graminearum*. В конце периода вегетации и после уборки в снопах на пораженной соломе группами развиваются черно-синие перитеции гриба (рис. 249).

У представителей семейства гипокрений (Hypocreaceae) перитеции образуются в хорошо развитых стromaх. Виды рода *Hypocrea* — сапротрофы на древесине, растительных остатках, мхах, старых плодовых телах трубовиков. Стромы у них распространенные, подушковидные или подушкообразные, мясистой или восковатой консистенции, обычно светлоокрашенные (беловатые, светло-желтые, зеленоватые) или более темные. Перитеции располагаются в один ряд по периферии стromы и полностью в нее погружены (рис. 250). У некоторых видов анаморфа в цикле развития значительно преобладает над телеоморфой, которая развивается лишь спорадически.

Семейство спорыньевые, или клавицепсовые (Clavicipitaceae), характеризуется хорошо развитыми стromами разнообразной формы: от распростертых по субстрату до булавовидных или головчатых. Stromы развиваются на субстрате — пораженных органах растения-хозяина, как, например, у Epichloe typhina (см. рис. 251), или из склероциев (виды рода Claviceps, см. рис. 252), или из мумифицированных тканей хозяина, пронизанных гифами гриба (виды рода Cordyceps, см. рис. 253). Лишь у немногих представителей этого семейства стroma развита слабо и представляет рыхлый субстрат или вообще отсутствует.

Перитеции спорыньевых имеют типичное строение. На ранних стадиях развития в них присутствуют настоящие паразиты, которые обычно быстро лизируются. Сумки очень длинные, цилиндрические, с утолщенной на вершине стенкой. Аскоспоры всегда нитевидные, обычно с многочисленными поперечными перегородками. У многих представителей семейства после освобождения из сумки аскоспоры распадаются на отдельные клетки, каждая из которых способна к прорастанию. К моменту созревания аскоспор в верхней утолщенной части сумки образуется пора, через которую они выходят наружу. Аскоспоры расположены в сумке пучком и выбрасываются из нее поочередно.

В цикле развития многих спорыньевых большую роль играют анаморфы.

Большинство представителей семейства — паразиты на цветковых растениях, членостоногих и грибах. Лишь очень немногие из них обитают как сапротрофы на почве или древесине. Большую группу составляют паразиты растений, встречающиеся исключительно на однодольных из семейств злаковых и осоковых. Наиболее распространенные из них — Claviceps purpurea, развивающийся на многочисленных видах злаков, и Epichloe typhina — возбудитель человеческой болезни многолетних злаков. Для этой группы видов характерна строгая орга-
нотропная специализация. Большинство из них развивается на строго ограниченных частях растений — побегах с зачатками соцветий, в завязях и т.д.

У E. typhina распространенные стромы расположены на побегах, окружающая их в виде чехла. На его поверхности образуются мелкие одноклеточные конидии. В июле—августе конидиальная стroma утолщается и приобретает оранжевую окраску; в ней развиваются многочисленные перитечии (рис. 251, A, B). Мицелий паразита распространяется в растении диффузно, по межклетникам, а в зоне соцветия его гифы внедряются в клетки сосудистых пучков. Перитечии развиваются только на побегах, содержащих соцветия.

Этот вид встречается на многочисленных видах многолетних злаков, особенно часто на полевице, еже, а также на овсянице, мятликах, вызывая у них так называемую «чехловидную болезнь», приносящую серьезный ущерб при культуре трав на семена.

Представители спорыньевых (виды родов Epichloë и Balansia) и близкого к ним анаморфного рода Neotyphodium могут обитать как эндофиты в тканях злаков и осок. Большинство из них системно распространяется в надземных частях растений и переносится с семенами. Эндофиты образуют биологически активные вещества (алкалоиды) и могут защищать зараженные растения от поедания травоядными животными и повреждения насекомыми и инфекции другими грибами. Обычно эндофиты стимулируют также рост инфицированных ими растений. Однако известны случаи подавления роста растений, их цветения и образования семян некоторыми эндофитами. Они могут также вызывать токсикозы травоядных животных при поедании зараженных растений.

Виды рода Claviceps образуют темные твердые склероции различной формы и размеров в завязи растения-хозяина. Из склероциев после перезимовки развиваются головчатые стромы желтого или красноватого цвета с погруженными в них перитечиями (рис. 252, B, V). Большинство представителей этого рода развивается на злаках. Наиболее распространенный и важный в хозяйственноном отношении вид C. purpurea. Он паразитирует на многочисленных видах злаков, как культурных, так и дикорастущих. Особенно часто встречается на ржи, тимофеевке, пыре, костре, поражает также пшеницу, ячмень, райграс, клевер и другие травы.

На пораженных спорыньей соцветиях хорошо заметны склероции, имеющие вид черно-фиолетовых рожков (рис. 252, A). Они представляют зимующую стадию гриба. Склероции зимуют в почве, куда они попадают при уборке урожая из культурных или дикорастущих злаков, встречающихся по краям полей, межам. Весной склероции

Рис. 251. Epichloë typhina.
A — внешний вид растения, пораженного «чехловидной болезнью»;
B — разрез стромы с перитечиями; V — сумка с аскоспорами;
Г — аскоспора
прорастают красноватыми головчатыми стroma ми с перитециями. Из каждого склероция обычно развивается несколько стром (рис. 252, Б). Их число и размеры зависят от размеров склероций.

Аскоспоры C. purpurea заражают злаки во время цветения. После выбрасывания из перитеций они разносятся ветром и попадают на растения. Если аскоспора попадает на цветковые чешуи, ее ростковая трубка не способна через них проникнуть и заражение не происходит. Если же цветковые чешуи открыты, аскоспоры попадают на рыльце пестика, прорастают и их ростковые трубки достигают завязи. Через несколько дней после заражения на растениях развивается анаморфа гриба — Sphacelia (рис. 252, Е). В завязи образуется плотная масса мицелия, покрытая слоем конидиеносцев, продуцирующих многочисленные мелкие конидии, погруженные в капли «медвяной росы». Медвяная роса играет существенную роль в распространении конидий: она имеет неприятный запах и содержит большое количество сахаров; привлеченные ею насекомые переносят конидии на здоровые растения. Конидии могут распространяться и каплями
Отдел аскомицеты, или сумчатые грибы (Ascomycota)

dождя, при трении колосьев друг о друга под действием ветра, а после высыхания капель «медвяной росы» они могут переноситься ветром. Склероции развиваются медленно. Сначала они желтовато-коричневые, затем приобретают серо-фиолетовую или черно-фиолетовую окраску. Полное их созревание происходит ко времени спелости зерна. В пораженных цветках ткани завязи полностью разрушаются и замещаются мицелием гриба.

Развиваясь на культурных злаках, спорынья лишь в незначительной степени снижает их урожай. Ее значение в первую очередь определяется образованием в склероциях алкалоидов. **Claviceps purpurea** — один из давно известных токсичных грибов. В современную эпоху токсикоз у людей, вызываемый алкалоидами спорыньи, попавшими в зерно, а затем в муку и продукты из нее, наблюдается очень редко. Однако в прошлом этот токсикоз был широко распространен в Европе и в периоды сильных вспышек уносил большое число жертв.

Клавицепстоксиоз, или эрготизм, обусловлен способностью алкалоидов спорыньи вызывать сокращение гладкой мускулатуры и сосудов и их действием на нервную систему. Алкалоиды спорыньи применяются в современной медицине для лечения сердечно-сосудистых и нервных заболеваний. В официальную медицину спорынья была введена в начале XIX в., тогда же было начато изучение алкалоидов, содержащихся в склероциях гриба. Однако еще задолго до этого склероции применяли в акушерстве.

Склероции спорыньи содержат две группы алкалоидов: производные лизергиновой или изолизергиновой кислот и пептидные алкалоиды. В промышленном производстве алкалоиды получают путем их биосинтеза в сапрофагной культуре спорыньи; возможно и получение их из склероциев, специально выращенных на растениях.

Многие виды спорыньевых паразитируют на членистоногих (насекомых и пауках). Таково большинство видов рода *Cordyceps*. Эти виды паразитируют также на грибах, но значительно реже. Их стромы развиваются из плотной массы мицелия, заполняющей мумифицированное тело хозяина — pseudosclerocium. Размеры и форма стром разнообразны (рис. 253). Один из наиболее распространенных видов — *C. militaris*, развивающийся на личинках и куколках бабочек, зимующих в почве. Он часто встречается на куколках коконопрядов. Аскоспоры гриба, попадая на покровы восприимчивой куколки, прорастают, и их ростковые трубки внедряются в нее через дыхальца или непосредственно через покровы, гидролизуя хитин. Гифы гриба развиваются в теле насекомого, образуя цилиндрические гифенчатые тела, постепенно заполняющие

Рис. 253. *Cordyceps*: псевдосклероциум в теле личинки бабочки, проросший стromами
все тело хозяина. После гибели куколки и поглощения грибом всего ее содержимого в сохранившихся покровах образуется твердая гифенная масса певдосклероции. Осенью певдосклероции прорастают оранжево-желтыми или оранжево-красными булавовидно-головчатыми стромами, которые поднимаются над поверхностью почвы.

Класс леоциомицеты
(Leotiomycetes)

Плодовые тела у леоциомицетов — большой частью типичные апотеции, образующиеся на мицелии в стромах различного строения, консистенции и окраски (черные склероциальные — у представителей порядка ритисмовые — Rhytismatales, масистые желтоватые или оранжевые — в порядке Cyttariales) или из склероциев. У некоторых представителей порядка леоциевые (Leotiales) известны нетипичные апотеции — булавовидные, в виде шляпки с ножкой или другой формы (см. рис. 257). Для класса характерны сумки, вскрывающиеся при освобождении аскоспор трещиной или порой (иноперкулятные), хорошо отличающиеся от вскрывающихся крышек (оперкулятных) сумок грибов из класса пезизомицеты (Pezizomycetes) (рис. 254).

Представители класса обитают как сапrophyты на различных растительных субстратах, принимая активное участие в разложении растительного опада и отмерших частей растений. Среди них известны и многочисленные паразиты растений, вызывающие болезни вегетирующих растений, гнили плодов и овощей при хранении.

Класс леоциомицеты объединяет три порядка: леоциевые, ритисмовые и циттариеевые.

ПОРЯДОК ЛЕОЦИЕВЫЕ
(LEOTIALES)

Для порядка леоциевые, самого крупного в классе леоциомицеты, характерны типичные апотеции небольших размеров: от долей миллиметра до 2—3 см. Они могут быть сидячими, без ножки, или иметь хорошо развитую, часто длинную ножку. У некоторых леоциевых анатомическое строение апотеция упрощено: отсутствует мякоть, или медулярный экскипул, и они состоят только из внешнего экскипула, субгимены и гимена. Лишь у немногих представителей группы апотеции видоизменены и имеют булавовидную, шпательвидную или иную нетипичную для апотеций форму (см. рис. 257).

Половой процесс у многих леоциевых — сперматизация: оплодотворение аскогона мелкими специализированными клетками-сpermациами. Апотеции развиваются на мицелии на растительных остатках или на почве, крайне редко —
на живых растениях, а у представителей семейства склеротиниевые (Sclerotiniaceae) из склероциев. Аскоспоры леоциевых часто многоклеточные, асимметричные, у некоторых окрашенные.

В цикле развития многих леоциевых большое значение имеет анаморфная стадия. Во многих случаях увеличение роли анаморфы наблюдается у видов, паразитирующих на растениях; у сапротрофных видов анаморфы встречаются редко.

Леоциевые представлены как сапротрофами, так и паразитами растений. Сапротрофы обитают на различных растительных субстратах, вызывая разложение опада в лесах, отмерших стеблей и листьев травянистых и других растительных остатков. Немногие виды развиваются на почве (например, семейство геоглоссовые — Geoglossaceae).

Многие леоциевые — паразиты растений, вызывающие поражения различных частей вегетирующих растений и гнили овощей при хранении. Среди них есть виды как с широким кругом растений-хозяев из разных семейств (например, Sclerotinia sclerotiorum, Botryotinia fuckeliana), так и узкоспециализированные, поражающие один или несколько близких видов (например, возбудители рака листенницы — Lachnellula willkommii, антракноза смородины — Pseudopeziza ribis). Большинство склеротиниевых являются некротрофными паразитами, сначала убивающими ткани хозяина, а затем питающимися мертвым органическим веществом.

Один из наиболее распространенных видов паразитических леоциев — Monilinia fructigena. Для него и других видов этого рода характерно образование полных склероциев в плодах растений из семейств розоцветные (яблоня, груша, вишня и др.) и вересковые (брусника, багульник). В цикле их развития всегда наблюдается анаморфа — подушечки коротких конидиеносцев, на которых образуются длинные, часто ветвящиеся цепочки конидий (рис. 255).

M. fructigena вызывает плодовую гниль яблока и груши. Гриб заражает плоды только с поврежденной кожей, поэтому инфекция часто переносится жуком-казаркой. Питаешься тканями пораженных плодов, жук во время яйцекладки переносит в здоровый плод конидии гриба на лапках, брюшке и в экскрементах.

Рис. 255. Monilinia fructigena.
A — пораженный плод яблони с конидиальным спороношением гриба; B — анаморфа — Monilia; V — отдельные конидиеносцы с конидиями.
Конидии гриба прорастают одновременно с развитием личинок жука, которые питаются зараженной мякотью плода. На пораженных плодах образуются пятна отмершей ткани, а на них концентрическими кольцами развиваются желтоватые подушечки конидиального спороношения гриба (рис. 255, A). Такие плоды опадают с дерева и служат источником инфекции. В зараженных плодах, оставшихся на дереве, формируются полые шаровидные склероции, снаружи и внутри покрытые черной корой. Они располагаются под эпидермисом и сохраняют форму плодов. Склероции зимуют, а весной на них снова развивается конидиальное спороношение гриба. Апотеции у этого вида образуются очень редко.

Центральный вид рода Sclerotinia из порядка леоциевые — S. sclerotiorum, вызывающий белую гниль различных растений. Он поражает как вегетирующие растения, так и овощи при хранении. Вид развивается на стеблях и соцветиях подсолнечника, на плодах кабачков, огурцов и многих других растений, а также в хранилищах на моркови, свекле и других овощах. На поверхности пораженных частей растения он образует войлочный или пушистый белый мицелий, на котором в большом количестве формируются шаровидные или продолговатые черные склероции (рис. 256). Если склероции развиваются внутри растения, они приобретают форму тех полостей, в которых образовались. Так, в корзинках подсолнечника образуются крупные сетчатые склероции, заполняющие всю корзинку. Склероции имеют белую или сероватую мякоть и черную кору (рис. 256, B). Анаморфа у S. sclerotiorum, как и у других видов этого рода, отсутствует. Апотеции образуются из склероциев весной. Пораженная ткань растения под действием ферментов гриба размягчается и разрушается.

Botryotinia fuckeliana вызывает серую гниль как вегетирующих растений, так и овощей и плодов при хранении. Она часто наблюдается на землянике, малине, пионах, винограде и многих других растениях. Вид встречается в природе преимущественно в стадии анаморфы — Botrytis cinerea, образующей на пораженных частях растений пушистый серый налет. На мицелии этого вида формируются также склероции типичного строения.

Сапотрофные леоциевые обычно можно обнаружить на древесине, растительных остатках, реже — на почве в лесах. Так, на поваленных стволах деревьев и крупных ветвях часто развиваются хорошо заметные многочисленные апотеции Biporella citrina. На почве в хвойных лесах обычно встречаются довольно крупные штателевидные апотеции Spathularia spathulata или образующие круги («ведьмки кольца») апотеции Cudonia circinans, состоящие из тонкой ножки и волнистой шляпки, на поверхности которой располагается гимений (рис. 257).
ПОРЯДОК РИТИСМОВЫЕ
(RHYTISMATALES)

Представители ритисмовых образуют в стromaх апотеции, долго прикрытые сплетением мицеля. Они вскрываются к моменту созревания сумок в результате разрыва прикрывающего их мицелиального сплетения лопастями или щелью. Форма апотеций у этой группы округлая или удлиненная, линейная, причем удлиненные апотеции внешне похожи на гистеротеции локулоаскомицетов, развивающиеся по асколокулярному типу. Апотеции и стромы черные. В них расположен гимений, состоящий из сумок и парафиз. Аскоспоры имеют разнообразную форму — от эллипсоидных до нитевидных; они бесцветные или коричневые.

К порядку ритисмовые относятся как паразиты высших растений, так и сапротрофы на ветвях деревьев и кустарников и на растительном опаде.

Широко распространенный представитель порядка ритисмовые — Rhytisma acerinum, вызывающий черную пятнистость листьев различных видов клена. На листьях летом образуются черные блестящие пятна, представляющие склероцальные стромы гриба (рис. 258, A). При сильном поражении листья преждевременно опадают. Развитие апотеций начинается в строме после опадения листьев, и к весне в каждой из них появляется большое число радиально расположенных линейных, часто слегка извитых апотеций, вскрывающихся щелью (рис. 258, B). Аскоспоры у этого вида нитевидные, прямые или слегка изогнутые (рис. 258, B). Они заражают молодые листья кленов в конце весны.

Большой вред лесному хозяйству приносят виды грибов из рода Lophodermium, прежде всего L. pinastri, вызывающий в лесных питомниках массовую гибель сейцев сосны. Гриб поражает хвою сосны, вызывая ее побурение и опадение. Летом на пожелтевшей зараженной хвоя образуются продольговатые черные апотеции гриба, при созревании раскрывающиеся продольной щелью (рис. 258, Г, D).
Зарожение хвои аскоспорами происходит в течение всего периода вегетации, но особенно сильно в конце лета и осенью, когда наблюдается массовое их созревание и выбрасывание. Болезнь, называемая лесоводами «шютте», особенно опасна для молодых сосен (до пятилетнего возраста), которые очень часто погибают.

Класс пезизомицеты
(Pezizomycetes)

Для пезизомицетов характерны оперкулятные сумки, открывающиеся на вершине крышечкой (см. рис. 254, Б). Их плодовые тела — апотеции типичного строения — от очень мелких, не превышающих 1 мм в диаметре, до крупных, размером до 10 см. Реже образуются гельвелоидные и морхелоидные апотеции, несущие гимений на лопастной или складчатой шляпке, расположенной на стерильной ножке (см. рис. 261). Такие апотеции достигают в высоту 10—12 см, а иногда и более. Наконец, у ряда представителей этого класса (например, из семейства трюфельные — Tuberaceae) образуются замкнутые в зрелом состоянии подземные плодовые тела, обычно клубневидной формы (см. рис. 262).

Апотеции пезизомицетов имеют мясистую, реже студенистую или кожистую консистенцию. Их окраска разнообразна: от яркой, оранжевой или красной
Отдел аскомицеты, или сумчатые грибы (Ascomycota)

у одних представителей класса до коричневой или черной — у других. Встречаются виды и со светлоокрашенными апоптегиями.

В гимении всегда присутствуют парафизы. Обычно по длине они равны сумкам, но у некоторых выступают за пределы гимения. Концы парафиз часто расширенны и окрашены, у некоторых видов они ветвятся. Сумки у представителей семейства аскоболовые (Ascobolaceae) при созревании удлиняются и выступают над гимением (см. рис. 260).

У большинства пезизомицетов известны только телеморфы, у некоторых представителей этого класса известны и анаморфы, конидии которых образуются по типу ботриобластоспор (например, анаморфа Chromelosporium у Peziza osterocdera).

Пезизомицеты, как правило, сапротрофы, лишь немногие могут паразитировать на осьблеченных растениях (например, виды из рода Pithya — паразиты на хвойных; Rhizina undulata, поражающая обожженные корни хвойных на кострищах или местах лесных пожаров). Среди сапротрофных представителей этого класса есть гумусовые и подстильные сапротрофы, многочисленные ксильтрофы. Среди них много также копротрофов и карбофилов. Для развития этой группы благоприятна повышенная влажность, поэтому многие из них развиваются весной или осенью.

Класс включает один порядок — пезизовые.

ПОРЯДОК ПЕЗИЗОВЫЕ
(PEZIZALES)

В современных системах аскомицетов порядок объединяет более десяти семейств.

Для рода Peziza характерны блюдцевидные или чашевидные апоптегии размером 1—5 см (иногда более крупные), бурого или коричневого цвета, иногда светлоокрашенные, снаружи гладкие или мунистые. Представители этого рода встречаются преимущественно в лесах на влажной почве или древесине. В этом роде есть также карбофилы. Весной и летом в лесах, особенно на старых кострищах, нередко можно встретить крупные фиолетово-коричневые апоптегии P. violacea. Распространен также вид — P. badia (рис. 259, A). Он встречается с лета до осени на влажной почве в лесах, вдоль дорог, на опушках. Крупные каштаново-коричневые апоптегии P. badia собраны большими группами.

У видов другого рода пезизовых — Aleuria (рис. 259, B) — апоптегии также типичной блюдцевидной формы, но имеют яркую оранжевую или красно-оранжевую окраску, обусловленную присутствием пигментов из группы каротиноидов. Крупные оранжевые апоптегии A. aurantia достигают в размерах 5—6 см. Обычно они развиваются большими группами на сырой земле в смешанных и лиственных лесах, на влажных лугах, в садах, нередко у дорог, обычно на местах, хорошо освещенных солнцем. Этот вид встречается с начала лета до осени.

Хорошо изученная и интересная в экологическом отношении группа пезизовых — семейство аскоболовые (Ascobolaceae). Для него характерны мелкие (за некоторыми исключениями) апоптегии, обычно не более нескольких миллиметров
Рис. 259. Апотеции Peziza badia (А) и Aleuria aurantia (Б)

в диаметре, с хорошо развитым субгимением. Зрелые сумки у этой группы грибов удлиняются и выступают над поверхностью гимения (рис. 260). Аскоспоры бесцветные или окрашенные, часто пурпурные.

Аскоболовые хорошо растут в культуре, образуя апотеции на питательных средах, поэтому их широко используют как объекты в генетических и биохимических исследованиях. Хорошо изучен цикл их развития.

Половой процесс у представителей этого семейства может происходить по-разному даже у видов одного рода. Одна из его форм исследована у A. magnificus — вида с крупными, до 1,5 см в диаметре, апотециями. В культуре этого гриба через 4—6 дней после совместного посева штаммов разных половозных знаков на гифах образуются короткие веточки. Одна из них расположена вертикально и функционирует как антеридий. Веточка на мицелии противоположного пола растет по направлению к антеридию, спирально закручиваясь вокруг него. Ядра из антеридия по трихогине переходят в аскогон, и из него развиваются дикариотические аскогенные гифы. Этот вид, как и многие другие аскоболовые, гетероталичен. Аскогоньи и антеридии образуются только при совместном росте мицелиев разного знака. При этом на каждом из них формируются гаметангии обоих типов, но они самостерильны.

У другого гетероталичного вида из этого же рода — A. stercorarius — происходит сперматизация. Аскогон имеет вид вздутой изогнутой ветви мицелия с короткой трихогиной. На мицелии противоположного знака образуются
цепочки артроспор, которые функционируют как спермации. Артроспоры могут переноситься мухами и клещами. Рост трихогинны происходит хемотропически по направлению к спермациям, причем этот эффект наблюдается на расстоянии до 100 мкм между спермацией и кончиком трихогины. Если спермации перемещать в поле микроскопа, то трихогина меняет направление своего роста.

Большинство представителей семейства аскобольовые — копротрофы. Они развиваются на экскрементах преимущественно травоядных животных, где и образуют апотеции. После освобождения из сумок их аскоспоры попадают на траву, которая поедается животными. Таким образом аскоспоры копротрофов попадают в пищеварительный тракт животных, где подвергаются действию повышенной температуры и гидролитических ферментов, а оттуда с экскрементами выводятся наружу. Сохранять жизнеспособность в таких условиях могут споры только немногих приспособленных к этому грибов, которые и составляют эко-
лого-трофическую группу копротрофов.

Копротрофные грибы, как правило, имеют приспособления, повышающие вероятность попадания их спор на растения. Это достигается тремя основными путями, свойственными копротрофам из разных таксономических групп: активным выбрасыванием спор на такие расстояния, что они могут попасть на траву без участия ветра; фототропическими реакциями репродуктивных органов; образованием на спорах слизистой обвертки, при помощи которой они приклеиваются к траве.

У аскоболовых, как и у других копротрофных аскомицетов (например, сордариевых), можно наблюдать все эти адаптации, выраженные в разной мере у разных видов. У них обнаружена фототропическая реакция сумок, выбрасывающих аскоспоры в направлении источника света. Аскоспоры аскоболовых выбрасываются обычно на большое расстояние (до 25—60 см) и часто окружены слизью. Они хорошо переносят повышенные температуры, а кратковременное прогревание стимулирует их прорастание.

К пезизовым относится группа видов с нетипичными, так называемыми гельвелоидными и морхелоидными апотециями, состоящими из стерильной ножки и лопастной или складчатой шляпки с приросшим к ножке либо свободным краем (рис. 256). Эти виды объединены в семейства гельвелоидные (Helvellaceae) и морхелоидные (Morchellaceae). К этим семействам принадлежат хорошо знакомые всем морчки и строчки.

У видов рода морчек — Morchella (рис. 261, A) апотеции крупные, не менее 5—10 см высотой, мясистые, четко разграниченны на ножку и шляпку. Шляпка обычно правильных очертаний — яйцевидная, коническая, с сетью складок, как продольных, так и поперечных, часто косых. Складки образуют ячейки, выстланые гименем, а разделяющие ячейки ребра складок остаются стерильными. Края шляпки срастаются с ножкой, внутри апотеций полый.

В противоположность большинству крупных пезизовых, например видам Peziza, у морчек при освобождении аскоспор не наблюдается «взрыва», когда сразу много сумок в гимене выстреливают аскоспоры. Выбросывание аскоспор у них происходит постепенно и регулируется интенсивностью солнечной радиации.
Наиболее распространены два вида сморчков — *M. esculenta* и *M. conica*, апотеции которых обильно развиваются весной, в апреле—мае. У первого из них шляпка яйцевидная или яйцевидно-округлая, с округлыми ячейками, окраска ее от желто-бурои до буровой. Обычно он встречается в лесах на более или менее плодородной почве под лиственными деревьями. *M. conica* имеет удлиненно-коническую шляпку с ребристо-ячеистой поверхностью и вытянутыми правильными прямоугольными ячейками. Окраска шляпки желто-бурая, коричнево-черно-бурая, иногда она бывает серовато-черных тонов. Этот вид появляется в апреле на только что прогретой земле в смешанных и хвойных лесах, на опушках и полянах, часто на местах старых кострищ.

Оба вида сморчков образуют эктрофную микоризу с различными деревьями. Все сморчки съедобны. Особенно ценно то, что они плодоносят весной, когда нет других съедобных грибов, относящихся к базидиомицетам.

Для рода строчок (*Gyromitra*) характерны крупные апотеции, состоящие из шляпки и ножки. Шляпка яйцевидная или бесформенная, с неупорядоченной складчатостью, бурая или темно-бурая, реже более светлая. Ножка толстая, часто бороздчатая, белая или светлоокрашенная. Виды этого рода — сапротрофы на почве, обильно образующие апотеции весной.

Наиболее распространенный вид этого рода — строчок обыкновенный (*G. esculenta*, рис. 261, Б), часто в массе развивается весной на почве в лесах, особенно сосновых. Этот гриб считаются условно съедобным. При употреблении в пищу грибы рекомендуют прокипятить, а воду слить. Однако в апотециях строчков обнаружен токсин гиромитрин, удаляющийся из них только при высушивании. По характеру воздействия на организм человека гиромитрин напоминает токсин бледной поганки (*Amanita phalloides*), хотя отличается от него по структуре. Во многих странах Западной и Центральной Европы строчки считаются смертельно ядовитыми грибами. Содержание токсина в строчках, по-видимому, зависит от условий их развития или биохимического варианта вида. Гиромитрин найден также у грибов из рода лопастник — *Helvella*, в апотециях сморчков этот токсин не обнаружен.

Среди пезизовых есть большая группа грибов, образующих подземные плодовые тела, в зрелом состоянии замкнутые. Ранее такие виды объединяли в отдельный порядок — трюфелевые (*Tuberales*). В современной системе аскомицетов они включены в порядок пезизовые, где входят в состав нескольких семейств, в том числе в семейство трюфелевые (*Tuberaсеae*). Плодовые тела (апотеции) трюфелевых имеют клубневидную форму, их размеры варьируют от 1 до 10 см, реже более крупные. Перидий плодового тела плотный, кожистый, его поверхность гладкая или покрыта бородавками разных размеров, иногда растрескивающаяся. Мякоть внутренняя ткань плодового тела на разрезе имеет мраморный рисунок из чередующихся светлых и темных полос (рис. 262, А). Их называют соответственно внутренними и наружными венами. Сумки трюфелевых располагаются в плодовых телах в виде гименииального слоя на внутренних венах или гнездообразно. Освобождение аскоспор всегда происходит пассивно, после разрушения плодового тела или поедания его животным.
Изучение развития плодовых тел трюфелевых показало, что они закладываются в виде блюдцевидных образований, на вогнутой складчатой поверхности которых формируются зачатки гимена в виде слоя парафида. При дальнейшем развитии такое плодовое тело, находясь в почве, не может расти вширь, на поверхности его гимена образуются многочисленные складки, а затем края смываются. Складки превращаются во внутренние вены, а щели между ними — в наружные вены. Последние заполняются рыхлой тканью из переплетающихся парафида. У основания парафида позднее образуются сумки, содержащие от одной до 8 аскоспор с разнообразной орнаментацией (рис. 262, Б). Таким образом, онтогенез замкнутых плодовых тел трюфелевых указывает на их близость к пезизовым.

Трюфелевые — обязательные микоризообразователи. Наиболее ценный представитель этой группы — черный французский трюфель (Tuber melanosporum), формирующий микоризу с дубом, буком и грабом. Его плодовые тела имеют красновато-черную или буровато-черную окраску, их мякоть фиолетово-черная или буров-красная с черными и белыми жилками. Они обладают стойким, сильным ароматом и пользуются наибольшим спросом. Этот вид распространен в Южной Франции, Швейцарии и Северной Италии.

Другой вид этого рода — летний трюфель (T. aestivum) образует довольно крупные плодовые тела, покрытые бородавками черновато-бурого цвета. Мякоть плодового тела желтовато-белая, с многочисленными беловатыми или буроватыми
плотными жилками. Этот вид образует микоризу с грабом, буком, дубом, а также с другими деревьями, предпочтая, как и *T. melanosporum*, известковые почвы. Он распространен на юге Западной Европы, в Центральной Европе и на Черноморском побережье Кавказа. Гриб съедобен, но по качеству значительно уступает черному трюфелю.

В центральных областях европейской части России встречается белый трюфель (*Choiromyces meandriformis*). Его плодовые тела имеют неправильно-окружную форму и волокнистую желтоватую поверхность. Мякоть белая, с возрастом желтовато-бурая. Этот вид образует микоризу с березой, осиной, орешником и некоторыми другими деревьями. Гриб съедобен, но невысокого качества.

Класс эризиофомицеты
(*Erysiphomycetes*)

Класс включает порядок мучнисторосые, или эризиовые.

ПОРЯДОК МУЧНИСТОРОСЯНЫЕ
(*ERYSIPHALES*)

Порядок объединяет аскомицеты, образующие клейстотеции, в которых сумки расположены пучком или слоем. У некоторых представителей порядка в клейстотеции образуется одна сумка. Сумки унитуникатные, освобождение аскоспор происходит активно. Представители этого порядка — облигатные паразиты высших растений, вызывающие у них заболевания, известные под общим названием «мучнистая роса». В культуре на искусственных питательных средах эти грибы пока не получены.

Белый, позднее темнеющий мицелий мучнисторосых грибов распространяется обычно по поверхности пораженных органов растений. На нем образуются специальные структуры — апессории, от которых отходят гаустории, проникающие в клетки эпидермиса растения-хозяина. У некоторых представителей этого порядка (род *Phyllactinia*) гаустории могут внедряться в клетки мезофилла листа. У грибов из рода *Leveillula* (левейюла), распространенных в засушливых районах, мицелий развивается внутри тканей растения и частично выходит через устьица на его поверхность. Образование мицелия внутри тканей растения — приспособление гриба к обитанию в условиях низкой влажности и сильной инсоляции.

На мицелии мучнисторосых грибов через несколько дней после заражения растения развивается анаэромфная стадия — *Oidium*. Это прямые неразветвленные кониденосцы с цепочками конидий (рис. 263, A). У некоторых представителей этого порядка на кониденосцах образуются одиночные конидии (например, у видов рода *Leveillula*). В это время пораженные органы растения покрыты мучнистым налетом конидий — отсюда название заболевания «мучнистая роса». Конидии распространяются воздушными течениями и заражают новые растения. Мучнисторосые грибы — ксерофиллы. Их конидии могут развиваться и прорастать в сухую погоду при относительной влажности воздуха до 60%.
Рис. 263. Порядок Erysiphales:

A — конидиеносец; B—E — клейстотеции: B — Erysiphe, В — Sphaerotheca, Г — Microsphaera,
Д — Uncinula, E — Phyllactinia

Телеоморфа развивается у мучнисторосяных в конце периода вегетации. На
микелии гриба образуются аскогонь (без трихогин) и антеридии. Содержимое
антеридия переходит в аскогон, который делится после этого на ряд клеток, одна
из которых содержит диакарийон. Эта клетка непосредственно трансформируется
в сумку (у мучнисторосяных, образующих только одну сумку в клейстотеции),
или из нее развиваются аскогенные гифы, а на них — сумки. Одновременно
формируется периций клейстотеции. Наружный и внутренний слои периция
различаются морфологически и функционально. Наружный слой, защитный,
состоит из толстостенных гиф, внутренний, выполняющий питательную функ-
цию, — из тонкостенных, быстро лизирующихся гиф. Из наружных слоев периция
развиваются прилатки, или аппендиксы, различного строения (рис. 263, B—E).
Их форма, а также число сумок в клейстотеции, — характерные признаки родов
мучнисторосяных.

Развитие клейстотеций и сумок — длительный процесс. Сумки созревают
только осенью, а у многих мучнисторосяных — к весне. Зимующей стадией яв-
ляются клейстотеции, однако у некоторых грибов из этого порядка микелий
может сохраняться в зимующих частях растений. В регионах с теплым и мягким
климатом клейстотеции часто совсем не образуются, и развитие происходит
только в анаморфной стадии. Аскоспоры освобождаются из сумок активно.
Сумки с созревшими аскоспорами набухают и разрывают периций клейстоте-
ция. Дальнейшее увеличение тургорного давления в сумках вызывает разрыв их
стенки, и аскоспоры разбрасываются во всех направлениях.
Мучнисторосые паразитируют на растениях из разных семейств цветковых растений, однако большинство из них (около 90%) развивается на двудольных.

Среди относительно немногочисленных паразитов на однодольных наибольшее значение имеет возбудитель мучнистой росы злаков *Blumeria graminis*. Этот вид распадается на несколько специализированных форм, поражающих отдельные виды или группы близких видов, в частности пшеницу, рожь, ячмень и другие злаки. Клейстотеции *B. graminis* содержат несколько сумок и имеют придатки, напоминающие вегетативные гифы (рис. 263, Б).

Такие же придатки характерны и для другого рода мучнисторосых — *Sphaerotheca*, однако у его представителей в клейстотеции образуется только одна сумка (рис. 263, В).

Один из наиболее распространенных видов этого рода — *S. mors uvae*, возбудитель американской мучнистой росы крыжовника. Этот вид происходит из Северной Америки, откуда он был завезен во многие страны. Он поражает ягоды, стебли и листья крыжовника, а также смородины. Ягоды покрываются войлочным налетом мицелия гриба, сначала светлым, а затем темнеющим, они не созревают и теряют товарную ценность. При сильном поражении кусты гибнут.

Для представителей рода *Microsphaera* характерны жесткие экваториальные придатки, дихотомически ветвящиеся на концах (рис. 263, Г). В клейстотециях образуется по нескольку сумок. Широко распространен *M. alphioides* — возбудитель мучнистой росы дуба, сильно поражающий молодые побеги и поросль, часто вызывающая их засыхание. На листьях и стеблях молодых побегов образуется характерный белый порошистый налет конидий, а к осени развиваются клейстотеции.

Мучнисторосые грибы из рода *Uncinula* имеют слегка вдавленные снизу клейстотеции с многочисленными жесткими придатками, спирально закрученными на концах (рис. 263, Д). К этому роду относится возбудитель пепелицы винограда — *U. necator*, поражающий листья, ягоды и стебли винограда и приносящий в годы массовых вспышек болезни большие потери урожая. Как и у возбудителя мучнистой росы крыжовника, родина этого гриба — Северная Америка, откуда он был завезен в Европу в середине XIX в.

Наиболее сложно построены придатки у клейстотециев грибов из рода *Phyllostictina*. Они двух типов: на вершине клейстотеция — в виде тонких ветвистых гиф, выделяющих слизь, а по экватору — в виде шипов, расширенных у основания в виде луковицы. Стенка этой расширенной части снизу более тонкая, при высыхании сокращается, в результате чего экваториальные придатки отгибаются вниз, приподнимая клейстотеций над поверхностью субстрата (рис. 263, Е). Он легко сдувается ветром и, попав на какой-либо субстрат, приклеивается к нему слизью, выделяемой придатками на вершине клейстотеция.

Класс локулоаскомицеты
(Loculoascomycetes)

Класс объединяет аскомицеты, у которых сумки образуются в аскостромах, развивающихся по асколокулярному типу. Сумки у этой группы грибов формируются в полостях ткани стромы — локулах, появляющихся в результате сдавливания и вытеснения ткани разрастающимися сумками, а также ее частичного
разрушения. В простейшем случае каждая сумка располагается в самостоятельной локуле и отделена от других участком интерраскальной, или межсумочной, ткани. Однако чаще каждая локула содержит много сумок, а интерраскальная ткань полностью разрушается. У некоторых локулоаскомицетов между сумками имеются стерильные нитевидные элементы — певздопарафиизы.

Аскострома может содержать одну или несколько локул.

Сумки у представителей класса обычно битуннифатные, т.е. имеют двухслойную оболочку с жестким наружным и легко растягивающимся упругим внутренним слоем (см. рис. 235, В). У локулоаскомицетов наблюдается тенденция к образованию аскоспор с перегородками, иногда муральных.

Аскостромы локулоаскомицетов развиваются по четырем основным типам, которые учитываются при делении класса на порядки.

1. Тип «эльсипное»: в каждой локуле аскостромы только одна сумка.
2. Тип «певздосфериа»: аскострома содержит одну или несколько локул; сумки образуются поодинокие в ткани, составляющей центр стромы, и разделены участками интерраскальной ткани, впоследствии разрушающейся.
3. Тип «дотидей»: аскостромы содержат одну или несколько локул; сумки развиваются компактной группой из базальной части локулы, в результате чего ткань центра полностью разрушается; настоящего хаматеция нет, но могут присутствовать остатки интерраскальной ткани, напоминающие парафизы.
4. Тип «плеоспора»: аскострома содержит одну или несколько локул, в которых образуется масса вертикально расположенных гиф; сумки врастают в локулу от основания между этими гифами, в дальнейшем превращающимися в певздопарафизы.

Аскостромы с многочисленными локулами, расположенными неупорядоченно, называют мириотениями, а внешне похожие на перитенции и содержащие одну локулу с многочисленными сумками — певздотениями.

Класс локулоаскомицеты включает пять порядков. Основные из них следующие:

- порядок мириантиевые (Myriangiales) — аскостромы развиваются по типу «эльсипное»; аскостромы подушковидные, локулы в них расположены беспорядочно или в один ряд, и каждая локула содержит только одну сумку;
- порядок дотидейные (Dothideales) — аскостромы развиваются по типу «певздосфериа» либо «дотидей» и содержат одну или несколько локул;
- порядок плеоспоровы (Pleosporales) — аскостромы развиваются по типу «плеоспора» и содержат одну или несколько локул.

ПОРЯДОК МИРИАНТИЕВЫЕ (MYRIANGIALES)

У представителей этого порядка аскостромы содержат большей частью беспорядочно разбросанные локулы, в каждой из которых образуется только одна сумка. Развитие происходит по типу «эльсипное».

Мириантиевые — небольшая группа, объединяющая преимущественно тропические и субтропические виды, паразитирующие на растениях, насекомых и грибах. Один из представителей этого порядка — род эльсипное (Elsinoë), виды
которого паразитируют на растениях. *E. veneta* — возбудитель антракноза малины — развивается на листьях и побегах, образуя на них характерные серые мелкие пятна с пурпурной каймой. Гриб развивается преимущественно в анаморфной стадии, которая служит для его размножения в период вегетации растения-хозяина. Аскостромы изредка формируются на некротических пятнах, а зимует гриб обычно в виде мицелия, на котором весной образуются конидии.

ПОРЯДОК ДОТИДЕЙНЫЕ
(DOTHIDEALES)

Аскостромы развиваются по типу «псевдосфера» либо «дотида». В них образуется одна или несколько локулы, в которых сумки располагаются обычно пучком или слоем.

В цикле развития дотидейных часто есть анаморфа. У некоторых из них наблюдается плеоморфизм — образование нескольких анаморф у одного вида.

Многие представители порядка обитают сапрофитно на растительных остатках — отмерших стеблях и листьях, ветвях и т.п. Среди них есть и паразиты растений, например многие виды обширного рода *Mycosphaerella*. Темноокрашенные аскостромы у этого рода — псевдотеции — внешне напоминают перицисты (рис. 264, Б). Они развиваются под эпидермисом на пораженных частях растения-хозяина и служат для перезимовки гриба. В цикле развития видов *Mycosphaerella* всегда есть анаморфные стадии. У них образуются также микроконидии, выполняющие функции сперматиев. Сперматизацию хорошо изучена у *M. tulipiferae* — паразита тюльпанного дерева. У этого вида сперматиев образуются в пикнидах и выходят из них в слизистых шнурах. В зачаточных аскостромах закладываются типичные аскогонны с трихогиной. Сперматией переносятся на трихогину, и ядро одного из них переходит в аскогон. После дикариотизации из аскогона развиваются аскогенные гифы, а на них сумки, вратающиеся пучком от основания аскостромы в его центр. У некоторых видов рода *Mycosphaerella*

![Рис. 264. Mycosphaerella.](image)

A — лист земляники, пораженный *M. fragariae*, *B* — псевдотеций, *В* — сумка с аскоспорами
аскогенные гифы не образуются, а сумки развиваются из массы аскогенных клеток, находящихся в основании локулы.

Другой вид этого рода — *M. lini*, вызывающая серьезное заболевание льна, так называемое «пасмо». На листьях пораженных растений возникают желтовато-зеленые, позднее буреющие пятна. Листья скручиваются и опадают. Гриб поражает также стебли растений, на которых образуются бурье кольцевые пятна. На живых растениях в период вегетации развиваются пикниды анаморфы возбудителя — *Septoria*. Инфекция сохраняется на растительных остатках и передается с семенами льна. Телеоморфа этого вида образуется редко и в России не обнаружена.

ПОРЯДОК ПЛЕОСПОРОВЫЕ
(PLEOSPORALES)

Аскостромы развиваются по типу «пleursпора». У многих представителей этого порядка они имеют форму псевдотеций, обычно шаровидные или слегка приплоснутые, черного цвета. У других образуются массивные аскостромы в виде плотных групп сросшихся псевдотеций (рис. 265). В локулах плесспоровых длительно сохраняются псевдопарафизы. Аскоспоры с поперечными перегородками, иногда муральные (с поперечными и продольными перегородками).

К порядку плесспоровые принадлежат многие широко распространенные сапротрофы на растительных остатках, например виды рода *Pleospora*, развивающиеся на отмерших частях травянистых растений (рис. 265, А), и виды рода *Cucurbitaria*, образующие аскостромы на отмерших ветвях деревьев и кустарников. Часто встречается *C. caraganae*, аскостромы которой развиваются под перицим на ветвях караганы. Они имеют вид многочисленных темных псевдотеций, соединенных основаниями со стромой (рис. 265, Б). Виды указанных родов и другие сапротрофные плесспоровые активно участвуют в минерализации растительных остатков. Среди плесспоровых известны копротрофные грибы, например виды из рода *Sporormia*.

Большое значение имеют многочисленные плесспоровые — паразиты растений. К этому порядку относятся такие важные роды, как *Venturia*, *Cochliobolus*, *Pyrenophora* и др.

![Рис. 265. Порядок Pleosporales: аскостромы Pleospora (A — внешний вид) и Cucurbitaria (B — в разрезе)](image-url)
К роду *Venturia* принадлежат широко распространенные возбудители парши яблони — *V. inaequalis* и парши груши — *V. pirina*. Они поражают листья, побеги и плоды растений-хозяев (рис. 266, A). На пораженных органах образуются бархатистые оливковые пятна конидиального спороношения гриба (рис. 266, B). В течение лета образуется несколько генераций конидий, вызывающих массовое заражение растений. Псевдотеции (рис. 266, B) формируются на опавших листьях, аскоспоры в них созревают весной и вызывают первичное заражение растений. Поражение паршой снижает урожай и ухудшает качество плодов.

Широко распространены болезни растений, вызываемые грибами из рода *Cochliobolus*. Псевдотеции у видов этого рода коричневые или черные, развиваются одиночно или группами в стромах под эпидермисом растения-хозяина, при созревании их устья выступают из-под эпидермиса. В псевдотециях формируются цилиндрические или булавовидные сумки и псеудопарафизы. Аскоспоры нитевидные, с многочисленными поперечными перегородками. Телеоморфы

![Image](image_url)

Рис. 266. *Venturia inaequalis.*

A — пораженные плод и лист яблони, B — конидиальное спороношение гриба, B — псевдотеций (в разрезе)
редко встречаются в природе на растительных остатках и не играют значительной роли в распространении этих грибов. В цикле их развития большая роль принадлежит анаморфам, относящимся преимущественно к формальному роду Bipolaris, для которого характерны темноокрашенные пороконидии с несколькими поперечными перегородками.

Наиболее важные представители рода Cochliobolus — C. sativus и C. heterostrophus. C. sativus (анаморфа Bipolaris sorokiniana) вызывает корневые и стеблевые гнили, «черный зародыш» семян, темно-бурую пятнистость листьев и стеблей, хлоротичность и пустоколосость злаков и растений из многих других семейств. Вид широко распространен в разных зонах земледелия на всех контinentах; в умеренной зоне часто вызывает корневые гнили растений. Он может развиваться как сапротроф на поживных остатках и в почве. C. heterostrophus (анаморфа — Bipolaris maydis) — опасный возбудитель «южной гнили» кукурузы, поражающий листья, стебли и початки растений и распространенный во всех районах возделывания этой культуры. Расса T этого гриба вызвала в 70-х годах прошлого века крупные эпифитотии в США, Африке, Азии и на юге Европы.

Класс лябульбениомицеты (Laboulbeniomycetes)

К классу лябульбениомицеты принадлежат аскомицеты, таллом которых имеет немицелиальное, тканевое строение. Сумки с тонкими, быстро разрушающимися стенками образуются в перитечиях. Имеются типичные аскогонь с трихотиной и антеридии, в которых формируются сперматии. Половой процесс — сперматизация, после дикариотизации развиваются перитечии, содержащие сумки с быстро разрушающимися стенками. Освобождение аскоспор пассивное.

Все лябульбениомицеты — облитатные паразиты. Виды из порядка лябульбениевые (Laboulbeniales) паразитируют на членистоногих, преимущественно насекомых. Ранее к классу лябульбениомицеты относили также маленький порядок спатулоспоровые (Spathulosporales), представители которого паразитируют на талломах морских красных водорослей. Основаниями для этого служило сходство в тканевой немицелиальной структуре таллома и в половом процессе у этих групп. В последние годы по данным молекулярной филогенетики спатулоспоровые сближают с классом сордариомицеты, однако связи этого порядка с конкретными его группами остаются неясными.

Представители класса лябульбениомицеты и порядка спатулоспоровые интересны в плане происхождения аскомицет. Именно эти группы рассматривают как исходные те микологии, которые выводят аскомицеты из красных водорослей (подробнее см. в разделе «Происхождение аскомицет», с. 394).

ПОРЯДОК ЛЯБУЛЬБЕНИЕВЫЕ (LABOULBENIALES)

К этому порядку относятся высокоспециализированные облитатные паразиты на наружных хитиновых покровах насекомых и клещей. Грибы этой группы не способны расти на искусственных питательных средах.
Вегетативное тело лябублиевых представляет receptakul тканевого строения. На теле насекомого receptakuly выглядят как щетинки размером не более 1 мм. Receptakul имеет базальную клетку, которой прикрепляется к покровам насекомого, а также придатки, на которых развиваются антеридии (рис. 267, A). В антеридиях образуются мелкие неподвижные клетки — спермации. Женский половой орган лябублиевых состоит из трех клеток — вытянутой тритогины, центральной тритофорной клетки и аскогона. Тритофорная клетка и аскогон окружены одним или двумя слоями клеток. Половой процесс у этой группы — сперматизация. После диакарийотизации аскогон делится на три клетки. Двухъядерная центральная клетка образует четыре аскогенные клетки, из выростов которых развиваются сумки. Перитеции мелкие, содержат только сумки, парафизы и перифизы в них отсутствуют. Аскоспоры имеют веретеновидную или игольчатую форму и состоят из двух клеток (рис. 267, B).

Порядок объединяет около 2000 видов, распространенных во всех природных зонах земного шара, где встречаются их хозяева. Чаще всего представителей этой группы можно встретить на жесткокрылых (например, жужелицах) и двукрылых (например, на комнатной мухе). Для лябублиевых характерна узкая специализация в отношении близких видов или родов насекомых, а также так называемая позиционная специфичность — прикрепление талломов гриба к строго определенным точкам наружного скелета насекомых. Причины такой специфичности не ясны; предполагают, что она может определяться поведением насекомых.

Происхождение аскомицетов

Уже более 100 лет существуют две взаимоисключающие точки зрения на происхождение аскомицетов.

Согласно одной из них, предложенной Саксом в 1874 г., аскомицеты произошли от красных водорослей из класса Florideophyceae, а исходные группы этих грибов, наиболее близкие к красным водорослям, — порядки лябублиевые, сордариевые и пезиозовые. Вторая гипотеза была выдвинута А. де Бари и О. Брефельдом в 80-х годах XIX в. Она связывает аскомицеты с зигомицетами, а исходной для аскомицетов группой считает диподааковые (в современной системе — из подотдела сахаромицеты, или гемиаскомицеты).
Отдел аскомицеты, или сумчатые грибы (Ascomycota)

Доводы в пользу первой гипотезы основаны на сходстве в строении половых органов и характере полового процесса у красных водорослей и некоторых групп аскомицетов. Это прежде всего сходство в строении карпогона красных водорослей и аскогона аскомицетов, имеющих трихогину, и оплодотворение при помощи спермациев — неподвижных клеток, эндогенно образующихся в антеридии. Другие доводы, например предположение о гомологии аскогенных гиф аскомицетов и особенственных нитей красных водорослей, вызывали серьезные возражения. Наиболее уязвимое положение этой гипотезы — представление о том, что исходными для аскомицетов являлись такие высокоорганизованные формы, как лябльбениевые, сордариевые и пезизовые. В связи с этим все остальные более простые организованные аскомицеты можно рассматривать только как вторично упрощенные формы, а эволюцию огромной группы аскомицетов, включающей более 30 000 видов, считать идущей по пути морфологического упрощения. Более того, как переходная группа между красными водорослями и аскомицетами рассматриваются лябльбениевые — высокоспециализированные паразиты, т.е. в этом случае эволюция должна идти от более специализированных форм к менее специализированным.

Вторая гипотеза основана на сходстве полового процесса и мейоспорангия у низших аскомицетов и зигомицетов. Гемиаскомицеты (виды рода Dipodascus) рассматриваются как переходная группа, объединяющая примитивные признаки зигомицетов с признаками, типичными для аскомицетов, например прорастание зиготы без периода покоя и образование аскоспор по способу свободного образования клеток. Поскольку в основу эволюционного ряда аскомицетов помещены примитивные диподасковые, вся группа аскомицетов может рассматриваться в виде постепенно усложняющихся рядов форм. Кроме того, согласно этой гипотезе исходными для аскомицетов являются сапрофитные формы, т.е. эволюция идет в направлении от менее специализированных форм к более специализированным.

Гипотеза А. де Бари и О. Брефельда получила широкое распространение среди микологов. Ее поддерживали Э. Гойман, Л.И. Курсанов, П. Эйм, Г.У. Мартин, Д.К. Зеров и многие другие.

В результате расширение биохимических исследований грибов в 60—70-х годах прошлого века были получены данные, послужившие основанием для пересмотра «зигомицетной» гипотезы происхождения аскомицетов. Было установлено, что, по некоторым биохимическим признакам, например по составу полисахаридов клеточной стенки хитин-глюканового типа, у аскомицетов существует значительно большее сходство с хитридиомицетами, чем с зигомицетами, клеточная стенка мицелия которых содержит хитин и хитозан. Поэтому Д.Б.О. Сейвил (Savile, 1955) и С. Бартники-Гарсия (Bartnicki-Garcia, 1970) выдвинули предположение, что предками аскомицетов являются хитридиомицеты, а зигомицеты представляют боковую уклоняющуюся ветвь эволюции. Д.Б.О. Сейвил выдвинул предположение о гипотетическом общем предке аскомицетов и базидиомицетов Prototaphrina, который должен был иметь дикариотическую fazу в цикле развития и паразитировать на папоротниках.
В то же время наблюдается возрождение «флоридейной» гипотезы Сакса. Одной из причин этого было открытие Я. Кольмерером новой группы морских аскомицетов — порядка спатулоспоровые (Spathulosporales), паразитирующих на красных водорослях и имеющих большое сходство с паразитическими представителями Florideophyceae. Эта группа и стала рассматриваться сторонниками «флоридейной» гипотезы как возможное связующее звено между красными водорослями и аскомицетами. Значительные биохимические отличия аскомицетов от красных водорослей, в том числе по составу клеточных стенок, и их сходство по этим признакам с хитридиомицетами В. Демулен считал связанными с биохимической конвергентной адаптацией аскомицетов и хитридиомицетов к гетеротрофному питанию.

В известной мере компромиссная гипотеза была высказана в 1975 г. М. Шадфо. Он предположил, что аскомицеты произошли не от красных водорослей, а от общего с ними предка и в дальнейшем прошли параллельную эволюцию. Наличие такого предка, по мнению М. Шадфо, с одной стороны, легко объясняет существование общих черт у красных водорослей и аскомицетов, с другой — позволяет представить эволюцию аскомицетов в виде усложняющихся рядов форм.

Многочисленные данные молекулярной филогенетики не поддержали «флоридейную» гипотезу. Согласно им, наиболее вероятной представляется гипотеза Д.Б.О. Сейвилла о Prototaphrina как едином предке аскомицетов и базидиомицетов. Этот гипотетический предок по многим признакам близок к современным тафриновым, отнесенным на основании анализа нуклеотидных последовательностей нескольких генов к наиболее древней группе аскомицетов — архиаскомицетам, или тафриномицетам, являющейся исходной для всех аскомицетов. В соответствии со схемой М. Берби и Дж. Тейлора (см. рис. 232), представляющей время расхождения основных групп грибов по данным анализа накопленных в процессе эволюции замен нуклеотидов в гене 18S rPHK и соответствующей калибровки, расхождение аскомицетов и базидиомицетов произошло в позднем кембрии (около 500 млн лет назад), дивергенция архиаскомицетов и остальных групп приходится на силур или ранний девон (400—410 млн лет назад), а расхождение групп самих архиаскомицетов — на средний карбон—начало перми (от 320 до 280 млн лет назад) и по времени сравнимо с расхождением сахаромицетов и высших аскомицетов, а также крупных групп последних.

ОТДЕЛ БАЗИДИОМИЦЕТЫ,
ИЛИ БАЗИДИАЛЬНЫЕ ГРИБЫ
(BASIDIOMYCOTA)

Базидиомицеты, как и аскомицеты, — одна из крупнейших групп грибов, включающая около 30 000 видов, т.е. около 30% всех известных грибов. Основной отличительный признак базидиомицетов — образование мейоспор эвгено, на базициях различного строения (рис. 268).

Входящие в этот отдел грибы чрезвычайно разнообразны как по строению, так и по образу жизни. Он объединяет сапрофитные виды из разнообразных
Отдел базидиомицеты, или базидиальные грибы (Basidiomycota)

Рис. 268. Типы базидий.
A, Г — холобазидии; Б, В — фрагмобазидии; A — гомобазидия; Б—Г — гетеробазидии; Д — устойчивая базидия

ekologo-troficheskih grupp (ksiilotrofy, podstilochnye i gumovye saptrofy), bolshoe chislo parazitov, преимущeshestvenno rasteniy (naprimer, golovnevye i rjavchinnye griby), reche — zhivotnye i griby (naprimer, nekotorые tremelomietcy — Tremellomycetidae), a takzhe simbiotrofy, k chislu kotorykh prinadлежat griby, obrazuyushchee ekstotrofnye (mnozhe predstaviteli gomobazi-
diomietcet — Homobasidiomycetidae, nekotorые arikuляривые — Auricula-
tiales), redko — endotrofnye mikorizy (naprimer, rod Ceratobasidium). Likh-
nizhnorebye basidiomietcy nemnozhochny (sm. razdel «Lishajniki»).

Kletchnye stenki basidiomietcet, kak i askomietcet, hithin-glikanovogo
tipa. Osnovnye polisaharidy, vkhodящie v ich sostav, — hithin i glikany s β-1—3-
 и β-1—6-svyazami. Odnako sostavlenie hithina u basidiomietcet vyshhe, чем u as-
komietcet. V drzhepodobnoj fazhe v kletchnykh stenkah prisутstvuyut manannya.
V otlichie ot askomietcet, imeющих obuchno dvuchselnuyu kletchnuyu stenk,
u basidiomietcet ona vshehda многозоля.

Basidiomietcy otlichayutsya ot askomietcet po rjadu biokhimicheskih призна-
kov — obrazovanu ureazy, siderohromov (sideraminov), vnekletchnih polis-
saharidov, sostavu neytralnyih sacharov kletchnoy stenkii, tipu sistemy ubi-
chenonov, pozhitelnuy reaction kletchnoy stenky s diazoinem golubym i dr.
(Oberwinkler, 1978; Prillinger et al., 1990, 1991, i dr.).

Tallem basidiomietcet predstavlennim преимущeshestvenno khoroshoy razvitym
septiruyemym miцelem, xotya estь i drzhjevye forma (tak nazvaemye bazid-
dialnye drzhij iz porodkov spordiyevye — Sporidiales i filobazidiyevye —
Filobasidiales), a v cikle razvitiya nekotorых grupp (naprimer, golovnevых gri-
bov — porod ok Ustilaginales) imeется drzhjevaya fazhe. Proces pochovkaya u
basidiomietcet otlichayetsya ot nablaobajuющega y askomietcet. Efili y posled-
них материнская клетка и клетка-почка имеют обычно непрерывную стенку, у базидиомицетов происходит прорыв почки через клеточную стенку материнской клетки с образованием сложного солиствого рубца.

Строение септ у базидиомицетов разнообразно и существенно отличается от простых несольстоных септ аскомицетов, у центральной поры которых обычно присутствуют тельца Воронина (см. рис. 233). Можно выделить несколько типов септ, между которыми существуют переходные формы. Простая солиствая септа с центральной порой у базидиомицетов может уточняться к поре, например у ржавчинных грибов — Uredinales и близких к ним примитивных аурикулярных (рис. 269, А), или иметь равномерную толщину, например у головневых грибов из семейства Ustilaginaceae. У некоторых представителей порядка головневые (Ustilaginales), например у видов из родов Tilletia, Entyloma и др., септа утолщается к поре (рис. 269, Б). Такая септа с трубчатым расширением вокруг центральной поры называется дольнопоровой. Парентесмы, или поровые колпачки (мембранные структуры, происходящие из эндоплазматического ретикулума и закрывающие пору у многих базидиомицетов), в этих случаях отсутствуют. Исключение составляют только представители порядка экзобазидиевые (Exobasidiales) и некоторые близкие к ним головневые, имеющие поровые колпачки у простых пор. Для большинства базидиомицетов характерны дольнопоровые септы с парентесмами, однако строение последних варьирует в разных группах. Так, в классе базидиомицеты (Basidiomycetes) у подкласса гомобазидиомицетов (Homobasidiomycetidae — афильнофоридные, агарикоидные и гастеридные базидиомицеты) парентесмы мультимерфорированные (рис. 269, Д), у подкласса гетеробазидиомицеты (Heterobasidiomycetidae) — неперфорированные (рис. 269, Г), а у подкласса трепеломицеты (Tremellomycetidae) парентесмы распадаются на отдельные фрагменты (пузырьки) плосковидной формы (рис. 269, В). Ультраструктура пор — эволюционно консервативный признак, широко используемый в современной систематике базидиомицетов.

В цикле развития базидиомицетов, в отличие от большинства аскомицетов (исключение — порядок тафриноногие), преобладает дикариотическая фаза (рис. 270). Гаплоидный, или первичный, мицелий (иногда называемый также гомокариотическим) обычно недолговечен. У некоторых групп базидиомицетов гаплоидная фаза дрожжеподобная (например, у многих головневых грибов). Дикариотический, или вторичный, мицелий базидиомицетов развивается после первого этапа полового процесса — плазмогамии. В отличие от дикариотических аскогенов гиф аскомицетов вторичный мицелий трофически самостоятелен. Он обычно существует продолжительное время, часто многолетний и занимает нередко большие пространства (например, у многих трутовых грибов, агарикоидных базидиомицетов).

На дикариотичном мицелии базидиомицетов нередко присутствуют пряжки — клетки, находящиеся у септ мицелия (рис. 271). Они обеспечивают параллельное расположение осей деления ядер дикариона вдоль клеток и образование дочерних дикариотичных клеток. При делении клетки образуется боковое вытягивание гифы (рис. 271, А). Одно ядро переходит в него и делится одновременно с оставшимся в клетке (рис. 271, Б, Б'), а вырост загибается и снова соединяется с клеткой, в которую переходит ядро из пряжки (рис. 271, В). Одновременно
Рис. 269. Септы базидиомицетов.
A — Uredinales; B — Ustilaginales; B — трёмпломицеты; Г — гетеробазидиомицеты;
D — гомобазидиомицеты

Рис. 270. Схема цикла развития базидиомицетов:
1 — базидиоспоры; 2 — гаплонидный мицелий; 3 — дикарийотичный мицелий; 4 — плодовое тело;
5 — базидия с базидиоспорами

Рис. 271. Развитие пряжки (A—Г см. в тексте)

у пряжки формируется септа, разделяющая две дочерние двухъядерные клетки (рис. 271, Г).

Наличие или отсутствие пряжек на мицелии — стабильный признак для многих групп базидиомицетов разного ранга от порядка до вида. Так, пряжки всегда отсутствуют у представителей порядков ржавчинные (Uredinales), септобазидиальные (Septobasidiales), гименохетовые (Hymeno-
chaetales), сыроеожковые (Russulales). В то же время среди видов рода Mycena из семейства рядковые (Tricholomataceae) пряжки есть только у части видов.

Дифференцированных половых органов у большинства базидиомицетов нет (исключение — ржавчинные грибы), и половой процесс большей частью соматогамия — слияние неспециализированных
ветеративных клеток. Дикариотизация мицелия может происходить несколькими путями. Наиболее распространенный из них — образование анастомозов между двумя совместимыми гаплоидными мицелиями (см. рис. 265, а также рис. 178). Этот способ обычен для многочисленных гомобазидиомицетов — агарикоидных, афиллофоридных и гастероидных. Анастомозировать могут также гаплоидный и дикариотический мицелии. Возможен также перенос конидий на гаплоидный мицелий, наблюдающийся у некоторых агарикоидных базидиомицетов, например Coprinus lagopus. У головневых грибов (порядок Ustilaginales) происходит слияние базидиоспор (например, у видов рода Tilletia) или продуктов их покоя (например, у видов рода Ustilago).

Специализированные половые структуры образуются только у ржавчинных грибов (порядок Uredinales). На их гаплоидном мицелии на растении-хозяине формируются пикни, в которых образуются многочисленные одноклеточные мелкие споры — пикноспоры, или спермации. В пикниях присутствуют также воспринимающие гифы, выступающие из них на поверхность. Если спермации попадает на воспринимающую гифу совместимого типа спаривания, образуется дикарион и развивается дикариотический мицелий.

У базидиомицетов наблюдаются оба типа генетического контроля полового процесса — гомоталлизм (как первичный, так и вторичный) и гетероталлизм. Однако гомоталличны лишь около 10% видов из этого отдела, а более 90% гетероталличны. В отличие от аскомицетов у базидиомицетов наблюдается эволюция системы генетического контроля несовместимости в направлении повышения вероятности успешных случайных спариваний и усиления роли рекомбинации. Наряду с биполярным, или однофакторным, гетероталлизмом, определяемым одним локусом спаривания с двумя аллелями, характерным для аскомицетов и известным среди базидиомицетов у представителей ржавчинных, некоторых головневых и других групп базидиомицетов, наблюдаются более сложные системы контроля гетероталлизма. Это — биполярный (однафакторный) многоаллельный гетероталлизм, контролируемый случайно распределенными в популяции многочисленными аллелями локуса спаривания (многие представители порядков аурикуляривые — Auriculariales и тремелловые — Tremellales, а также гомобазидиомицетов), и тетраполярный (двухфакторный) многоаллельный гетероталлизм, определяемый двумя несцепленными генетическими факторами с большим числом аллелей в каждом (многочисленные гомобазидиомицеты — афиллофоридные, пырйковые и гастероидные). Тип контроля полового процесса может варьировать в пределах той или иной группы: например, среди головневых грибов и гомобазидиомицетов есть гомоталлические, биполярно гетероталличные и тетраполярно гетероталличные виды.

Базидия представляет мейоспорангий, гомологичный сумке, и в их развитии много общего. В базидии завершается половой процесс: происходят карийами — слияние ядер дикариона и мейотическое деление образовавшегося диплоидного ядра. На базидии на стеригмах формируются обычно четыре базидиоспоры, в которые и переходят гаплоидные ядра из базидии.

Развитие базидии может происходить разными путями. У большинства гетеро- и гомобазидиомицетов наиболее распространено формирование базидий из тер-
Отдел базидиомицеты, или базидиальные грибы (Basidiomycota)

Тип базидий — важный таксономический критерий в отеле базидиомицеты. Типы выделяют на основе морфологии (холобазидия и фрагмобазидия) или развития базидий (гомобазидия и гетеробазидия).

Холобазидия — одноклеточная базидия, не разделенная септами (см. рис. 268, A, Г). Фрагмобазидия разделена поперечными или вертикальными перегородками обычно на четыре клетки (см. рис. 268, Б, В).

Гетеробазидия состоит из двух частей — гипобазидии и развивающейся из нее эпизиадии, с перегородками (см. рис. 268, В, Б) или без них (см. рис. 268, Г). Гомобазидия не разделяется на гипо- и эпизиадию и всегда является холобазией (рис. 268, А).

Базидия — место кариогамии, мейоза и образования мейоспор — базидиоспор. Гомобазидия, как правило, функционально не разделена, и мейоз следует в ней за кариогамией. Однако базидия может быть разделена на пробазидию — место кариогамии и метабазидию — место мейоза. Пробазидия часто является покоящейся спорой, например у ржавчинных грибов. Она прорастает в этом случае метабазидией, в которой происходит мейоз и на которой формируются базидиоспоры.

На основании расположения веретена деления ядер по отношению к продольной оси базидии выделяют два типа холобазидий — хиастобазидии и стихобазидии. В хиастобазидиях веретена деления ядер ориентированы перпендикулярно к продольной оси, а в стихобазидиях — параллельно продольной оси базидии.
ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

Типичное число базидиоспор, формирующихся на одной базидии, — четыре, соответственно четырем гаплоидным ядрам, образующимся после мейоза в базидии. Однако наблюдаются многочисленные отклонения от типа. Так, в порядке дакримицетовые (Dacrymycetales), у некоторых представителей порядка цератобазидиевые (Ceratobasidiales) и у некоторых гомобазидиомицетов (например, у культивируемого шампиньона — Agaricus bisporus) на базидии образуются только две базидиоспоры. В других группах базидиомицетов на базидии образуется более четырех базидиоспор (6, 8 или больше). Это происходит в тех случаях, когда после мейоза в базидии происходят дополнительные митотические деления ядра и образуется больше четырех гаплоидных ядер (например, головневые грибы из рода Tilletia). Гаплоидные ядра в базидии могут делиться и после разделения фрагмобазидии на клетки. У головневых грибов из семейства устилаговые (Ustilaginaeaceae) на промицелии образуются базидиоспоры, называемые здесь споридиями; их число не фиксировано вследствие деления ядер в промицелии и образования последовательных споридий.

Базидиоспоры обычно одноклеточные и могут быть разнообразной формы — шаровидные, эллипсоидные, удлиненные до цилиндрических, угловатые. Они не окрашены или пигментированы и имеют желтую, оранжевую, охрную, коричневую, розовую, фиолетово-коричневую или черную окраску. Окраска часто всего хорошо видна только в массе базидиоспор — споровом порошке, хотя темная окраска обнаруживается и у единичных базидиоспор в препаратах под микроскопом. Поверхность базидиоспор бывает гладкой или разнообразно орнаментированной: точечной, шиповатой, бородавчатой, сетчатой и т.д.

У большинства базидиомицетов базидии участвует в активном освобождении (отбрасывании) базидиоспор. Такие базидиоспоры называют баллистоспорами. Базидиоспоры обычно имеют характерную форму с рубчиком (хилумом) в месте прикрепления к стеригме. Перед отбрасыванием у рубчика базидиоспоры образуется капля, увеличивающаяся в размерах. По данным электронной микроскопии, эта капля окружена клеточной стенкой, представляющей продолжение стенки стеригмы (рис. 273). При быстром накоплении жидкости базидиоспора отрывается от стеригмы и отбрасывается на расстояние 0,1—0,2 см, достаточное для попадания в ток воздуха. Базидиоспоры многих головневых грибов, гастероидных гомобазидиомицетов и некоторых других групп освобождаются пассивно, т.е. являются статисмоспорами.

Расположение базидиоспор на базидии может быть различным. У большинства базидиомицетов, имеющих гомобазидию или гетеробазидию без перегородок или с вертикальными перегородками, базидиоспоры располагаются на стеригмах на ее вершине на одном уровне (акроспоровые базидии). Если же базидии имеют поперечные перегородки или образуются в замкнутых плодовых телах, базидиоспоры образуются сбоку

Рис. 273. Базидиоспора.
1 — стеригма; 2 — хилум; 3 — место образования капли; 4 — орнаментация; 5 — ростковая пора
базидии на разных уровнях (плевроспоровые базидии). Базидиоспоры обычно формируются на стеригмах, но в некоторых группах часто встречаются сидячие базидиоспоры (например, у представителей порядка филобазидиевые — Filobasidiales, некоторых гастеофильных гомобазидиомицетов).

Базидии образуются непосредственно на мицелии из толстостенных, часто покоящихся спор (например, в породах головневые — Ustilaginales, ржавчинные — Uredinales, септобазидиевые — Septobasidiales и в некоторых других группах), а у большинства гетеробазидиомицетов, тремелломицетов и гомобазидиомицетов — на или в плодовых телах — базидиомах разного строения, состоящих из переплетения дикариотичных гиф. Это отличает их от аскомицетов, состоящих из гиф гаплоидного мицелия, в них дикариотичные только аскогенные гифы.

Прорастание базидиоспор происходят различными способами, обычно типичными для той или иной группы базидиомицетов. У большинства видов базидиоспоры прорастают длинной ростковой трубкой, формируя затем первичный мицелий. Такой способ прорастания называют прямым (рис. 274, A). В некоторых группах, однако, прорастание базидиоспор непрямое, или репетивное: при прорастании они образуют вторичные споры (рис. 274, B). Наконец, у многих головневых грибов и базидиальных дрожжей базидиоспоры покоятся и гаплоидная фаза — дрожжеподобная.

Бесполое размножение известно у многих базидиомицетов, хотя и не получило такого широкого распространения и значения в цикле развития, как у аскомицетов. Основное направление эволюции у большинства базидиомицетов, в отличие от аскомицетов, — совершенствование полового размножения и систем контроля спаривания, поэтому у большинства представителей этого отдела аноморфы не достигли высокого уровня дифференциации. Так, у гомобазидиомицетов они представлены чаще всего артроконидиями, а иногда холобластическими конидиями. В цикле развития ржавчинных грибов образуются дикариотичные урдинноспоры, служащие для их расселения в течение периода вегетации. Как функционально, так и по морфогенезу они представляют конидии. Конидии известны также у многих представителей головневых грибов. Некоторые микологи считают аноморфной стадией — «бластоконидиями» — также почковавшиеся споридии или базидиоспоры. У разных представителей базидиомицетов конидии могут развиваться как на гаплоидном, так и на дикариотическом мицелии, иногда на поверхности базидиум, что также отличает их от аноморф аскомицетов, всегда образующихся на гаплоидном мицелии.

Лишь немногочисленные базидиомицеты размножаются только или преимущественно беспольным путем. К ним принадлежат, например, некоторые базидиальные дрожжи, представители порядка цератобазидиевые (Ceratobasidiales), в частности аноморфный род Rhizoctonia, и др. Часто они более известны под названиями своих аноморфных стадий.
Система базидиомицетов претерпела коренные изменения в течение последних 20 лет. В ранних работах эту группу, принимаемую в ранге класса, подразделяли на подклассы по типу базидий. Соответственно этому существовали две очень близкие системы базидиомицетов: первая из них с подклассами гомобазидиомицеты (Homobasidiomycetidae) и гетеробазидиомицеты (Heterobasidiomycetidae) (Patouillard, 1900), вторая с подклассами холобазидиомицеты (Holobasidiomycetidae) и фрагмобазидиомицеты (Phragmobasidiomycetidae) (например, Gäumann, 1964). В начале 70-х годов XX в. базидиомицеты были повышенны в ранге до подотдела и соответственно подклассы — до классов. В систему группы был введен новый класс — телиомицеты (Teliomycetes), объединяющий грибы с базидиями, развивающимися из покоящихся спор (Talbot, 1971).

Основана современной системы базидиомицетов была заложена в 1983 г. Г. Крайзель (Kreisel, 1983) подразделил их на три класса: телиомицеты — Teliomycetes (порядок ржавчинные — Uredinales), устомицеты — Ustomycetes (порядок головневые — Ustilaginales и близкие к ним группы) и собственно базидиомицеты — Basidiomycetes (все остальные группы). При этом Г. Крайзель использовал комплекс признаков, включающий строение септы, присутствие прядек на мицелии, наличие в цикле развития дрожжеподобных стадий, репетивное прорастание базидиоспор, тип полового процесса, образование базидиом.

В том же году была предложена система базидиомицетов, очень близкая к системе Г. Крайзеля и отличающаяся от нее названиями классов: урединомицеты (Urediniomycetes, или Teliomycetes), устиланиномицеты (Ustilaginomycetes, или Ustomycetes), а также выделением вместо класса Basidiomycetes двух классов — гименомицеты (Hymenomycetes) и гастеромицеты (Gasteromycetes) (Hawksworth et al., 1983). Класс Hymenomycetes принят в этой системе в широком смысле и включает не только гомобазидиальные, но и гетеробазидиальные базидиомицеты.

С 90-х годов прошлого века в систематике базидиомицетов начали широко использовать молекулярные методы. Исследования нуклеотидных последовательностей гена 18S rPHK и ряда других генов у достаточно большой выборки видов показали существование трех монофилетичных групп базидиомицетов, в основном соответствующих классам системы Г. Крайзеля, однако отличающихся от них положением отдельных таксонов — базидиальных дрожжей (порядки споридиевые — Sporidiales и филобазидиевые — Filobasidiales), некоторых прimitивных аурикуляривых, порядка экзобазидиевые (Exobasidiales) и др. (Swann, Taylor, 1993, 1995). Эта система с некоторыми модификациями принята сейчас большинством микологов (Begerow et al., 1997; Petersen, 2001; Oberwinkler et al., 2001, и многие другие), она вошла и в два последних (8- и 9-е) издания Словаря грибов Дж. Эйнсворта и Г.Р. Бисби (Dictionary of the fungi; Hawksworth et al., 1995; Kirk et al., 2001).

На рис. 275 представлена принятая нами модифицированная система Э. Сванна и Дж. Тэйлора и гипотетические филогенетические связи ее групп на основе традиционных таксономических критериев (ультраструктура септ и др.), данных хемотаксономии (состав нейтральных сахаров клеточной стенки) и анализа нуклеотидных последовательностей генов 18S и 28S rPHK.
Отдел Basidiomycota на основании комплекса признаков, включающего традиционные таксономические критерии (строение базидий, ультраструктура септ, тип прорастанья базидиоспор и др.), хемотаксономические данные (состав нейтральных сахаров клеточной стенки) и анализ нуклеотидных последовательностей генов 18S 28S рРНК подразделяется на три класса.

Класс урединицистые (Urediniomycetes, или Teliomycetes в системе Г. Крайзеля).
К этому классу относятся базидиомицеты с прямыми септами, уточняющими к центральной поре. Парентесомы отсутствуют. Полярные тельца веретена деления ядра дисковидные. В состав нейтральных сахаров клеточной стенки входит как основной компонент манноза, присутствуют также глюкоза, галактоза и фукоза. Паразиты растений, реже — насекомых, немногие из них saproфиты.

Класс устилагиномицеты (Ustilaginomycetes, или Ustomycetes в системе Г. Крайзеля).
К этому классу относят базидиомицеты с прямыми септами равномерной толщины или утолщенными к поре. В отличие от класса Basidiomycetes устилагиномицеты не имеют парентесом, однако, в отличие от класса Urediniomycetes, их поры часто прикрыты колпачками или дисками обычно мембранных происхождения. Форма полярных телец веретена деления у этой группы варьирует. В состав нейтральных сахаров клеточной стенки как основной компонент входит глюкоза, присутствуют также манноза и галактоза. Практически все представители класса — паразиты растений.

Класс базидиомицеты (Basidiomycetes, или Hymenomycetes в системе Э. Сванна и Дж. Тэйлора).
К этому классу относятся базидиомицеты с долипоровыми септами и паренхимами различной конфигурации. Полярные тельца веретена деления ядра глобулярные. Спектр нейтральных сахаров клеточной стенки включает глюкозу как основной компонент, а также маннозу и ксилоzu. Последняя всегда отсутствует в клеточных стенках представителей двух других классов. Преимущественно saprotrofy и symbiotrofy, редко — паразиты растений, грибов; есть виды, патогенные для животных и человека.
Класс урединиомицеты, или телиомицеты (Urediniomycetes, или Teliomycetes)

В современной системе к классу урединиомицеты относят большую группу грибов, образующих в мицеллии простые септы, уточняющиеся к центральной поре и очень похожие на септы аскомицетов (см. рис. 269, A). Парентесомы у них всегда отсутствуют. Однако, в отличие от септ аскомицетов, у урединиомицетов нет телес Воронина вблизи поры, которая часто бывает закрыта аморфной пробкой. Полярные тельца веретена деления ядра, как правило, дисквидные.

Базидии с поперечными перегородками часто развиваются из толстостенной, обычно покоящейся споры (телиоспоры), функционирующей как пробазидия. Плодовых тел у большинства видов нет. Они известны лишь у небольшой группы грибов с простыми порами, ранее относившейся к аурикуляриевым (Auriculariales). Пряжки на мицеллии обычно отсутствуют, исключение составляет только порядок Sporidiales.

Основной компонент нейтральных сахаров клеточной стенки — манноза, присутствуют также глюкоза, галактоза и фукоза. По этому признаку урединиомицеты хорошо отличаются от двух других классов, в спектре сахаров которых преобладает глюкоза.

В класс урединиомицеты включают несколько порядков. Самый крупный и значимый из них — ржавчинные (Uredinales), объединяющий около 5000 видов из более чем 150 родов. Все представители этого порядка — облигатные паразиты растений. К относительно небольшому порядку септобазидиевые (Septodasidiales) относятся два рода с примерно 170 видами, умеренными паразитами на насекомых или их симбионтами.

В середине 90-х годов прошлого века на основании данных молекулярной филогенетики в класс был включен ряд групп, ранее относившихся к другим таксонам (Swann, Taylor, 1993, 1995; Begerow et al., 1997). Так, из класса устилагиномицеты сюда был перенесен порядок споридиевые (Sporidiales). Это базидиальные дрожжи, промицелий (базидия) которых развивается из толстостенных спор, функционирующих как пробазидия. Из того же класса в урединиомицеты были перенесены виды головневых грибов из рода Microbotryum и близких к ним родов, паразитирующие на двудольных. Их положение среди Ustilaginales давно вызывало сомнения у микологов. Наконец, из подкласса гетеробазидиомицеты сюда были перенесены некоторые аурикуляриоидные грибы, септы которых имеют простые поры без парентесом, очень похожие на септы Uredinales. По этому признаку они резко отличаются от остальных представителей порядка аурикуляриев — Auriculariales, имеющих долипоровые септы с неперфорированными парентесомами. Анализ комплекса признаков (ультраструктуры септ, морфологии полярных телец веретена деления ядра, состава сахаров клеточной стенки) в значительной мере подтвердил целесообразность переноса этих групп грибов в класс урединиомицеты.
ПОРЯДОК РЖАВЧИННЫЕ
(UREDINALES)

Порядок ржавчинные включает около 5000 видов, относящихся, по разным данным, к 150—170 родам (Cummins, Hiratsuka, 1983, 1984). Все грибы из этого порядка паразитируют на растениях из многих семейств голосеменных и покрытосеменных, немногие из них известны на папоротниках. Они широко распространены во всех регионах земного шара и часто вызывают заболевания культурных растений, нанося большой ущерб сельскому хозяйству.

При поражении ржавчинными грибами на растениях образуются пустулы — пятна или полосы обычно буро-желтого цвета. Отсюда происходит название вызываемых ими заболеваний — ржавчина, а вызывающие их грибы были названы ржавчинными.

Прорастая на растении, спора ржавчного гриба образует ростковую трубку, проникающую в ткани растений обычно через устьица или непосредственно внедряясь через эпидермис. Мицелий ржавчинных грибов распространяется в тканях растений по межклетникам, а в клетки растений проникают гаустории.

В цикле развития ржавчинных грибов последовательно сменяется несколько различающихся по функциям, морфологии и характеру развития типов спороношений, т. е. у них наблюдается хорошо выраженный плеоморфизм. Весь цикл развития ржавчного гриба может происходить на одном растении — такие виды называют однохозяйными. У многих ржавчинных грибов может наблюдаться смена хозяина в цикле развития — это разнохозяйственные виды.

Типичный цикл развития разнохозяйных ржавчинных грибов удобно проследить на примере возбудителя стеблевой, или линейной, ржавчины — Puccinia graminis, паразитирующего на барбарисе и на многих хлебных, кормовых и дикорастущих злаках.

Развитие гриба начинается с прорастания телиоспор, перезимовавших на соломе, и образования базидий с базидиоспорами (рис. 276, 5). Телиоспора ржавчных грибов представляет пробазидию (по терминологии М. А. Донка (Donk, 1954) и П. Тэлбота (Talbot, 1973)). В ней перед образованием базидии происходит кариогамия. Образующаяся базidia представляет метабазидию, в ней совершается мейотическое деление ядра. У немногих родов ржавчинных грибов такого разделения нет. Так, у видов рода Coleosporium телиоспоры перед прорастанием без периода покоя делятся на четыре клетки, каждая из которых образует стеригу с базидиоспорой.

Базидии ржавчинных грибов — фрагмобазидии, разделенные поперечными перегородками на 4 клетки, каждая из которых образует базидиоспору, в которую переходит гаплоидное ядро. При созревании базидиоспоры отбрасываются на некоторое расстояние и затем распространяются воздушными течениями. Для дальнейшего развития они должны попасть на листья барбариса, где формируется весенняя фаза развития P. graminis. Как правило, базидиоспоры ржавчинных грибов прорастают ростковой трубкой, однако описаны случаи их рептиционного прорастания — образования стеригмы со спорой. После проникновения ростковой трубки базидиоспоры в ткань листа сначала на листьях появляются
оранжевые пятна, образованные гипертрофированной тканью листа, пронизанной по межклетникам микелием гриба с гаустториями. Гифы этого микелия состоят из одноклеточных клеток с оранжевыми каплями масла и принадлежат к гаплоидной стадии развития гриба. На этом микелии в тканях гриба закладываются два типа спороношений. На верхней стороне листа образуются клубочки гиф, превращающиеся в кувшиновидные пикнии, в которых образуются гаплоидные пикнospоры, выполняющие функции сперматиев (рис. 276, 1). При их созревании из отверстия пикни высываются гифы, называемые восприимывающими, и выделяется сладковатая жидкость, привлекающая насекомых, переносящих спермации. Ржавчинные грибы гетероталличны, поэтому для дикариотизации микелия необходим перенос сперматиев одного типа спаривания на пикнии другого типа. Спермации переносятся насекомыми или распространяются каплями дождя. Если спермации попадают на воспринимающую гифу или прорастает в пикнии совместимого типа спаривания, происходит дикариотизация. Спермации и воспринимающие гифы, образуемые в одном пикнии, обычно несовместимы. Таким образом, у ржавчинных грибов наблюдается половой процесс типа сперматизации у акосмицетов. Дикариотизация может произходить и другими путями, например слиянием эндотитных гиф двух пикниев при заражении листа базидиоспорами разных типов спаривания.

После дикариотизации на нижней стороне листа развивается следующий тип спороношения ржавчинных грибов — эции с эциоспорами. Они закладываются еще на гаплоидном микелии, но формируются после его дикариотизации. Эции *P. graminis* имеют вид чашечек, окруженных перидием, образующимся из сращающихся цепочек двухъядерных клеток. Цепочки развиваются из краевых базальных клеток эции. Из базальных двухъядерных клеток эции формируются цепочки эциоспор, или весенних спор. Оба ядра базальной клетки делятся одновременно, и ее верхняя часть отделяется в виде двухъядерной материнской клетки эциоспоры. Процесс повторяется многократно. Каждая материнская клетка эциоспоры делится, образуя две двухъядерные клетки неравного размера. У верхней, более крупной клетки образуется толстая стенка, и она превращается в эциоспору; нижняя тонкостенная клетка функционирует как промежуточная клетка и быстро разрушается (рис. 276, 2 и 277, A). Верхние эциоспоры цепочек
Рис. 277. Типы эциев.
A — эцилии; B — цеома; V, Г — перицермии; D — рестилии

сращаются, образуя крышку эция. Чашевидные эции, одетые перицерием, называют эцилиами. Нарастающие цепочки эциоспор прорывают эпидермис листа. Крыша перицерия разрывается, его края отворачиваются, и эцилии приобретают вид чашечки, заполненной оранжевыми эциоспорами, которые выпадают наружу по мере созревания и распространяются по воздуху (рис. 277, A).

Эциоспоры одноклеточные, обычно округлой формы, их стенка чаще всего бородавчатая. Они не могут заражать барбарис и для дальнейшего развития должны попасть на листья или стебли злаков. Здесь эциоспоры прорастают и их ростковые трубки через устьица проникают в ткани растения, где на небольшом участке развивается локальный дикариотический межклеточный мицелий с гаусториями. На этом мицелии развиваются урединиоспоры, или летние споры гриба. Они образуются в массе под эпидермисом листа или стебля, а затем прорывают его и выступают в виде порошицыных продолговатых пустул — урединиев. Урединиоспоры одноклеточные, яйцевидной формы, оранжево-желтые, на бесцветных ножках (см. рис. 276, 3). Отрываясь, урединиоспоры переносятся токами
воздуха и могут снова заражать злаки. В течение лета на злаках образуется несколько поколений урединиоспор, которые при благоприятных условиях могут вызвать массовое поражение злаков — эпифитотию. Урединиоспоры могут переноситься токами воздуха на большие расстояния (на тысячи километров). Для прогноза возможности появления ржавчины на хлебных злаках специальные службы во многих странах мира проводят контроль за появлением в воздухе спор ржавчинных грибов.

По мере истошения субстрата к концу лета на том же дикарционном мицелии развиваются телиоспоры, или зимние споры гриба. У P. graminis они двухклеточные и расположены на ножках в телях (см. рис. 276, 4). Стенки телиоспор темно-бурые, с одной ростковой порой в каждой клетке. К концу вегетации телии покрывают растения черными продольными полосами, поэтому это заболевание злаков называют также линейной, или черной, ржавчиной. Телиоспоры представляют покоящиеся споры и служат для перезимовки. Зимуют они на стерне или соломе, а также на стеблях дикорастущих злаков. На соломе, лежащей на земле, телиоспоры к весне почти всегда погибают под действием почвенных микроорганизмов. Каждая клетка телиоспоры содержит сначала два ядра дикариона, позднее происходит кариогамия и образуется одно диплоидное ядро. Весной каждая клетка телиоспоры прорастает четырехклеточной базидией (рис. 278), куда переходит диплоидное ядро, делящееся в базидии мейотически. Гаплоидные ядра переходят в базидиоспоры, которые снова заражают барбарис.

Рис. 278. Прорастание телиоспоры.
1 — миграция диплоидного ядра из клетки телиоспоры в молодую базидию; 2 — базидия с диплоидным ядром; 3—5 — мейотическое деление ядра в базидии и образование поперечных перегородок; 6 — зрелая базидия с базидиоспорами
Таким образом, полный жизненный цикл P. graminis включает пять следующих друг за другом спороношений: 0 — пикини с пикиноспорами, не заражающими растения и выполняющими функцию сперматиев в половом процессе; I — эции с эциоспорами; II — уредиоспоры (несколько поколений); III — телии с телеоспорами; IV — базидии с базидиоспорами.

Цикл развития ржавчинных грибов, включающий все перечисленные стадии, называют полным. Такие ржавчинные грибы называют также макроциклическими формами. У многих ржавчинных грибов некоторые типы спороношений в цикле отсутствуют. Их называют неполными формами.

В современной системе порядка Uredinales используют такие признаки, как морфологические типы пикинев, строение телиев и др. В порядке выделяют 14 семейств (Cummins, Hiratsuka, 1983).

Традиционно же порядок Uredinales делится на два семейства на основании строения их телиев и телеоспор (Clements, Shear, 1931; Arthur, 1934; Hiratsuka, 1955) — мелампсоровые и пукциневые.

Семейство мелампсоровые (Melampsoraceae). Телиоспоры без ножек, срастаются боками в корочки толщиной в одну (род Melampsora) или несколько
кладят, образуют столбики или колонки из сросшихся цепочек спор (род *Cronartium*), свободные, иногда разветвленные цепочки спор (род *Chrysomyxa*). У грибов некоторых родов они образуются поодиночке под эпидермисом или в его клетках (рис. 280). Большинство видов семейства — разнохозяйственные. Эции часто развиваются на хвойных, урединии и телии — на двудольных, а у ряда видов — на папоротниках. Среди мелампсоровых есть и однохозяйственные виды, развивающиеся на двудольных (например, *Melampsora lini*, возбудитель ржавчины льна).

Наиболее широко в семействе представлены следующие роды.

Род *Melampsora*. Телиоспоры срастаются в корочки толщиной в одну клетку (рис. 280, A). Эции типа цеома. Среди грибов этого рода есть однохозяйственные виды, паразитирующие на двудольных, и разнохозяйственные, развивающиеся на хвойных (эции) и двудольных (урединии и телии).

Род *Cronartium*. Телиоспоры одноклеточные, склеены в длинные роговидные колонки или столбики (рис. 280, B). Эции типа перицермий. Все виды рода однохозяйственные, образующие эции на хвойных, а урединии и телии — на двудольных.

Род *Coleosporium*. Включает около 80 видов. Телиоспоры срастаются в корочки (рис. 280, B). При прорастании каждая телиоспора делится на четыре клетки, образующие по одной базидиоспоре. Все виды рода разнохозяйственные, образующие эции на хвойных, а урединии и телии — на двудольных.

Род *Chrysomyxa* объединяет около 30 видов. Телиоспоры в свободных ветвящихся цепочках. Эции с перицием. Большинство видов — разнохозяйственные паразиты на хвойных и двудольных.

Семейство пучкиновые (Pucciniaceae). Телиоспоры образуются одиночно, на ножках (рис. 281), у немногих — в цепочках, с промежуточными клетками. Представители этого семейства паразитируют на покрытосеменных растениях, среди них есть как разнохозяйственные, так и однохозяйственные виды. Назовем важнейшие роды этого семейства.

Род *Uromyces* объединяет около 550 видов. Телиоспоры одноклеточные. Представители этого рода могут быть однохозяйными или разнохозяйными, с полным и неполным циклом развития. Многие виды этого рода развиваются на бобовых (урединии и телии) и молочайных (эции).

Род *Puccinia* содержит более 2000 видов. Телиоспоры двухклеточные (рис. 281, A), эции с перицием. Виды этого рода паразитируют на злаках и многочисленных видах двудольных.

Род *Phragmidium*. Телиоспоры многоклеточные, состоят из 3—22 клеток (рис. 281, B). Все виды этого рода однохозяйственные, паразитируют на розоцветных (роза, малина, ежевика и др.).

Род *Gymnosporangium* объединяет около 40 видов. Телиоспоры двухклеточные, на длинных осливающихся ножках, с ослизающейся стеккой, сливающиеся в общую студенистую массу. Большинство видов разнохозяйные с неполным циклом развития (урединиоспоры отсутствуют). Эции типа рестелий развиваются на розоцветных (яблоне, груше, рябине), телии — на видах можжевельника.
Рис. 280. Тела споры представителей семейства Melampsoraceae. A — Melampsora; B — Colletotrichum.
Ржавчинные грибы — облигатные паразиты растений, в природе не способны к сапротрофному существованию. Все стадии развития происходят на живых растениях. Лишь телиоспоры, образующие базидии, в большинстве случаев находятся на отмерших частях растений (соломе, стерне, остатках листьев и т.п.). Некоторые ржавчинные грибы удалось культивировать на синтетических питательных средах сложного состава (Williams, 1984; Fasters et al., 1993).

На первых этапах заражения растений ржавчинные грибы не убивают ткани, в которые они проникли. Только в конце вегетации растений, когда гриб переходит к спороношению, появляются участки отмирающих тканей. Однако при видимом отсутствии вреда гриб извлекает из растений нужные ему питательные вещества, ослабляя и снижая их продуктивность.

Обычно наблюдается местное, локальное поражение растений ржавчинными грибами, когда их мицелий распространяется на небольшое расстояние от места проникновения проростков тех или иных спор грибов. На этом же участке появляются и его пустулы. При массовом рассеивании спор ржавчинных грибов, переносимых ветром на большие расстояния, на растениях развивается множество местных очагов инфекции.

У ряда видов мицелий диффузный, пронизывающий все растение и часто вызывающий его угнетение и деформацию. Это хорошо заметно при поражении молочаев эциальными стадией ржавчинного гриба (Uromyces pisi). Мицелий его зимует в корневищах молочаев, проникая затем в отрастающие побеги, причем зараженные побеги сильно видоизменяются. У этого же вида гриба дикариотичный мицелий (урединио- и телиостадии) при поражении гороха дает локальное поражение.

Некоторые виды ржавчинных грибов в тканях зараженных растений образуют многолетний мицелий, на котором каждую весну появляется спороношение. Например, при поражении можжевельника возбудитель ржавчины груши
Gymnosporangium sabinae образует мицелий, проникающий в древесину и вызывающий небольшие опухоли ветвей в месте заражения. Эти места весной ослищиваются, и на них ежегодно в течение ряда лет развиваются телиоспоры гриба. Этот же вид, паразитируя на грушах, вызывает их локальное поражение.

Виды ржавчинных грибов обычно заражают один или несколько близкородственных видов растений. Например, упомянутый выше G. sabinae в эциальной стадии паразитирует только на груше, близкий к нему вид G. tremelloides — только на яблоне, хотя телиоспоры обоих видов развиваются на можжевельнике. Возбудитель стеблелевой ржавчины злаков Puccinia graminis, паразитирующий на многих видах семейства, состоит из ряда специализированных форм, почти неотличимых по морфологии (размерам и форме спор), но способных заражать лишь определенные виды злаков.

Все эти формы имеют полный цикл развития с эциями на барбарисе и урединиями и телями на соответствующих видах злаков, однако биология каждой формы имеет некоторую специфику, связанную с биологическими особенностями питающих растений. Так, P. graminis f. sp. secalis может зимовать в виде урединиомицеля на некоторых видах пырея и с них переходит на рожь и ячмень.

Специализация возбудителя стеблелевой ржавчины идет дальше. В составе каждой специализированной формы имеются более мелкие специализированные единицы — физиологические расы, способные паразитировать только на определенном сорте или группе генетически близких сортов. Такого же рода физиологические расы известны у других ржавчинных грибов: возбудителей бурой и желтой ржавчины пшеницы, корончатой ржавчины овса, ржавчины льна и др. Выявление рас, распространенных в том или ином районе, проводится при помощи искусственного заражения специального стандартного набора сортов.

Новые расы возникают путем гибридизации у грибов, имеющих половой процесс, или в результате мутации. Значение образования грибами физиологических рас очень велико, так как приводит к поражению устойчивых к ржавчине сортов.

Происхождение разнохозяйственности у ржавчинных грибов неясно. Вероятно, это свойство более древнее, чем однохозяйственность. На это указывает тот факт, что в более примитивном семействе мелампсоровые почти все виды разнохозяйственные, причем среди хозяев есть хвойные и папоротники — древнейшие представители высших растений. Ни на тех, ни на других ржавчинные грибы семейства пукциниевые не паразитируют. Кроме того, разнохозяйственность ставит развитие гриба в зависимость от присутствия поблизости друг от друга обоих хозяев, что не всегда имеет место. Поэтому переход к однохозяйственности можно считать прогрессивным. В качестве примера можно привести сборный вид Melampsora salcis, многие формы которого обходятся без промежуточного хозяина, существуя только в урединио- и телиостадии на ивах, где грибы зимуют в виде мицелия.

Первичность разнохозяйственности признается не всеми учеными. Некоторые из них считают однохозяйственность первичной, однако по-разному трактуют вопрос о том, кто был первичным хозяином — эциальный вид или тот, на котором развиваются урединио- и телиоспоры.
Следует указать, что при разнообразности удлиняется время развития гриба, что важно в тех случаях, когда одно из питающих растений быстро заражается вегетацией и гриб не успевает пройти на нем все стадии развития. Например, возбудитель ржавчины сливы \textit{(Puccinia pruni-spinosa)} начинает свое развитие — образование пикниев и эциев — на ветвенице, довольно быстро заражающей вегетацию. Однако эциоспоры с этого растения заражают листья сливы, где гриб продолжает свое развитие, но уже в дикариотичной стадии, образуя сначала урединии, а позднее телии.

В России на хлебных злаках помимо уже упоминавшейся \textit{Puccinia graminis} паразитирует еще несколько видов ржавчинных грибов, приносящих существенный вред. Наиболее широко распространена и вредоносна бурая ржавчина пшеницы, вызываемая \textit{P. tritici}. Эфициальный хозяин ее — \textit{Thalictrum}, урединии и телии развиваются на пшенице. Этот гриб редко проходит полный цикл развития. Зимует он в виде урединиоспор или дикариотичного мицелия на озимой пшенице. Таким образом, он ряд лет может существовать только в дикариотичной фазе. Указанное явление — пример своеобразной адаптивной эволюции: изменение биологии гриба в связи с особенностями развития его хозяина. Зимовка на озимых позволяет грибу почти постоянно находиться на живых растениях, а не на их отмерших остатках, где телиоспоры в течение осени—весны часто разрушаются микроорганизмами. Кроме того, далеко не всегда пшеница и василистник находятся вблизи друг от друга, что ставит под угрозу нормальное прохождение цикла в развитии гриба. Проходящий в это время от времени полный цикл развития у \textit{P. tritici} обеспечивает генетическое разнообразие гриба, его изменчивость и в связи с этим способность приспосабливаться к новым сортам. Возбудитель бурой ржавчины пшеницы кроме нее поражает некоторые злаковые травы. У этого гриба известно много физиологических рас.

Широко распространена корончатая ржавчина овса, вызываемая \textit{P. coronata}, образующим эцией на крушине слабительной, а урединии и телии — на овсе и некоторых злаках из трибы Avenae. Этот гриб обычно проходит полный цикл, развивая эции на слабительной крушине, поэтому район наибольшего вреда от корончатой ржавчины совпадает с местами распространения указанного промежуточного хозяина. У возбудителя корончатой ржавчины известны физиологические расы.

Во влажные и прохладные годы сильно вредит желтая ржавчина пшеницы (возбудитель — \textit{P. striiformis}). Этот гриб известен только в уредино- и телиостадиях; зимует на озимой пшенице. У него также есть физиологические расы.

Весьма вредоносна ржавчина подсолнечника, которую вызывает гриб \textit{P. helianthi}. Все стадии его развития проходят на подсолнечнике: на молодых растениях развиваются эции, на взрослых — урединии и телии.

В Крыму груши часто поражаются разнохозяйным грибом Gymnosporangium sabinae и близкими к нему видами. Гриб имеет неполный цикл развития. Телиоспоры развиваются весной на ветвях можжевельника. После прорастания телиоспор образовавшиеся базидиоспоры заражают листья груши, где развиваются характерные оранжевые роговидные или конусовидные эции с эпицероспорами, заражающими только можжевельник. Местами существенно вредит малине однохозяйный гриб Phragmidium rubi-ideae.

Из грибов семейства мелампсоровые весьма вредоносна ржавчина льна, вызываемая Melampsora lini — одним из немногих однохозяйных грибов из этого семейства. Весной на молодых растениях льна развиваются эции, а на взрослых — урединии и телии. У пораженных ржавчиной растений льна ухудшается качество волокна. У гриба известны физиологические расы.

На смородине паразитирует ржавчинный гриб Cronartium ribicola, местами сильно поражающий листья и вызывающий преждевременный листопад. На смородине развиваются урединии и телии, а эции — на веймутовой сосне и других пятихвостых соснах (на сибирском кедре). Этот гриб, вместе с древесиной сосны завезенный в Америку, основной вред принесет эмбриональному хозяину — сосне, снижая качество древесины. Можно еще указать на сосновый вертун — искривление побегов сосны, вызываемое грибом Melampsora pinitorqua.

ПОРЯДОК СЕПТОБАЗИДИЕВЫЕ
(SEPTOBASIDIALES)

Порядок septobasidiевые включает одно семейство с двумя родами и примерно 170 видами. Его представители — облигатные умеренные паразиты или симбионы насекомых (щитовок), распространенные преимущественно в тропиках.

Мицелий septobasidiевых без пряжек, с простыми септами, очень похожими на септы ржавчинных грибов. Septobasidiевые образуют многолетние плодовые тела в виде корочек или подушечек с хорошо заметными концентрическими зонами ежегодного роста. Внутри плодовых тел находит лабиринт полостей или одна полость, в которых живут щитовки. Базидиоспоры прорастают на теле насекомых и образуют гифы, проникающие в него. Затем образуется мицелиальный мат, трактуемый как плодовое тело. Зараженные щитовки в его камерах не погибают и даже живут дольше под защитой грибного мицелия, но не размножаются. В камерах живут и здоровые щитовки, находящие в них защиту от неблагоприятных условий и врагов. Их личинки разносят споры гриба.

На мицелиальных подушечках образуются толстоственные телиоспоры, функционально являющиеся пробазидиями. В них происходит слияние ядер дикарионов. После этого телиоспоры прорастают четырехклеточными базидиями с поперечными перегородками (рис. 282).
У представителей крупного рода *Septobasidium*, включающего более 160 видов, телиоспоры толстостенные, прорастают после периода покоя. Они образуют многокамерные плодовые тела на живых растениях, пораженных щитовками. Телиоспоры развиваются в начале зимы и прорастают после периода покоя весной или летом, образуя базидии. Базидиоспоры у видов этого рода могут покрываться, и личинки щитовок разносят их. Род хорошо представлен преимущественно в тропиках и субтропиках, множество видов обнаружено на юге США. В умеренной зоне известны немногие виды. В Европе распространен *Septobasidium carestianum*, обитающий на ветвях ивы, ясеня, яблони, пораженных ивой щитовкой.

В роде *Uredinella* известен только один вид, образующий маленькие однолетние плодовые тела с одной камерой, развивающиеся на одной особи щитовок. Этот вид имеет толстостенные телиоспоры, прорастающие после периода покоя, а также двухъядерные споры, очень похожие на уренидийоспоры ржавчинных.

Не имея существенного практического значения, септобазидиевые интересны в биологическом отношении как пример коэволюции паразита и хозяина. Отношения грибов и насекомых остаются неясными, хотя некоторые ученые склонны считать септобазидиевые симбионтами насекомых, связанными с ними мутоалистическими отношениями.

ПОРЯДОК СПОРИДИЕВЫЕ (SPORIDIALES)

К порядку споридиевые, выделенному Р. Муром (Moore) в 1980 г., относятся диморфные базидиальные дрожжи, мицелий которых имеет простые септы, а базидии часто образуются из телиоспоры. В клеточных стенках преобладает манноза, присутствуют также глюкоза, галактоза, есть родоторуловая кислота, что типично для многих уренидиомицетов.

В отличие от дрожжей, принадлежащих к аскомицетам, положение которых в системе было установлено давно, базидиальные дрожжи долго относили к анаморфным гриbam. Телеоморфы были обнаружены у дрожжей только в конце 60-х годов прошлого века. В 1967 г. у анаморфных красных дрожжей *Rhodotorula* И. Банно была описана телеоморфа *Rhodosporidium*. Позднее были описаны род *Leucosporidium* с неокрашенными дрожжевыми клетками.

Гаплоидные клетки этих дрожжей почваются по способу, характерному для базидиомицетов — с прорывом почки через клеточную стенку материнской клетки и образованием слоистого рубца. После попарного слияния клеток совместимых типов спаривания развивается дикариотичный мицелий с пряжками (рис. 283). На нем терминально или интеркалярно образуются крупные телиоспоры, в которых происходит кариогамия, т.е. они являются пробазидиями. Мейоз наблюдается после прорастания телиоспор базидиями с поперечными перегородками (часто их называют промицелием). Базидиоспоры почваются, образуя гаплоидные дрожжевые клетки.
Рис. 283. Цикл развития *Rhodosporidium*.

1 — гаплоидные спориды; 2 — гаплоидная дрожжевая фаза; 3 — коньюгация и плазмогамия; 4 — развитие дикариотических гиф; 5 — дикариотичный мицелий с пряжками; 6 — образование телиоспор и карногамия; 7 — прорастание телиоспоры базидией

Споридиевые обитают на поверхности растений, часто в филлоплане и экссудатах растений, на цветках и т.д. Они широко распространены в разных природных зонах — от тропиков до полярных регионов. Среди них известны психрофилы, распространенные в Арктике и Антарктике (род *Leucosporidium*).

Класс устилагиномицеты (Ustilaginomycetes, или Ustomycetes в системе Г. Крайзеля)

К устилагиномицетам относят базидиомицеты с простыми септами равномерной толщины или утолщенными к поре. В отличие от представителей класса Basidiomycetes они не имеют парентесом, однако в отличие от класса Uredinioyctes их поры часто прикрыты колпачками или дисками обычно мембранного происхождения. Базидии чаще с поперечными перегородками (семейство устилаговые — Ustilaginaceae порядка Ustilaginales), но некоторые группы имеют холобазидии (семейство тиллетиевые — Tilletiaceae порядка Ustilaginales и порядок экзобазидиевые — Exobasidiales).

Плодовые тела всегда отсутствуют. Базидии образуются на мицелии или из покоящихся спор — устоспор (см. рис. 286). Базидиоспоры, как правило, отделяются пассивно, однако на мицелии или дрожжевых клетках нередко образуются баллистоспоры.
Гаплоидная стадия у большинства представителей дрожжеподобная. Половой процесс — соматогамия, обычно слияние базидиоспор или споридий (см. рис. 287). На мицеллии часто присутствуют пряжки (например, у родов *Ustilago*, *Entyloma*), но у некоторых представителей класса (например, род *Tilletia*) их нет.

В состав нейтральных сахаров клеточной стенки как основной компонент входит глюкоза, присутствуют также манноза и галактоза.

Все представители класса — паразиты растений. Важный признак класса — наличие характерной зоны взаимодействия паразита и растения-хозяина, изученной Р. Баузером, Ф. Обервинклером и К. Ванки (Bauer et al., 1997). В образовании этой зоны участвуют так называемые первичные интерактивные пузырьки, переносящие содержимое к мембране клетки хозяина. В результате этого в клетке хозяина в области контакта с паразитом при их участии формируются отложения электронно-плотных веществ, размер которых зависит от продолжительности активности пузырьков.

На основании всех перечисленных критериев в класс устилагиномицеты включают два хорошо известных порядка базидиомицетов: головневые (*Ustilaginales*) и экзобазидиевые (*Exobasidiales*).

В 1997 г. была предложена новая система устилагиномицетов, разработанная на основании исследования ультраструктурных признаков (строения септ и зоны контакта с хозяином) и анализа нуклеотидных последовательностей гена 28S рРНК у 149 видов головневых и близких к ним грибов, принадлежащих более чем к 50 родам (Bauer et al., 1997; Begerow et al., 1997). В этой системе устилагиномицеты разделены на три подкласса с 10 порядками. Было обосновано включение в класс экзобазидиевых, положение которых в системе долго оставалось спорным.

ПОРЯДОК ГОЛОВНЕВЫЕ
(*Ustilaginales*)

Порядок включает около 1200 видов грибов из более чем 50 родов, паразитирующих на покрытосеменных растениях. Пораженные растения выглядят обугленными или опаленными вследствие образования темноокрашенных спор паразитов (рис. 284), отсюда и происходит название заболевания — головня (нем. — Brand; англ. — smut) и т.п.

Головневые грибы поражают практически все органы растений-хозяев — цветки (тычинки, завязи), семена, листья и стебли, изредка корни, но преимущественно молодые ткани. Спороношения грибов формируются на различных органах растений-хозяев, чаще всего — на репродуктивных. Часто наблюдаются нарушения развития и деформации
пораженных растений — карликовость, обильное кущение, образование галлов и разнообразных пролифераций.

Растения заражает дикариотический мицелий, который распространяется по межклетникам, проникая в клетки при помощи гаусторий и образуя типичные зоны взаимодействия с хозяином. Нахождение мицелия в тканях часто некоторое время практически не проявляется внешне. Так, при заражении многих злаков больные растения лишь немного отстают в росте, и только после колошения можно видеть, что вместо зерновок образуется черная масса устоспор гриба. Скопления устоспор на вегетативных органах растений становятся заметными вскоре после заражения растений, например при заражении кукурузы воздуходителем пузырчатой головни (Ustilago maydis).

На дикариотичном мицелии в отдельных локальных спороношениях, часто называемых сорусами, формируются устоспоры. Сорус представляет скопление устоспор и часто бывает прикрыт мицелиальным сплетением — перидием, предохраняющим устоспоры от высыхания и повреждения насекомыми. Сорусы устоспор образуются из спорогенного мицелия, скапливающегося в межклетниках. Процесс их дифференциации начинается с ослизления клеточных стенок. Устоспоры образуются из спорогенных клеток, часто частично лишенных клеточных стенок и погруженных в слизистый разбухший матрикс. Спорогенные клетки увеличиваются в размерах, вещества матрикса расходуются на образование экзоспория. Процесс дифференциации устоспор сопровождается отмиранием тканей растения-хозяина, которые замещаются сорусом.

Устоспоры имеют толстую клеточную стенку и обычно темноокрашены вследствие присутствия меланинов: черные, бурье, редко желтоватые (например, у видов рода Entyloma). Эксспорий устоспор имеет обычно разнообразную орнаментацию — сетчатый, шиповатый и т.п. (рис. 285).

Часто устоспоры образуются поодиночке, но у некоторых родов они ассоциируются в разнообразные группы — клубочки, состоящие из двух и до 40—50 спор (рис. 285). В состав клубочков могут входить кроме устоспор стерильные клетки.

Кариогамия происходит обычно в начале спорообразования в молодых не зрелых устоспорах, а при их прорастании или перед ним происходит мейоз.

Рис. 285. Устоспоры головневых грибов. A — Sorosporium; B — Tilletia; V — Urocystis; Г — Entyloma
Устоспоры прорастают базидиями, которые у головневых часто называют промицелием, так как в них не происходит ни кариогамии, ни мейоэза. На базидиях образуются базидиоспоры, часто называемые споридиями, как и продукты почкования базидиоспор.

Базидии у головневых двух типов.

1. Септированные, обычно четырехклеточные базидии, с округлыми или эллипсоидными базидиоспорами (споридиями), расположенными латерально и терминально (рис. 286, A). Число споридий, образующихся на одном участке (локусе), не ограничено. Перед образованием споридия гаплоидное ядро клетки промицелия делится, одно из ядер переходит в споридий, второе остается в промицелии. Этот процесс может многократно повторяться, в результате чего образуются последовательные споридии из одного локуса. Как споридии, так и клетки базидии способны к почкованию (рис. 286, B).

2. Несептированные базидии (холобазидии), на вершине которых обраzuются удлиненные базидиоспоры (рис. 286, Г). Базидиоспоры не почковываются, между ними часто образуются анастомозы уже на базидии.

Базидиоспоры и споридии гаплоидны. Гаплоидная фаза у головневых часто дрожжеподобная, она может развиваться сапротрофно, например в культуре на питательных средах. Половой процесс у этой группы — соматогамия (слияние споридий или базидиоспор) — происходит вскоре после прорастания устоспор, иногда прямо на базидии (рис. 287, Б). У некоторых головневых базидиоспоры не образуются вообще, а клетки базидий копулируют (рис. 287, А), или ядро переходит из одной клетки базидии в другую, образуя дикарион (например, Ustilago nuda, см. рис. 286, В).

Большинство головневых грибов гетерогамличны. У них известны разнообразные генетические системы, контролирующие несовместимость. Однако у них отсутствует распространенная у гомобазидиоцистов тетраполярная система с двумя локусами с множественными аллелями в каждом локусе.

Рис. 286. Базидии головневых грибов.
A — Ustilago; B — U. maydis; B — U. nuda; Г — Tilletia caries
Зараражение растений головневыми грибами может происходить по-разному. Оно может быть сведено к трем основным типам. При первом типе заражения устоспоры удерживаются на семенах или сохраняются в почве и прорастают на прорастающем семени до образования всходов. Образовавшиеся базидиоспоры или непосредственно копулируют с образованием копуляционных мостиков, или сначала почкутся, а затем почкующиеся клетки копулируют. Образовавшийся диакарийотический микелий заражает растения, внедряясь в ткани проростков до их выхода на поверхность почвы. Мицелий проникает в конус нарастания, продвигается вверх, пронизывая узлы и междоузлия, и в первое время не вызывает видимого угнетения растений. Происходит так называемая проростковая инфекция, приводящая к диффузному заражению растений.

Она наблюдается у многих видов головневых грибов — возбудителей твердой головни пшеницы — (*Tilletia caries*, рис. 288), стеблевой головни ржи (*Urocystis occulta*) и др. У возбудителя твердой головни овса (*Ustilago laevis*) прорастание устоспор и образование диакарийотического микелия происходит сразу после попадания устоспор под пленки зерен. Здесь микелий зимует и после посева семян заражает проростки.

Рис. 287. Половой процесс у головневых грибов:
A — *Ustilago*; *B* — *Tilletia*

Рис. 288. Развитие *Tilletia caries* (схема).
1 — колос пшеницы, пораженный твердой головней; 2 — зерна, наполненные устоспорами; 3 — распыление устоспор из раздавленного зерна; 4 — устоспоры на зерне пшеницы; 5 — прорастание устоспоры на зерне; 6 — заражение проростков пшеницы
Второй способ заражения растений — эмбриональная инфекция. Устоспора прорастает на рыльца цветка, и развивающийся дикариотичный мицелий заражает зародыш и оболочку семени. У возбудителей пыльной головки пшеницы (Ustilago tritici) и ячменя (U. nuda) устоспоры прорастают на рыльца цветков растений-хозяев. Базидиоспоры не образуются, а дикариотизация происходит путем перехода ядер из одной клетки базидии в другую (см. рис. 286, B) или при копуляции соседних клеток базидий (см. рис. 287, A). Дикариотичный мицелий проникает в завязь и заражает эндосперм и зародыш. Зараженные семена, попав в почву, нормально прорастают, и из них сначала развиваются внешние здоровые растения. Мицелий гриба проникает в проросток и распространяется в тканях растения, вызывая его диффузное заражение. Мицелий проникает в залагающийся колос, обильно там разрастается и образует устоспоры. Они переносятся ветром на цветущие в это время колосья и прорастают в завязях, как это описано выше (рис. 289).

Рис. 289. Развитие Ustilago tritici (схема).
1, 2 — рассеивание и перенос устоспор на цветущие растения; 3 — устоспор на рыльца цветка;
4 — заражение зародыша семени; 5 — зараженное зерно (внешне не отличается от здорового);
6 — срез зараженного зерна под микроскопом (в оболочке виден мицелий гриба — a); 7 — прорастанние зараженного семени и развитие мицелия гриба
Третий тип заражения — местное поражение различных органов растений, где есть молодые меристематические ткани. Этот тип наблюдается у возбудителя пузырчатой головни кукурузы (U. maydis), заражающего междоузлия стеблей, листья и репродуктивные органы и молодых и взрослых растений, однако к инфекции восприимчивы только молодые ткани (рис. 290). Устоспоры этого гриба прорастают четырехклеточной базидией, и базидиоспоры начинают почковаться непосредственно на базидии, образуя цепочки клеток (см. рис. 286, б). Воздушными течениями эти клетки переносятся на те или иные органы растений кукурузы и здесь копулируют; образующийся диакариотический мицелий заражает растения. Разрастаясь в тканях, мицелий вызывает местные поражения в виде взвитий, или галлов, в которых формируются устоспоры. Гипертрофия тканей вызывает ростовые вещества, выделяемые грибами. Масса устоспор вначале прикрыта эпидермисом, а после его разрыва устоспоры рассеиваются воздушными течениями, заражая новые растения.

Головневые грибы развиваются преимущественно на однодольных (около 70% известных видов), остальные — на двудольных растениях. Больше всего видов этого порядка поражают злаки (около 600 видов) и осоки (более 100 видов). В отличие от ржавчинных это — исключительно паразиты травянистых растений, и только около 30 видов найдены (преимущественно в тропиках) на деревьях, кустарниках и лианах. На папоротниках известны два вида и один вид — на голосеменных (на можжевельнике).

Роль головневых в практической деятельности людей определяется прежде всего тем, что среди них есть виды, приносящие значительный ущерб зерновым культурам. При поражении головневыми грибами у растений разрушаются зерна или же не образуются совсем. При сильном заспорении семян часть всходов погибает и число продуктивных растений сокращается.

В течение многих лет (до появления в 1997 г. новой системы устилиагиномицетов) была принята простая и удобная классификация порядка, предложенная еще братьями Л.Р. и Ш. Тюлянь (Tulasne, Tulasne, 1847). Многими микологами она используется и сейчас. По этой классификации порядок Ustilaginales подразделяется на два семейства по типу базидии — с перегородками или без них.
Однако эти семейства хорошо различаются не только образованием фрагментов или холобазидии, но и по комплексу других признаков.

- **Семейство устилаговые (Ustilaginaceae)**. Семейство объединяет головневые грибы, образующие базидии (промицелий) с поперечными перегородками и латеральными и терминальными базидиоспорами (споридиями) (см. рис. 286, A, B). На промицелии обычно образуется несколько последовательных споридий из одного локуса. Споридии и мицелий могут почковаться. Споридии чаще всего округлые или эллипсоидные. Септы равномерной толщины с прямой порой. Анаморфы в цикле развития образуются редко.

Важнейший род семейства — устилаго (Ustilago). Для него характерны одноклеточные, темноокрашенные, орнаментированные или гладкие устоспоры. В коре образуется пыльца, реже склекенатая масса устоспор. Виды этого рода паразитируют на растениях из многих семейств, заражающих преимущественно их репродуктивные органы. Большое число видов паразитирует на злаках. При поражении пшеницы возбудителем пыльной головни Ustilago tritici все части колоса, за исключением стержня, разрушаются и замещаются пыльцой черной массой устоспор. Заражение происходит во время цветения растений — мицелий зимует в зародыше, а при прорастании семян заражает проростки. Заболевание ведет к значительным потерям урожая. У этого вида существуют многочисленные расы, специализированные в отношении тех или иных сортов пшеницы. К роду устиларо принадлежат также возбудители пыльной (U. nuda) и твердой, или каменной (U. hordei), головни ячменя, пыльной головны овса (U. avenae), пузирчатой головной кукурузы (U. zeae) и многих других болезней культурной и дикорастущей растений.

- **Семейство тиллетеевые (Tilletiaceae)**. К семейству принадлежат головневые грибы с базидиями без перегородок, на вершине которых образуются веретеновидные или нитевидные базидиоспоры (споридии) (см. рис. 286, Г). В отличие от предыдущего семейства, все образующиеся в базидии гаплоидные ядра мигрируют в базидиоспоры, поэтому последнее повторно не образуются. Почкование базидиоспор обычно не происходит, часто они копируются прямо на базидии. Септы в мицелии, как правило, имеют трубчатые утолщения у поры (долипоровые септы), но без парентесисов (см. рис. 269, Б). Нередко образуются анаморфы — баллистоконидии, возникающие на молодых инфлокулах конидиеносцах, которые выступают из устьиц (например, у видов рода Entyloma).

Центральный род семейства — тиллета (Tilletia). Устоспоры у видов этого рода развиваются преимущественно в завязях, редко — в вегетативных органах растения- хозяина, где образуют пыльцовую или склееную массу, часто с характерным селедочным запахом (вследствие образования триметиламина). Устоспоры одиночные, довольно крупные, коричневые или оливковые, обычно с сетчатой или шиповатой орнаментацией (см. рис. 285, Б). Паразитирует на злаках. Tilletia caries — возбудитель твердой головы пшеницы, одной из древнейших известных болезней злаков. Зерновки пшеницы, пораженная этим грибом, приобретают более шаровидную форму и содержат вместо эндосперма массу устоспор, с окраской от желтой до красно-буровой и черной и с характерной сет-
Отдел базидиомицеты, или базидиальные грибы (Basidiomycota)

чато-ячеистой орнаментацией стенки. Заражение растений происходит по проростковому типу. Возбудитель гладкой головки пшеницы (T. laevis) по биологии близок к предыдущему виду, но отличается от него гладкими устоспорами и ареалом: он распространен преимущественно в южных районах России.

У видов рода уропистис (Urocystis) устоспоры чаще формируются в вегетативных органах растений, образуя корону в виде слегка выпуклых продолговатых черных полос на листьях и стеблях. Устоспоры соединены в округлые или эллипсоидные клубочки и окружены слоем стерильных мелких клеток (см. рис. 285, B). Грибы этого рода поражают растения многих семейств. К нему относятся возбудители стеблевой головки ржи — U. occulta и головки лука — U. cepulæ.

Виды рода энтилома (Entyloma) также образуют корону устоспор предпочитительно на листьях и стеблях растений, где появляются светлые пятна обычно округлой формы. Устоспоры одиночные, желтоватые или бурье, часто окружены оберткой (см. рис. 285, Г). Они прорастают в тканях растения без периода покоя. Entyloma oryzae — возбудитель листовой головки риса.

ПОРЯДОК ЭКЗОБАЗИДИЕВЫЕ (EXOBASIDIALES)

Все представители порядка экзобазидиевые — паразиты растений. Их мицелий развивается преимущественно в вегетативных частях растений, вызывая гипертрофию тканей. Устоспоры у этой группы отсутствуют, и холобазидии формируются на мицелии, образуя под кутикулой или эпидермисом пораженных органов растений рыхлый слой — гименин (рис. 291) или отдельные пучки. Веретеновидные базидиоспоры образуются на базициях по 2—6 и освобождаются после разрыва эпидермиса. Прорастание базидиоспор может происходить двумя способами — ростковой трубкой (обычно на поверхности растений) или при попадании в капель воды — репеттивно. В последнем случае базидиоспора делится на 3—5 клеток, образующих конидии, которые могут почковаться. Ростковые трубки базидиоспор или вторичных спор проникают в ткани растений через устьица или внедряясь через эпидермис.

Экзобазидиевые гомоталичны. В растениях развивается дикариотический мицелий, на котором позднее формируются базидии.

Многие признаки экзобазидиевых указывают на их сходство с головневыми грибами. Развитие базидий у экзобазидиевых при их большом

Рис. 291. Exobasidium vaccinii.
A — внешний вид пораженного растения брускини; B — срез пораженного растения (1 — гифы гриба в тканях растения, 2 — слой базидий с базидиоспорами)
внешнем сходстве с базидиями гомобазидиомицетов существенно отличается. Кариогамия происходит в тонкостенных клетках мицелия, трактуемых как про-
базидии. Там же начинается мейоз, который завершается после миграции ядра в формирующуюся метабазидию.

Сетты в мицелии экзобазидиевых с простыми порами, прикрытыми мембран-
ными поровыми колпачками. В состав нейтральных сахаров клеточной стенки
входит как основной компонент глюкоза, присутствуют также манноза и галакто-
за. Наблюдается типичная для устилагиноомицетов зона взаимодействия паразита
и растения-хозяина. Близость этих групп подтверждает анализ нуклеотидных
последовательностей ДНК.

Порядок экзобазидиевые включает около 10 родов, из которых наиболее извест-
чен экзобазидиум (Exobasidiuм), паразитирующий преимущественно на растениях
из семейства вересковые. Широко распространен вид E. vacciniu, обитающий на
брунке, голубике и других видах рода Vaccinium. Экзобазидиум вызывает ха-
рактерную гипертрофию и деформацию листьев, побегов, иногда и цветков,
приобретающих белую, розовую, иногда красную окраску. Из видов рода, имею-
щих значение для практической деятельности человека, необходимо отметить
E. vexans — возбудителя заболевания чайного куста. Он вызывает образование
на листьях округлых белых пятен до 5—15 см в диаметре и наносит большой
ущерб культуре чая в Индии.

Класс базидиомицеты
(Basidiomycetes)

Базидиомицеты — самый крупный класс отдела Basidiomycota. Он включает
около 20 000 видов, т.е. почти 70% всех описанных видов отдела. Класс объеди-
няет базидиомицеты с долипоровыми сеттами и парентесомами различной
конфигурации. Базидии разных типов: как гомобазидии, так и гетеробазидии, с
поперечными или продольными перегородками или без перегородок. Полярные
tельца веретена деления ядра глобулярные. Базидиоспоры прорастают ростковой
трубкой (у гомобазидиомицетов) или репетивно (у гетеробазидиомицетов).
Иногда гаплодиета дрожжеподобная (тремеллоспоры).

На мицелии часто присутствуют пряжки. Базидии за многими исключи-
ениями (например, некоторые паразитные тремелломицеты и представители по-
рядка Filobasidiales) образуются на плодовых телях (базидиомах) гименнального
(базидии образуют открытый слой — гимении на поверхности базидиомы или
специализированного гименофора) или гастерального типа (базидии образуются
внутри замкнутых до созревания базидиоспор базидиум).

Спектр нейтральных сахаров клеточной стенки включает глюкозу как ос-
новной компонент, а также маннозу и ксилозу. Последняя всегда отсутствует в
клеточных стенках представителей урединиомицетов и устилагиноомицетов.

Базидиомицеты — преимущественно сапротрофы и симбиотрофы, редко —
паразиты растений, грибов; есть виды, патогенные для животных и человека.

1 Гименоцисты (Hymenomycetes) в системе Э. Сванна и Дж. Тейлора.
Класс включает три подкласса: гетеробазидиомицеты (Heterobasidiomycetidae), тремелломицеты (Tremellomycetidae) и гомобазидиомицеты (Homobasidiomycetidae), различающиеся строением базидии, ультраструктурой септ, типом прорастания базидиоспор и другими признаками. Их выделение хорошо подтверждается данными молекулярной филогенетики.

Подкласс гетеробазидиомицеты (Heterobasidiomycetidae)

Рис. 292. Представители порядка Auriculariales.

Auricularia: А — общий вид, Б — разрез плодового тела; В — *Exidia*
ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

Базидии образуются на плодовых телах (базидиомах) обычно гимениального типа, имеющих в разных порядках подкласса разнообразное строение — от паутинистых, рыхлых у цератобазидиевых (Ceratobasidiales) до студенистых, имеющих вид складчатых подушек, уховидных, роговидных или разветвленных кустиков (см. рис. 292, 293) — у аурикуляривых (Auriculariales) и дакрициетов (Darculales).

Для этого подкласса характерны долипоровые септы с неперфорированными парентесомами (см. рис. 269, 7).

Большинство гетеробазидиальных грибов — сапротрофы, развивающиеся на гниющей древесине. Представители этой группы наиболее разнообразны и широко представлены в тропиках и субтропиках, например в странах Юго-Восточной Азии, однако многие виды распространены в лесных экосистемах умеренной зоны.

Подкласс включает 4 порядка: аурикуляривые (Auriculariales), дакрициетов (Darculales), цератобазидиевые (Ceratobasidiales) и тюлянелловые (Tulasnellales).

ПОРЯДОК АУРИКУЛЯРИЕВЫЕ
(AURICULARIALES)

К порядку аурикуляривые традиционно относили базидиомицеты с гетеробазидией, имеющей поперечные перегородки. Однако сейчас объем этого порядка существенно пересмотрен. Р. Бандони (Bandoni, 1984) включил в него многие виды, имеющие гетеробазидии с продольными перегородками в гипобазидии (см. рис. 268, B) и относящиеся ранее к порядку тремелловые. Позднее Э. Сванн и Дж. Тейлор (Swann, Taylor, 1885) исключили из порядка аурикуляривые грибы с прозрачными септами без парентесом, близкие к урединиомицетам. Современное понимание объема порядка аурикуляривые основано на комплексе признаков, важнейшие из которых — наличие долипоровых септ с неперфорированными парентесом; репетивное прорастание базидиоспор и отсутствие у большинства представителей гаплоидной дрожжеподобной формы, характерной для тремелловых; биглобулярные полярные тельца веретена деления ядра, а также на многочисленных данных молекулярной филогенетики.

Плодовые тела аурикуляривые обычно студенистые и имеют разнообразную форму — от распроостретой до уховидной, реже — в виде шляпок с боковой ножкой или иной формы. На поверхности плодовых тел базидии образуют рыхлые гимений. Они погружены в желеобразную массу, из которой выступают стеригмы с базидиоспорами (рис. 292, B).

Аурикуляривые — самый большой порядок гетеробазидиомицетов. Его представители — сапротрофы, обитающие преимущественно на древесине.

Один из центральных родов порядка — аурикулярия (Auricularia), образующая крупные, обычно уховидные студенистые базидии (рис. 292, A). Базидии с поперечными перегородками и длинными стеригмами неравной длины образуют гимений на одной стороне базидии, имеющей характерную венозную или слегка складчатую поверхность. Базидиоспоры прорастают ростковой трубкой или репетивно.
Базидиомы у видов рода *Auricularia* развиваются на мертвых стволах и ветвях лиственных деревьев. Иногда их находят и на живых деревьях, однако базидиомы и в этих случаях образуются обычно на отмершей ткани. Только для широко распространенного в Европе и европейской части России вида *A. mesenterica* есть сообщения о росте его как факультативного паразита, иногда вызывающего гибель ослабленных плодовых деревьев.

Плодовые тела некоторых видов рода *Auricularia* съедобны (например, *A. auricula-judae, A. cornea*). Эти виды культивируют в ряде стран (Китай, Япония и др.) для употребления в пищу и применения в медицине.

Виды рода эксидия (*Exidia*) — наиболее типичные и широко распространенные представители порядка. Они образуют хорошо заметные во влажную погоду крупные подушковидные, иногда морщинистые студенистые базидиомы коричневого, бурого или черного цвета (рис. 292, В). В сухую погоду они быстро высыхают и приобретают вид тонких твердых малозаметных корочек. Такие корочки длительно сохраняют жизнеспособность и выживают в неблагоприятные засушливые периоды.

Представители этого рода развиваются на ветвях, коре и древесине хвойных и лиственных деревьев. Один из распространенных видов — *Exidia glandulosa*, с крупными (до 10 см в диаметре) подушковидными черными блестящими базидиомами со складчатой или морщинистой поверхностью, часто встречается на ветвях лиственных деревьев.

Хотя базидии у эксидий тремеллоидного типа, т.е. имеют продольные перегородки в гипобазидии и длинные эпibaseидии и стеригмы, этот род включают в порядок аурикулярцевые на основании строения септы, данных по нуклеотидным последовательностям генов rРНК и другим признакам.

ПОРЯДОК ДАКРИМИЦЕТОВЫЕ

DACRYMYCETALES

К порядку дакрициетовые относятся гетеробазидиальные грибы с вильчатой гетеробазидий без перегородок (рис. 293, B). Эпibaseидии и стеригмы длинные, утолщенные. Базидиоспоры часто имеют перегородки или делятся на несколько клеток перед прорастанием. Каждая клетка прорастает ростковой трубкой или образует конидию.

Базидии образуются на студенистых или хрящеватых базидиомах разнообразной формы — распространых, подушковидных, роговидных, булавовидных или развьолненных в виде кустиков (рис. 293, A, B). Они обычно имеют яркую оранжевую или желтую окраску вследствие присутствия пигментов из группы каротиноидов.

Все представители порядка — сапротрофы, обитающие на опавших ветвях и гниющей древесине.

В лесных экосистемах умеренной зоны часто встречается один из видов рода калоцера — *Calocera viscosa* (рис. 293, A). Его базидиомы, имеющие вид оранжевых развитленных хрящеватых кустиков, развиваются на гниющей древесине, на пнях, но очень часто — на почве, на погребенной древесине.
ПОРЯДОК ЦЕРАТОБАЗИДИЕВЫЕ
(CERATOBASIDIALES)

Для порядка цератобазидиевые характерны гетеробазидии без перегородок (холобазидии) с крупными эпизидами или стеригмами разной формы (рис. 294). Базидиомы обычно малозаметные, паутинистые или в виде налета на субстрате. Наиболее распространены роды цератобазидиум (Ceratobasidium) и танатефорус (Thanatephorus); их виды паразитируют на многих растениях или образуют микоризу с орхидными. Они более известны в анаморфных стадиях, относящихся к формальному роду ризоктония (Rhizoctonia). Она представлена стерильным мицелем, ветвящимся под прямым углом, без прядей, состоящим из многоядерных или двухядерных клеток. На мицеле обычно формируются склероции. Один из наиболее распространенных паразитов из порядка цератобазидиевые — Thanatephorus cucumeris с анаморфой Rhizoctonia solani. Этот вид развивается в почве и поражает картофель, свеклу и многие другие растения, вызывая у них заболевание, называемое ризоктониозом. Обнаружены несколько анастомозных групп T. cucumeris, неспособных к образованию анастомозов друг с другом, т.е. генетически изолированных. Эти групи часто отличаются спектром поражаемых ими растений.

Подкласс тремелломицеты
(Tremellomycetidae)

К подклассу тремелломицеты принадлежат базидиомицеты с гетеробазидиями, разделенными продольными или скосенными перегородками на четыре клетки или не имеющими перегородок (рис. 295, Б; 296). Базидии тремелломи-
цетов образуются на базидиомах разнообразной формы или непосредственно на мицелии.

Представители подкласса — диморфные грибы с гаплоидной дрожжевой фазой, развивающейся в результате почкования базидиоспор, и дикариотической фазой, представленной мицелием с пряжками. Половой процесс — слияние почковщихся клеток дрожжевой фазы. У многих тремелловых обнаружена двухфакторная система контроля спаривания с двумя аллелями в одном локусе и многоаллельным вторым локусом.

У грибов, входящих в порядок тремелловые, или дрожжалковые (Tremellales), септа в мицелии долипоровая, с очень характерными парентесомами в виде плюсковидных мембраных элементов (см. рис. 269, B), у других, например относящихся к порядку филобазидиевые (Filobasidiales), долипоровые септы не имеют парентесом.

Тремелломицеты обитают как сапроотрофы на древесине или на различных субстратах растительного происхождения (на живых растениях, плодах, растительных остатках). Многие виды паразитируют на других грибах (аскомицетах и базидиомицетах), некоторые вызывают заболевания у человека (например, Filobasidiella neoformans).

К подклассу тремелломицеты относят 4 порядка, из которых ниже рассмотрены два: тремелловые (Tremellales) и филобазидиевые (Filobasidiales).

ПОРЯДОК ТРЕМЕЛЛОВЫЕ, ИЛИ ДРОЖЖАЛОВЫЕ (TREMELLALES)

К порядку принадлежат базидиомицеты с тремеллоидными гетеробазидиями, состоящими из шаровидной гипобазидии с продольными или скошенными перегородками (рис. 295, B). Септы мицеля типичного строения с парентесомами, состоящими из плюсковидных фрагментов (см. рис. 269, B).

Дрожжалковые — сапроотрофы на древесине или микопаразиты, обитающие на плодовых телях других грибов — аскомицетов или базидиомицетов. У ксилоотрофных представителей порядка базидии образуются на плодовых телях, часто имеющих вид складчатых или лопастных студенистых подушечек. У микофильных дрожжалковых, иногда вызывающих деформации у хозяина, плодовые тела мелкие, малозаметные или отсутствуют вообще, и тогда базидии образуются на мицелии, развивающемся в гимении гриба-хозяина. У некоторых дрожжалковых, паразитирующих на грибах, наблюдается прямой контакт протопластов гаусто-
рии паразита и клетки хозяина в результате образования пор в их клеточных стенках (Bauer, Oberwinkler, 1990; Zugmaier et al., 1994).

Представители рода дрожжалка, или тремелла (Tremella), имеют студенистые базидиомы оранжевого или желтого цвета, обычно складчатые или лопастные. Наиболее часто встречающийся вид этой роди — T. mesenterica (рис. 295, A) образует осенью во влажную погоду на сухих ветвях лиственных деревьев ярко-желтые лопастные базидиомы. Другой вид — T. fuciformis, с крупными (до 10—12 см) плодовыми телами, состоящим из многочисленных белых или почти прозрачных лопастье с волнистыми краями, в Китае выращивают в культуре на древесине для продовольственного и медицинского использования.

ПОРЯДОК ФИЛОБАЗИДИЕВЫЕ
(FILOBASIDIALES)

Филобазидиевые — диморфные базидиомицеты, часто (как и порядок спордиевые из класса урединиомицеты) называемые базидиальными дрожжами. Базидии у этой группы не имеют перегородок, утолщенные, тонкие, у некоторых почти нитевидные, формируются на мицелии. На их вершине образуется гродь сидячих базидиоспор (рис. 296), а у рода филобазидиелла — Filobasidiella — короткие цепочки базидиоспор. Септы в мицелии долипоровые, без парентесом.

Представители филобазидиевых гетероталличны и имеют однофакторную двухаллельную систему несовместимости. После слияния почкующихся клеток образуется дикариотический мицелий с пряжками.

Анаморфы филобазидиевых относятся к формальному роду дрожжей Crypto- coccus. Культуры гаплоидной фазы часто формируют характерные слизистые колонии вследствие образования внеклеточных полисахаридов, создающих капсулу вокруг клетки.

По морфологии базидии и ультраструктуре септы филобазидиевые отличаются от предыдущего порядка дрожжалковые, но по многим биохимическим признакам, например по составу нейтральных сахаров в клеточных стенках, образованию внеклеточных полисахаридов, диморфному циклу развития и нуклеотидным последовательностям ряда генов, близки к этому порядку и включены в современной системе в подкласс тремелломицеты.

Филобазидиевые обитают на различных частях живых растений, часто на плодах, а также на растительных остатках. Некоторые виды из этого порядка вызывают заболевания у человека и животных или выделяются из клинического материала от больных людей.
Наиболее хорошо изученный и практически важный вид из порядка Filobasidiales — Filobasidiella neoformans, более известный в анаморфной стадии — Cryptococcus neoformans. Для него характерно образование на нитевидной базидии коротких цепочек мелких (1—3 мкм) базидиоспор. Этот вид патогенен как для человека, так и для животных (кроме птиц) и вызывает тяжелое заболевание, называемое криптокооккозом. Возбудитель распространен в птичьем помете и загрязненных им почвах зон умеренного климата; в тропиках и субтропиках известна его разновидность, ассоциированная с эвкариотами. Заражение происходит мелкими базидиоспорами гриба через дыхательные пути. Криптокооккоз представляет серьезную проблему в последние годы в связи с его распространением у людей с ослабленным иммунитетом вследствие применения иммунодепрессантов или ВИЧ-инфекции.

Подкласс гомобазидиомицеты
(Homobasidiomycetidae)

К подклассу гомобазидиомицеты принадлежат грибы, образующие гомобазидии, обычно булавовидные или цилиндрические. Базидиоспоры всегда прорастают ростковой трубкой, репетивное прорастание или почкование базидиоспор не наблюдается. Из базидиоспор развивается гаплоидный первичный мицелий, существующий непродолжительное время, а после дикариотизации в результате образования анастомозов или иным путем развивается дикариотический мицелий, часто многолетний, на котором образуются плодовые тела с базидиями (см. рис. 270). Таким образом, гаплоидная и дикариотическая фазы развития этих грибов мицелиальные.

Большинство гомобазидиомицетов гетероталличны, среди них есть также первично- и вторично-гомоталличные виды. Система генетического контроля гетероталлизма у грибов этого подкласса может быть как однофакторной, так и двухфакторной, однако только в этой группе широко распространен двухфакторный многоаллельный гетероталлизм, определяемый двумя локусами с многочисленными аллелями в каждом из них.

Септы в мицелии грибов этой группы долипоровые, с перфорированными парентесомами (см. рис. 269, D), только у отдельных групп отмечены отклонения от типа (например, неперфорированные парентесомы у многих гименохетовых — Hymenochaetales).

На дикариотическом мицелии многих гомобазидиомицетов имеются пряжки (см. рис. 271), у других они отсутствуют. Мицелий часто образует мицелиальные тяжи и ризоморфы, обеспечивающие быстрое распространение грибов в почве и подстилке и поиск подходящего субстрата, выполняющие проводящие и защитные функции. У немногих видов образуются склерозии, из которых развиваются плодовые тела (например, у видов рода тифул — Typhula из группы афиллофороидных грибов, или у Collybia из агарикоидных).

Базидии всегда формируются на поверхности или внутри плодовых тел (базидиом), крайне разнообразных по размерам и морфологии. Выделяют два типа плодовых тел: гимениальные и гастеральные.
Гименальный тип. Базидии образуют гимений на поверхности базидиоци, покрывая или всю поверхность, или чаще специализированную его часть — гименофор. Гимений может закладываться открыто с самого начала (гимнокарпный тип развития базидиума) либо сначала гименофор или вся базидиума прикрыты покровными структурами, называемыми частным и общим покрывалами (см. рис. 311). К моменту созревания базидиоспор покрывало разрывается или исчезает и открывает гименофор. Этот тип развития базидиум называют гемиангиокарпным. Базидиоспоры, образующиеся на базидиомах гименального типа, расположены на базидиях апикально и всегда отбрасываются активно, т.е. являются баллистоспорами.

Гастеральный тип. Базидии образуются внутри базидиума разрозненно или в гимении, расположенном на поверхности камер. Базидиома имеет оболочку — перидий — и закрыты до полного созревания базидиоспор. Этот тип развития базидиум называют антиокарпным. Базидиоспоры формируются на базидии апикально и латерально и освобождаются пассивно, т.е. представляют статиспороны.

Гомобазидиомицыши широко распространены в наземных экосистемах во всех природных зонах земного шара, немногие из них вторично перешли к обитанию в водной среде (например, гастеромицет Nia vibrissa). Представители этого подкласса — обычные обитатели лесов, лугов, степей, пустынь и полупустынь.

Большинство гомобазидиомицетов — сапрофоты, развивающиеся на древесине, опаде и различных растительных остатках, а также в почве. Сапрофитные гомобазидиомицыши — важнейшая группа грибов-деструкторов органических остатков растительного происхождения, содержащих стойкие лигно-целлюлозные комплексы. Они входят в состав нескольких экологических групп грибов.

Ксилофоты обитают на мёртвой древесине, играя ведущую роль в ее разложении. Они поселяются в лесах на свежей или полуразложившейся древесине, в том числе и погребенной в почве, некоторые виды могут разрушать обработанную древесину в постройках или других сооружениях (например, так называемые «домовые грибы» — Serpula lacrymans и Coniophora puteana, а также Gloeophyllum sepiarium). Представители этой экологической группы выделяют ферменты, разрушающие целлюлозу (целлюлазы и глюканазы) и лигнин (различные оссильно-восстановительные ферменты: оксидазы, например пероксидаза, лакказа и др.) — основные компоненты древесинных клеточных стенок растений.

В зависимости от образования тех или иных ферментов ксилофотные грибы вызывают разные типы гнилей древесины. Целлюлозоразрушающие грибы, не образующие оксидаз, вызывают деструктивную, или бурую, гниль. Такая древесина легко крошится и изменяет окраску на красноватую или бурую. Грибы, образующие оксидазы, разрушают лигнин и вызывают белую гниль, при развитии которой древесина белеет, становится волокнистой, мягкой, часто расслаивается.

В процессе разложения древесины обычно участвуют несколько групп грибов, последовательно сменяющих друг друга. В эту экологическую группу входят большинство афиллофоридных гомобазидиомицетов, а также многие агарикоидные (например, многие строфриевые — Strophariaceae, все виды из семейства
Отдел базидиомицеты, или базидиальные грибы (Basidiomycota)

Pleurotaceae) и гастеридные представители подкласса (представители порядка ни-
дуляриевые — Nidulariales, некоторые дождевики, например Lycoperdon pyriforme).

Подстилочные сапротрофы распространены на опаде в лесах и на ветоши
в безлесных экосистемах (степях, лугах и т.п.). Их мицелий распространяется
в подстилке на отмерших частях растений (опавших листьях, остатках травя-
нистых растений). Эта группа осуществляет в экосистемах, особенно лесных,
очень важную функцию — первичное разложение опада, ежегодно в больших
количествох поступающего в лесную подстилку. К этой группе принадлежат
многочисленные агарикоидные грибы, а также некоторые афиллофоридные и
гастеридные гомобазидиомицеты.

Мицелий гумусовых сапротрофов развивается преимущественно в верхнем
гумусовом горизонте почвы, богатом органическими веществами. К этой группе
принадлежат, например, многие виды из семейства агариковые (Agaricaeae) из
родов шампиньон (Agaricus), зонтики (Leptota и Macrolepiota), почвенные гасти-
риоидные гомобазидиомицеты и др.

Некоторые гомобазидиомицеты развиваются на субстратах, необычных для
большинства представителей этой группы. Так, копротрофные грибы (преиму-
щенно агарикоидные виды из семейства навозниковые — Coprinaceae) оби-
тывают на навозе травоядных животных. Немногочисленные карбофильные виды
могут обнаружить на кострищах, местах пожаров, обугленной древесине (на-
пример, агарикоидные грибы Pholiotr carbonaria и Tephrocye anthracophilia).

Симбиотрофные гомобазидиомицеты образуют эктотрофные микоризы с
многочисленными деревьями, являясь одной из важнейших групп в микобиоте
лесных экосистем (см. с. 284—287). Большинство микоризообразующих грибов
принадлежит к агарикоидным базидиомицетам, среди которых есть порядки,
представленные исключительно или преимущественно симбиотрофами, например
сырежковые (Russulales) и болетовые (Boletales). Многочисленные симбиотрофы
есть и в порядке агариковые (Agaricales), например виды из родов Tricholoma,
Cortinarius, Amanita и др. В меньшей степени симбиотрофия распространена в
группах афиллофоридных, например у лисички (Cantharellus cibarius), и гасти-
риоидных гомобазидиомицетов, например у видов из родов Scleroderma, Pisolithus,
Rhizopogon.

Паразиты среди гомобазидиомицетов относительно немногочисленны. К ним
относятся виды, развивающиеся на живых деревьях, заражение которых проис-
ходит через корневую систему или повреждения на стволах и ветвях. В резуль-
тате заражения развивается ствольные и корневые гнили, приводящие через
несколько лет к гибели дерева. Эта группа включает как афиллофоридные
грибы, например виды рода Phellinus, корневая губка (Heterobasidion annosum),
так и некоторые агарикоидные, например сборный вид осенний опенок
(Armillaria mellea). Микопаразиты, или микрофильные грибы, паразитируют на
других гомобазидиомицетах. Эта небольшая группа включает несколько видов
агарикоидных грибов из родов Asterophora, развивающихся на плодовых телах
сырежек, Collybia (на разных агарикоидных грибах) и Pseudoboletus parasiticus
(на видах рода Scleroderma).
Значение гомобазидиальных грибов в жизни и хозяйственной деятельности человека разнообразно и многопланово. Многие представители этой группы — распространенные съедобные грибы, широко собираемые населением в разных регионах России и в других странах. Несколько видов выращивают в культуре. Наиболее широко культивируют во многих странах мира шампиньон двусторонний (Agaricus bisporus). По объему промышленного производства на втором месте после шампиньона находится ксилиотроф вешенка (Pleurotus ostreatus). В странах Юго-Восточной Азии традиционно распространена культура некоторых грибов, например синитаке — Lentinula edodes. Культивируемые грибы приобретают все большую популярность в связи с ухудшением экологической обстановки и повышением уровня загрязнений среды в некоторых регионах и связанной с этим опасностью накопления в грибах из природных экосистем токсических соединений.

Грибы, активно разрушающие целлюлозу и лигнин, могут быть использованы для переработки отходов сельскохозяйственных и других производств.

Важное направление исследований гомобазидиомицетов — поиск у них биологически активных соединений различного действия. Так, некоторые афиллофориевые и агарикидные грибы образуют полисахариды и другие соединения, которые обладают иммуномодулирующими свойствами, антибактериальной и противовирусной активностью, могут быть использованы при лечении рака, способны ингибитировать синтез холестерина и др. К ним относятся, например, Lentinula edodes, Ganoderma lucidum, Flammulina velutipes, Inonotus obliquus, Pleurotus ostreatus, некоторые виды рода Coprinus и др.

Вред, причиняемый представителями гомобазидиомицетов, связан в первую очередь со способностью некоторых из них паразитировать на растениях, прежде всего на деревьях, вызывая их гибель, а также с повреждением и разрушением некоторыми ксилиотрофными сапротрофами древесины в различных постройках, крепежного леса и т.д. Плодовые тела многих агарикидных базидиомицетов содержит токсины и могут вызывать серьезные отравления при употреблении их в пищу.

Первая научная система гомобазидиомицетов была разработана Э. Фризом (Fries, 1821, 1874). Она была основана на макроморфологических признаках плодовых тел. Соответственно типам плодовых тел гомобазидиомицеты были разделены на группы гименомицетов и гастеромицетов («Hymenomycetes» и «Gasteromycetes»). В свою очередь «Hymenomycetes» на основании типа гименофора (пластинчатый, трубчатый, шиповидный или гладкий) и формы плодовых тел подразделялись на шесть семейств. В 1900 г. Н. Патуиар (Patouillard, 1900) отметил гетерогенность группы гименомицетов и выделил два порядка: афиллофоровые (Aphyllophorales), с гименофором разнообразного строения (от гладкого до трубчатого, но не пластинчатого), и агарикидные, или пластинникообразные (Agaricales), преимущественно с пластинчатым гименофором. В группе гастеромицеты также выделяли в разное время разное число порядков.

По мере накопления знаний и расширения круга таксономических критериев во второй половине XX в. стало очевидным, что гомобазидиомицеты представ-
ляют крайне гетерогенную группу, включающую несколько эволюционных линий, причем во многих из них представлены как гименальные, так и гастеральные виды (Kühner, 1980; Singer, 1986; и др.). Уже в системе Р. Эйма (Heim, 1934) в отдельные таксоны системы агариковых грибов были введены родственные им гастеромицеты.

Было установлено, что тип гименофора, один из ведущих признаков в системе Э. Фриза, не может служить надежным таксономическим критерием. Сходные типы могут наблюдаться в разных эволюционных ветвях, в то же время они могут быть достаточно разнообразны в одной эволюционной линии. Поэтому классификация гомобазидиомицетов представляет одну из сложнейших проблем современной систематики базидиомицетов.

В 90-х гг. прошлого века и в начале XXI в. появились многочисленные исследования по молекулярной филогении гомобазидиомицетов, подтвердившие неоднократное возникновение гастерального типа плодовых тел в эволюции группы и наличие в этой группе по крайней мере восьми хорошо ограниченных эволюционных ветвей (клад) (Hibbett, Thorn, 2001; Binder, Hibbett, 2002; Lutzoni et al., 2004; рис. 297). Четыре из них включают грибы как с гименальным, так и с гастеральным типом плодовых тел. В соответствии с этими кладами некоторые микологи выделяют сейчас порядки в подклассе гомобазидиомицеты (например, в последнем издании Словаря Дж. Эйнсворта и Г.Р. Бисби — Dictionary of the fungi, Kirk et al., 2001).

В современной микологической литературе гетерогенные сборные группы гомобазидиомицетов, соответствующие порядкам системы Н. Патуйря Aphyllophorales и Agaricales и группе гастеромицетов, называют соответственно афиллофоридными, агарикоидными и гастеридными грибами. Эти названия подчеркивают, что группы объединяют грибы только по типам базидиум и признакам сходства в их макроморфологии, а не на основании их родства. В современной системе представители двух или всех трех групп могут входить в один порядок.

Афиллофоридные и агарикоидные гомобазидиомицеты имеют гименальный тип строения плодовых тел, поэтому они ранее обычно объединялись в группу гименомицеты*. На поверхности их плодовых тел образуется гимений — плотный палисадный слой, состоящий из базидий и стерильных элементов — базидиол, гифид (окончаний гиф) и часто цистид (рис. 298), а у некоторых групп — щетинок. Базидии — типичные для гомобазидиомицетов одноклеточные гомобазидии, цилиндрические или булавовидные. Базидиолы напоминают по форме базидии, они придают упругость гимению и разделяют базидии, предохраняя базидиоспоры от слипания. В гимении часто присутствуют цистиды разнообразной формы, выступающие над гимением и защищающие его от посевов основания с другими поверхностями. Гимений образуется непосредственно на поверхности плодового тела, но чаще на специализированной его структуре — гименофоре разнообразного строения.

* Общее название гименомицеты для групп агарикоидных и афиллофоридных грибов сейчас используется редко, отчасти потому, что в упоминавшейся выше (см. с. 404) системе базидиомицетов Э. Сванна и Дж. Тейлора выделяется класс гименомицеты — (Hymenomycetes), не соответствующий по объему этой группе.
Базидиомы у афиллофориоидных и агарикоидных грибов имеют разнообразное строение — от распространетых по субстрату, паутинистых или пленчатых корочек до дифференцированных на шляпку и ножку. Их развитие происходит по-разному. Базидиомы, состоящие из шляпки и ножки, обычно развиваются в две стадии: сначала происходит дифференциация зачатка базидиомы — примордия, а затем в стадию растяжения — рост базидиомы. У базидиом других типов развитие происходит постепенно или ритмично, без стадии дифференциации. Гименофор располагается на верхней поверхности у распространетых плодовых тел, но чаще на нижней стороне плодовых тел, имеющих вид отогнутых боковых шляпок, копытобразную форму, состоящих из шляпки с центральной или боковой ножкой, и т.п.

Гименофор разнообразен по строению. Он может быть гладким (в разных семействах афиллофориоидных грибов, например у сборной группы рогатиковых грибов), складчатым (в виде складок на поверхности плодового тела, например в семействе кониофоровые — Coniophoraceae), шиповатым (в виде шипов, зубцов или изрезанных зубчатых пластинок), трубчатым (в виде трубочек, на внутренней поверхности которых расположен гимений, у многих афиллофориоидных грибов и представителей порядка болетовые — Boletales — из агарикоидных грибов) и пластинчатым (в виде пластинок, радиально расположенных на нижней стороне
Отдел базидиомицеты, или базидиальные грибы (Basidiomycota)

шляпки, у большинства агарикоидных грибов). Существуют многочисленные вариации основных форм гименофора, например лабиринтообразный гименофор (у дубовой губки — Daedalea quercina), близкий к трубчатому, или анастомозирующие пластинки у некоторых представителей порядка Boletales.

Образование гименофора значительно увеличивает поверхность базидиомы, несущую гимений, а следовательно, и общую продукцию базидиоспор. У многих афилофороидных с гладким гименофором наблюдается обильное ветвление базидиом, также увеличивающее общую площадь гимения (см. рис. 306).

Стерильная мякоть (трама) плодового тела состоит из рыхлого или плотного переплетения гиф разнообразного строения и выполняющих разные функции. Различают три типа гиф (рис. 299, A): генеративные гифы тонкостенные, часто

Рис. 299. Типы гифальных систем гомобазидиомицетов.

A — типы гиф: 1 — генеративные, 2 — связывающие, 3 — скелетные;
B — мономитическая, B — димитическая, Г — тримитическая гифальные системы
с пряжками, образуют базидии и некоторые стерильные элементы гимении; скелетные гифы толстостенные, почти не ветвящиеся и обычно не образующие пряжок, выполняют механические функции; связывающие гифы толстостенные, почти не имеющие просвета, сильноразветвленные и оплетающие другие гифы. Генеративные гифы присутствуют в базидиях всех гименомицетов, а остальные типы есть только у отдельных их групп.

В зависимости от присутствия в ткани базидиом тех или иных типов гиф разграничивают три основных типа гифальных систем (рис. 299, Б—Г). В моно-митической гифальной системе присутствуют только генеративные гифы; она характерна для всех агарикоидных грибов и многих афиллороидных, имеющих базидиумы относительно мягкой консистенции. Димитическая гифальная система состоит из генеративных и скелетных гиф, а тримитическая — из всех трех типов гиф. Две последние гифальные системы распространены у афиллороидных грибов с базидиями кожистой или деревянистой консистенции.

В базидиях некоторых грибов имеются гифы, содержащие млечный сок (например, у рода млечник — Lactarius) или смолы (некоторые трутовые грибы). Часто базидиома сверху покрыта кожницей (например, шляпки агарикоидных грибов) или коркой, имеющими разнообразную окраску.

Базидии обычно с 4, реже с 2, 6 или 8 базидиоспорами. Базидиоспоры бесцветные или разнообразно окрашенные (от кремовых или желтоватых до черных), шаровидные, эллипсоидные или цилиндрические, иногда угловатые, с гладкой или орнаментированной клеточной стенкой (точечные, бородавчатые, шиповатые и т.п.).

Перечисленные микроскопические признаки широко используются в таксономии афиллороидных и агарикоидных грибов.

Афиллороидные базидиомицеты

К гетерогенной группе афиллороидных базидиомицетов относят грибы с гименофором разнообразного строения, но, как правило, не пластинчатым, ранее объединявшиеся в порядок афиллорофовые (Aphyllophorales).

Плодовые тела у представителей этой группы крайне разнообразны как по внешнему виду, так и по микроскопическому строению.

Распростертые, или ресептинатые, плодовые тела состоят из слоя переплетенных гиф — подстилки и расположенного на ней гименофора. У многих видов гименофор гладкий, но может также быть складчатым, шиповидным и даже трубчатым. Такие плодовые тела часто малозаметны.

Прямостоящие плодовые тела могут иметь цилиндрическую или булавовидную форму или вид разветвленных кустиков. Часто такое плодовое тело имеет заметную стерильную ножку, а остальная его часть полностью покрыта гименiem. Такие плодовые тела имеют, как правило, хрящеватую или мясистую консистенцию.

Плодовые тела в виде шляпок, прикрепленных к субстрату боком, или с боковой ножкой, выраженной в разной степени, могут иметь самую разнообразную форму — полукруглую, почковидную, вееровидную, подушковидную или
копытовидную — и разную толщину. За немногими исключениями они имеют жесткую консистенцию — от кожистой до деревянистой или пробковидной. Часто встречаются переходные формы от ресупинатных плодовых тел к боковым шляпкам. Гименофор у таких плодовых тел может иметь разнообразное строение.

Плодовые тела в виде шляпки с центральной или эксцентрической ножкой, обычные для агарикоидных базидиомицетов, встречаются и у некоторых афиллофоридных. Нижняя сторона их шляпки покрыта гладким гимением или носет гименофор различного строения — шиповидный, складчатый или трубчатый. Такие плодовые тела имеют консистенцию от мясистой до жесткой.

Как макроморфология плодовых тел, так и строение гименофора широко варьируют в пределах порядков и семейств современной системы афиллофоридных базидиомицетов, а также могут иметь конвергентное сходство в разных, даже филогенетически далеких таксонах. Поэтому при построении системы этой группы широко используются многочисленные микроморфологические признаки, например тип гифальной системы, окраска, орнаментация и другие признаки базидиоспор и т.д.

Афиллофоридные грибы — вторая после агарикоидных по количеству видов группа гомобазидиомицетов, включающая около 3000 видов. Система этой группы активно разрабатывается, разные авторы выделяют разное число порядков, представляющих, с их точки зрения, эволюционные ветви гомобазидиомицетов. Не анализируя многочисленные современные системы этой группы, мы принимаем 5 порядков, соответствующих 5 эволюционным ветвям гомобазидиомицетов, подтвержденным данными молекулярной филогенетики (см. рис. 297). Эти порядки приняты в последнем, 9-м издании Слюваря Дж. Эйнворта и Г.Р. Бисби (Kirk et al., 2001) и в ряде вышедших в последние годы публикаций. Ниже дается характеристика трех из этих порядков.

ПОРЯДОК ПОЛИПОРОВЫЕ (POLYPORALES)

Порядок полипоровые — центральная группа афиллофоридных грибов. К полипоридной ветви принадлежит большинство изученных видов этой группы. Полипоровые — разнообразная и, несомненно, гетерогенная группа, что было показано как классическими методами (например, работами М.А. Донка — Donk, 1961, 1964), так и молекулярными методами С. Хибетом и М. Донохью (Hibbett, Donoghue, 1995) и многими другими исследователями.

В этом порядке известны все существующие у афиллофоридных типы плодовых тел и гименофора. В нем преобладают ксилотрофы, но есть и представители, обитающие в почве как гумусовые или подстилочные сапротрофы. Некоторые виды из этого порядка — паразиты на деревьях (на стволах, реже на корнях).

Порядок полипоровые включает до 30 семейств, некоторые из них также полифилетичны, например семейство кортицийцев.

- **Семейство кортицийцев (Corticiaceae)**. Плодовые тела представителей этого крупного семейства имеют очень простое макроскопическое строение и часто
ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

малозаметны. Обычно они имеют вид тонких распространённых пленок паутинистой, кожистой, иногда мясистой консистенции. Гименофор у большинства видов гладкий, но у некоторых бородавчатый, шиповидный, очень редко сладчатый; есть отдельные виды с трубчатым гименофором. Плодовые тела корицевых обычно обладают положительным геотропизмом, поэтому их гимени ориентирован вниз. Они часто развиваются на нижней стороне валежных стволов и ветвей.

В гимени представителей этого семейства часто присутствуют цистиды разнообразной формы и гифиды. Базидии у большинства видов 4-споровые, но встречаются и 6—8-споровые базидии.

Большинство корицевых — ксилотрофы, обитающие на валеже, пнях, обработанной древесине, в лесной подстилке. Они вызывают как белую, так и бурную гниль древесины. Некоторые виды из этого семейства, обитающие в почве, образуют микоризу. Представители семейства широко распространены в природе в разных регионах земного шара.

Семейство корицевые — полифилетичная группа, включающая наряду с примитивными формами, имеющими простые базидиумы, вторично упрощенные. В современной системе подразделяется на ряд самостоятельных семейств.

Из практически важных для человека представителей выделенного из корицевых семейства фанерохетовые (Phanerochaetaceae) можно назвать Phlebiopsis gigantea (рис. 300). Этот вид образует широко распространённые белые или сероватые базидиумы восковатой или хряшеватой консистенции на валежной древесине хвойных; иногда он встречается как «домовый гриб» на обработанной древесине. Этот вид является антагонистом опасного паразита хвойных деревьев — корневой губки (Heterobasidion annosum) и может применяться для защиты леса.

Вид Phanerochaete chrysosporium, активный разрушитель лингина, используют в биотехнологии для биодеструкции лингина при переработке сырья для производства целлюлозы, а также при получении кормового белка.

Семейство трутковые, или пориевые (Poriaceae). Семейство пориевые объединяет большую часть видов афиллофороидных грибов, называемых трутковыми грибами, или трутниками. Эта сборная группа включает афиллофороидные грибы из разных семейств и даже порядков современной системы группы (семейства Poriaceae, Ganodermataceae, порядок Hymenochaetales с семейством Hymenochaetaceae и др.) с трубчатым или производным от него гименофором. Названные грибы являются ксилотрофами, вызывающими гнили древесины. Семейство пориевые полифилетично и в современной системе часто подразделяется на ряд самостоятельных семейств.

Плодовые тела представителей семейства пориевые разнообразны по форме: распространённые, распространенно-отогнутые или сидячие почковидные, шляпковидные и копытнообразные; их консистенция — от тонкожёсткой до деревянистой.
Распростертно-отогнутые плодовые тела различны: их отогнутая часть может иметь вид тонких раковинообразных шляпок, часто расположенных в виде черепицы, или быть толстой, копытнообразной и деревянистой. Плодовые тела положительно геотропичны: их гименофор всегда ориентируется вниз, что облегчает распространение базидиоспор. Особенно хорошо это заметно в тех случаях, когда многолетние плодовые тела начинают развиваться на вертикально стоящем стволе дерева и продолжают рост после его падения.

Ткань плодовых тел в этом семействе, как правило, имеет светлую окраску — белую, желтоватую, розоватую или буро-красную. Лишь у немногих видов она бурая, яркоокрашенная — красная или оранжевая. Поверхность шляпки часто покрыта коркой или кожицеей, а при их отсутствии она бывает голой или в разной степени опушённой либо щетинистой. Часто на шляпке есть характерная зональность.

Гименофор у большинства пориевых трубчатый, состоящий из сросшихся боками трубочек с ровным или рассечённым краем. Лабиринтообразный (Daedalea quercina) и пластинчатый (роды Lenzites, Gloeophyllum и др.) гименофоры пориевых считаются производными от трубчатого.

Плодовые тела у представителей семейства однолетние или многолетние. У многолетних плодовых тел трубчатый гименофор ежегодно нарастает, образуя новые слои.

Базидиоспоры — от шаровидных до цилиндрических, обычно с тонкими стенками, без орнаментации, неокрашенные.

Большинство пориевых — ксилофаги, обитающие на мертвой древесине (на пнях, валежной древесине, сухостое) и вызывающие ее бурую и белую гниль. На живых деревьях развиваются немногие виды из этого семейства, например корневая губка (Heterobasidion annosum), опасный паразит хвойных (сосны, пихты, ели и др.)*.

Наиболее распространён и хорошо всем известен настоящий трутовик (Fomes fomentarius) (рис. 301, A). Он образует многолетние бурые или серые копытообразные плодовые тела, покрытые серой коркой, на пнях, валежных и сухостойных стволах березы и других лиственных деревьев. Очень редко его можно встретить и на живых березах. Ткань плодового тела у этого вида, в отличие от большинства пориевых, имеет ржаво-бурую окраску.

У видов рода Фомитопсис (Fomitopsis) плодовые тела также многолетние, копытообразные, с ежегодно нарастающим гименофором и светлоокрашенной тканью. Как и предыдущий вид, они растут преимущественно на мертвой древесине, иногда — на живых слаборазвитых деревьях, вызывающих бурую гниль. Широко распространён окаймленный трутовик (Fomitopsis pinicola) (рис. 301, B), обычный обитатель мертвой древесины хвойных и лиственных пород в лесах умеренной зоны. Изредка этот вид можно обнаружить на живых деревьях, где он развивается как раневой паразит. Гриб образует крупные деревянистые копытообразные плодовые тела с характерной оранжево-красной каймой; в центре поверхность более темная, до темно-буровой и черной. В пораженной древесине обычно развиваются микелиальные пленки гриба.

* На основании молекулярных данных некоторые микологи исключают род Heterobasidion из порядка Polyporales.
Плодовые тела грибов рода дедаля (Daedalea) имеют характерный лабиринтообразный гименофор в виде анастомозирующих складок, образующих крупные ячейки разного размера (рис. 301, В). Виды этого рода обитают на пнях, сухостое, валежнике и обработанной древесине. Повсеместно на мертвой древесине широколиственных деревьев, особенно часто дуба, встречается дубовая губка (Daedalea quercina), вызывающая их бурую гниль.

Заборный гриб (Gloeophyllum sepiarium) часто встречается на пнях и валежнике хвойных деревьев и на обработанной древесине — заборах, сваях и др. В помещениях он может развиваться и как домовый гриб. Вызывает бурую гниль древесины. Этот вид образует довольно тонкие пробковидно-кожистые прикрепленные боком шляпки с пластинчатым гименофором. Поверхность шляпок гриба темно-коричневая, зональная, у основания бугристая.

Семейство ганодермовые (Ganodermataceae). К семейству ганодермовые относят трутовые грибы, имеющие крупные плодовые тела в виде шляпок с боковой ножкой или сидячих. Шляпка покрыта очень характерной блестящей или матовой коркой. Плодовые тела обычно одно-двухлетние, редко многолетние. Ткань плодовых тел светлоокрашенная, пробковая или пробково-деревянистая; гифальная система тримитическая, с древовидно развитыми концами скелетными гифами. На мицелии есть пряжки. Необычны базидиоспоры представителей этого семейства: они шаровидные или эллипсоидные, с двухслойной стенкой. Внутренний слой стенки (эндоспорий) окрашен и имеет бородавчатую орнаментацию, наружный слой (эписпорий) бесцветный и гладкий, с погруженной в него орнаментацией эндоспория.

Представители этого семейства — ксилотрофы, обитающие в основном на мертвой древесине. Преимущественно тропические виды. Вызывают белую гниль древесины.
Род ганодерма (Ganoderma) включает виды с многолетними или однолетними плоскими плодовыми телами, ткань которых имеет рыжеватую или коричневую окраску. Плоский трутовик (Ganoderma applanatum) (рис. 302, вверху) образует крупные многолетние плоские плодовые тела коричнево-шоколадного цвета на пнях и мертвой древесине многих лиственных, реже — хвойных деревьев, изредка — на живых деревьях. Вид широко распространен во всех природных зонах.

Лакированный трутовик (G. lucidum) (рис. 302, внизу) распространен преимущественно в южных регионах, хотя встречается и в лесах умеренной зоны на мертвой древесине многих, чаще широколиственных деревьев. Иногда развивается у основания стволов ослабленных деревьев как паразит. В отличие от плоского трутовика его плодовые тела всегда имеют длинную боковую ножку. У этого вида обнаружены два типа базидиоспор, распространяющихся разными путями. Базидиоспоры, формируясь в начале, переносятся насекомыми, а более поздние — воздушными течениями, как у всех афилофоридных грибов. Из лакированного трутовика изолированы соединения, обладающие иммуномодулирующим действием и перспективные для применения в медицине.

■ Семейство полишироровые (Polyporaceae). Небольшое семейство полишироровые объединяет афилофоридные грибы с однолетними или зимующими плодовыми телями, имеющими центральную, эксцентрическую или зачаточную ножку и белую или светлоказранную ткань с кожисто-волосистой, кожистой, жестко-мясистой или пробково-кожистой консистенцией. Гифальная система мономиктическая или амфимиктическая, состоящая из генеративных и связывающих гиф. Гименофор трубчатый, всегда однослойный, не отделяющийся от ткани плодового тела. Представители этого семейства — ксилофиты, вызывающие бурую или белую гниль.

К роду полипорус (Polyporus) принадлежат виды, плодовые тела которых всегда имеют боковую, эксцентрическую или центральную ножку и жестко-мясистую или волокнистую ткань. Базидиоспоры цилиндрические или веретеновидные, крупные. Чешуйчатый трутовик (P. squamosus) развивается на мертвых или живых стволов широколиственных деревьев, образуя крупные плодовые тела с растрескивающейся на чешуйки кожицей. Вызывает белую гниль древесины. Плодовые тела этого вида съедобны.

К этому же роду относится трутовик разветвленный (P. umbellatus) (рис. 303). Плодо-
вые тела этого вида достигают 50 см в диаметре и состоят из многочисленных разветвленных ножек со шляпками (до 200), объединенных в основании в общую клубневидную ножку. Обитает как сапрофаг на погребенной древесине, иногда паразитирует на корнях и у основания стволов деревьев, преимущественно широколиственных. Хороший съедобный гриб. Этот редкий вид включен в Красную книгу России и в региональные Красные книги.

ПОРЯДОК ГИМЕНОХЕТОВЫЕ
(HYMENochaetales)

Представители порядка гименохетовые — трутовые грибы, хорошо отличающиеся от ранее перечисленных семейств комплексом морфологических признаков. По данным молекулярной филогенетики, они образуют самостоятельную, хорошо ограниченную эволюционную ветвь (см. рис. 297).

Плодовые тела гименохетовых и их ткань имеют бурую окраску, под действием раствора КОН приобретают темно-бурый или черный цвет. Форма плодовых тел разнообразна — от распространенных до дифференцированных на шляпку и ножку. Гименофор также разный: гладкий (род Hymenochaete), лабиринтовидный, но у большинства видов трубчатый. Гифальная система у большинства видов, имеющих однолетние плодовые тела, мономитическая. Виды рода феллинус (Phellinus) образуют многолетние плодовые тела с димитической гифальной системой.

В гимении гименохетовых всегда присутствуют щетинки. Базидиоспоры имеют гладкую стенку, окрашенные. Пряжки на мицелии отсутствуют.

Этот порядок отличается от ранее упоминавшихся афиллофоридных грибов также проявляющейся у многих его видов тенденцией к паразитизму на деревьях и относительно узкой специализацией в отношении растений-хозяев. Например, ложный осиновый трутовик (P. tremulae) паразитирует на осине, ложный трутовик (P. ignarius) (рис. 304) и трутовик скосенный (Inonotus obliquus) — на березе, сосновая губка (P. pini) — на соснах. Другие представители гименохетовых развиваются как сапрофаги на мертвой древесине, например Onnia tomentosa. Некоторые виды, в частности суханка (Coltricia perennis), растет на почве, иногда на погребенной и сильно разрушенной древесине. Все представители порядка вызывают белую гниль.

I. obliquus образует на березах в разрывах коры и в местах других повреждений наросты неправильной формы с черной поверхностью, с изрезанной глубокими трещинами. Это стерильная (не образующая сформированных плодовых тел с гименофором) форма гриба, которую называют чагой. Из чаги получаются препараты, используемые в медицинской практике.
ПОРЯДОК ЛИСИЧКОВЫЕ, ИЛИ КАНТАРЕЛЛОВЫЕ
(CANTHARELLALES)

Порядок лисичковые объединяет афилофороидные грибы, образующие однолетние, быстро загнивающие плодовые тела с мясистой, кожистой, реже хрящеватой консистенцией. Форма плодовых тел разнообразна: они бывают булавовидными или разветвленными в виде кустиков (роды Stichoclavaria, Clavulina), воронковидными (род Craterellus, рис. 305, Б), в виде шляпки с ножкой (роды лисичка — Cantharellus, рис. 305, А, и еховик — Hydnum). Часто плодовые тела имеют желтую или светло-оранжевую окраску, редко — серые или буроватые. Гифальная система плодовых тел обычно мономитическая, лишь у некоторых димитическая (обычно в основании ножки). Гименофор разных типов: гладкий, шиповатый или в виде складок, радиально расположенных снизу шляпки и похожих на пластинки агарикоидных грибов. Для многих представителей порядка характерны стихобазидии (семейства Cantharellaceae и Clavulinaceae), не встречающиеся в других группах, у остальных — хастобазидии. Базидиоспоры шаровидные или широкоэллипсоидные, неокрашенные или желтовато-охранные (споровый порошок), с тонкими, редко утолщениными гладкими стенками. Входящие в порядок виды развиваются как сапротрофы на гнилой древесине или лесной подстилке, некоторые образуют микоризу с деревьями (например, лисички).

Род лисичка (Cantharellus) характеризуется мясистыми плодовыми телами, состоящими из шляпки и ножки, обычно центральной. Мякоть ножки и шляпки однородная, шляпка не отделяется от ножки (так называемый кантареллоидный тип плодовых тел). Гименофор состоит из вильчато разветвленных складок с тупым закругленным краем, низбегающих по ножке. Наиболее распространенный вид этого рода — лисичка желтая (Cantharellus cibarius, рис. 305, А), ярко-желтые плодовые тела которой развиваются на почве в хвойных и смешанных лесах. Этот вид образует микоризу с сосной и, вероятно, с другими деревьями. Лисичка желтая — один из наиболее известных и популярных съедобных грибов.

Рис. 305. Представители порядка Cantharellales.

A — Cantharellus cibarius, B — Craterellus
Плодовые тела этого гриба содержат большие количества витаминов (В₁ и РР), в них никогда не заводятся личинки насекомых (не «червивеют»), так как они содержат соединения, ингибирующие линьку у личинок насекомых.

Серая лисичка (Craterellus cornucopioides, рис. 305, Б) образует воронковидные плодовые тела, внутри черные или коричнево-черные, снаружи серые, со слабо-складчатым или морщинистым гименем. Они развиваются на почве в лесах, обычно большими группами. Серая лисичка — малоизвестный съедобный гриб.

К этому же порядку относится род ежовик (Hydnum) с характерным шиповатым гименофором на нижней стороне шляпки. Часто встречается в хвойных и лиственных лесах ежовик выемчатый (H. repandum), с беловатыми, светло-оранжевыми или светло-окрашеными плодовыми телами в виде шляпки на ножке. Известный съедобный гриб, хотя и невысокого качества.

Таким образом, порядок лисичковые в его современном понимании объединяет несколько семейств. Кроме семейства лисичковые (Cantharellaceae) в него включены некоторые рогатиковые (семейство Clavulinaceae) и ежовиковые (семейство Hydnaceae).

Другие рогатиковые грибы, образующие булавовидные (род Clavariadelphus, рис. 306, А) или разветвленные в виде кустиков плодовые тела (род Ramaria, рис. 306, Б), включены в порядок гомфовые (Gomphales).

Наконец, небольшой порядок телепоровые (Thelephorales) объединяет афиллофоридные грибы со складчатыми или пушистыми базидиоспорами, имеющими хорошо выраженную орнаментацию — шипики или выросты. Плодовые тела в этой группе имеют разнообразное строение — от распростертых до состоящих из шляпки и ножки, с гладким или шиповатым гименофором. Представители порядка обитают на почве, на опаде и на древесине в лесах. Один из видов рода телепора (Thelephora), T. terrestris (рис. 307), часто встречается в сосновых лесах и на лесосеках. Плодовые тела этого гриба имеют вееровидную или воронковидную форму и темно-коричневую окраску. Гименофор бугорчатый, серый. Этот вид — сапротроф на подстилке, может также формировать микоризу.
Однако часто *T. terrestris* вызывает гибель сеянцев сосны и других деревьев в питомниках, развиваясь рядом с сеянцем. Плодовые тела гриба обволакивают его, используя как опору, что приводит к гибели сеянца.

Агарикоидные базидиомицеты

Базидиомы агарикоидных базидиомицетов обычно состоят из шляпки и ножки — центральной, реже эксцентрической или боковой. Сидячие базидиомы без ножки или с боковой ножкой характерны для некоторых видов, развивающихся на древесине, таких, как вешенка обыкновенная (*Pleurotus ostreatus*). Обычно ножка цилиндрическая, но может быть утолщенной у основания или вытянутой. Базидиомы образуются одиночно или группами, иногда скученно или образуют плотные группы.

Базидиомы однолетние, имеют мягкую, мясистую консистенцию, реже хрящеватые, волокнистые, кожистые или деревянистые. Гифальная система монохитическая.

Гименофор пластинчатый или трубчатый, иногда переходного типа. Пластинки образуются на нижней стороне шляпки и располагаются радially от ножки к краям шляпки. Они разнообразны — от очень тонких до толстых, частые или редкие, иногда редуцированы до складочек или отсутствуют вообще. У большинства представителей порядка болетовые (Boletales) гименофор в виде трубочек, которые, в отличие от трубчатого гименофора афиллофоридных грибов, легко отделяются от мякоти плодового тела; в своем происхождении связаны с пластинчатым гименофором. Об этом свидетельствует наличие у Boletales переходных форм гименофора, представленных анастомозирующими пластинками (например, у рода *Boletinus*). Гимений расположен внутри трубочек (рис. 308).

Пластинки агарикоидных грибов в сечении имеют вид треугольника, с двух сторон которого расположен гимений. Центральная стерильная часть пластинки или трубочки называется **трамой гименофора** (рис. 308, 309). Трамы могут быть организованы по-разному. Они подразделяются на шесть типов в соответствии с расположением составляющих их гиф. Тип трамы — важный таксономический

![Рис. 308. Разрез трубчатого гименофора.](image)

A — расположение гименофора; *B* — ноперечный разрез трубочек
признак на уровне порядка, семейства или рода. **Правильная трама** состоит из гиф с цилиндрическими клетками, расположенных более или менее параллельно. Иногда гифы переплетаются, сохраняя это направление (рис. 309, A). **Неправильная трама** состоит из неупорядоченного переплетения гиф (рис. 309, Б).

Для порядка сыроежковые (**Russulales**) характерна **неправильная гетеромерная трама** как пластинок, так и базидиомы в целом. В ее структуру кроме гиф мицелия входят крупные шаровидные клетки — сфероцисты (рис. 309, В). **Билатеральная трама** в центральной части образует тонкий, сложенный из параллельных гиф слой. От этого слоя гифы расходятся в двух противоположных направлениях к краям пластинки, образуя боковой слой трамы (рис. 309, Г).

Типичную билатеральную траму имеют пластинки видов рода мухомор, или аманита (**Amanita**), и трубочки и пластинки представителей порядка Boletales. Если центральный слой параллельных гиф в траме хорошо выражен, а кончики дивергирующих гиф вздуты, такую траму называют псевдобилатеральной. **Инвертированная (перевернутая, или обращенная) трама** сходна по строению с билатеральной, но гифы боковых слоев как бы перевернуты и направлены к центру пластинки (рис. 309, Д). Такая трама типична для семейства плуетейные (**Pluteaceae**).

Прикрепление пластинок к ножке — важный таксономический признак. Оно варьирует от свободных пластинок, не достигающих ножки или достигающих ножки, но не прикрепленных к ней (например, семейства Agaricaceae, Pluteaceae, Amanitaceae), до приросших разными способами и низбегающих.

Рис. 309. Типы трам гименофора.
A — правильная; Б — неправильная; В — неправильная со сфероцистами; Г — билатеральная; Д — инвертированная, или обращенная

Рис. 310. Типы прикрепления пластинок.
1—2 — приросшие; 3—4 — свободные; 5 — низбегающие
Они могут прикрепляться к ножке всем краем или зубцом или нисходить по ножке (рис. 310).

Плодовые тела развиваются разными путями. Традиционно выделяют три типа — гимнокарпный, гемиангикарпный и антиокарпный.

При гимнокарпном типе развития гименофор залагается открыто. Этот тип характерен для сыроеек (род Russula), большинства представителей семейства рядковые (Tricholomataceae) и некоторых других видов (рис. 311, A). У других агарикоидных грибов гименофор, несущий гимений, сначала прикрыт сплетением гиф — покрывалом. Это гемиангикарпный тип развития базидиом. У некоторых гемиангикарпных групп (например, у родов Amanita, Volvariella и др.) образуется общее покрывало, окружающее защитным слоем молодое плодовое тело. Одетое общим покрывалом плодовое тело имеет вид беловатого или сероватого яйца или шара. Затем по мере роста плодового тела ножка вытягивается, вынося шляпку вверх. Общее покрывало при этом разрывается и остается в виде вольвы у основания ножки и хлопьевидных чешуек на поверхности шляпки (рис. 311, B). Вольва может быть свободной, мешковидной (например, у бледной поганки — Amanita phalloides) или приросшей к ножке. В последнем случае она имеет вид узкой оторочки или концентрических валиков, чешуек или бородавок.

Рис. 311. Типы развития плодовых тел:

A — гимнокарпный; B — гемиангикарпный; I — общее покрывало;
2 — частное покрывало; 3 — вольва; 4 — кольцо на ножке; B — кортина
на основании ножки. У красного мухомора (*A. muscaria*) на поверхности шляпки хорошо заметны белые чешуйки, а у вздутого основания ножки — вольва с приросшим к ножке краем.

Частное покрывало у молодого плодового тела соединяет края шляпки с ножкой, прикрывая только формирующийся гименофор с гимением. При созревании края шляпки развертываются. Частое покрывало разрывается и остается в виде кольца на ножке, а у ряда видов — как бахрома по краю шляпки (рис. 311, Б). Частное покрывало с хорошо сохраняющимся кольцом на ножке характерно для родов шампиньон (*Agaricus*), гриб-зонтик (*Macrolepiota*) и многих других.

У представителей семейства паутинниковые (*Cortinariaceae*) покрывало тонкое, паутинистое (*коршена*), поэтому кольцо быстро исчезает и остается только в виде следов на ножке, иногда и по краю шляпки (рис. 311, В). У немногих видов, например у мокрухи еловой (*Gomphidius glutinosus*), покрывало слизистое.

Плодовые тела грибов с покрывалом могут иметь частное покрывало (род *Agaricus*), общее покрывало (род вольвариела — *Volvariella*) и одновременно общее и частное покрывала (род *Amanita*).

К агарикоидным базидиометам в современной системе относят некоторые группы, ранее относимые к гастерометам и имеющие антиокарпный тип развития плодовых тел. Так, секотиоидный тип представлен в семействе шампиньоновые (*Agaricaceae*) родом *Endoptychum*. Базидиоме имеют типичный агарикоидный вид (см. рис. 327, В), но закрыты до созревания пор, пластинки деформированы и базидии статисмоспоровые, в противоположность баллистоспоровым у большинства других. Экстремальный случай секотиоидного типа представляют клубневидные подземные плодовые тела с гимением, выстилающим внутренние полости (камеры). Такие грибы относятся к семействам ризопогоновые (*Rhizopogonaceae*), шамоникисевые (*Chamaeniiaceae*) — порядок *Boletales*, и эласмометовые (*Elastomycetaceae*) — порядок *Russulales*.

Базидиоспоры агарикоидных грибов, как правило, асимметричные, с хилумом (см. рис. 273), с ростковой порой или без нее. Они имеют разнообразную форму — от шаровидных до цилиндрических, иногда угловатые (например, в семействе энтоломовые — *Entolomataceae*), гладкие или разнообразно орнаментированные (точечные, шиповатые, бородавчатые, сетчатые и т.п.). Окраска спорового порошка также разнообразна: белая, кремовая, желтая, охрная, розовая, коричневая или черная. Часто в гимении присутствуют цистиды разнообразного строения.

Пряжки на мицелии агарикоидных грибов присутствуют или отсутствуют, обычно это признак уровня рода или семейства, иногда — порядка. Так, они отсутствуют у всех *Russulales*, у большинства *Boletales*, но присутствуют у всех строфариевых *Strophariaceae*, большинства рядковых (*Tricholomataceae*) и паутинниковых (*Cortinariaceae*).

Мицеллий агарикоидных базидиометов однолетний или многолетний. Базидии обычно существуют недолго — несколько дней или недель. Исключение составляют некоторые представители семейства *Tricholomataceae* (например, *Panellus*), базидии которых могут сохраняться месяц и более. Особый случай представляют виды рода негниючник (*Marasmius*), которые засыхают в сухую погоду, но возвращаются к нормальному размеру и функционированию после
увлажнения. Максимальное плодоношение у представителей группы наблюдается поздним летом и осенью, но некоторые сапротрофы могут плодоносить всю зиму в периоды оттепелей (например, зимний гриб — *Flammulina velutipes*).

Большинство видов агарикоидных грибов — сапротрофы, растущие на почве, растительных остатках (опаде, лесной подстилке и травянистых остатках) и древесине разной степени разложения. Они относятся к группам гумусовых (почвенных) и подстилочных сапротрофов и ксилоотрофов. Некоторые виды приурочены к определенным субстратам или растениям, другие используют их широкий спектр. Они играют важную роль в круговороте биогенных элементов в лесных экосистемах, разрушая стойкие лигно-целлюлозные комплексы подстилки и древесины.

Большое число видов группы — симбиотрофы, образующие эктотрофные микоризы с многочисленными древесными растениями. Они распространены почти исключительно в лесных экосистемах. Гифы таких грибов образуют на корнях микоризный чехол и частично проникают внутрь корня (см. рис. 188, 2). Микоризные грибы характеризуются разной специализацией в отношении древесных растений. Одни из них образуют микоризу с многими видами деревьев, другие имеют узкую специализацию в отношении отдельных видов или групп близких видов. Так, белый гриб формирует микоризу с многими деревьями — березой, дубом, грабом, буком, сосной, елью и имеет ряд специализированных форм, связанных с теми или иными видами. Виды рода масленок (Suillus) образуют микоризы с узким кругом видов деревьев: например, масленок лиственничный (S. grevillei) — с лиственницей, распространенные в лесах умеренной зоны масленок желтый (S. luteus) и масленок зернистый (S. granulatus) — с двухвойными соснами, например сосной обыкновенной.

Симбиотрофы получают от растений углеродное питание. Свободный мицелий гриба распространяется в почве, заменяя корню корневые волоски. Он получает из почвы воду, минеральные и органические соединения, часть которых поступает в корни. В исследованиях изотопными методами была показана неспособность передача к дереву через гифы грибов таких важнейших элементов, как фосфор, азот, калий и др. Через мицелий грибов происходит также обмен органическими веществами между растениями. Грибы образуют биологически активные вещества (антибиотики, витамины и др.), влияющие на развитие растений и защищающие их от заражения патогенными организмами. Симбиотрофные отношения важны, таким образом, как для гриба, так и для растения. Если мицелий симбиотрофов способен развиваться в почве или на искусственных питательных средах в отсутствие корней дерева, то в этих случаях плодовые тела обычно не образуются. С этим связаны неудачи попыток культивирования наиболее ценных съедобных грибов, таких, как белый гриб (*Boletus edulis*). Для деревьев образование микоризы также очень важно, особенно при росте на почвах с малодоступными для них источниками фосфора и других элементов. В отсутствие микоризы деревья развиваются хуже, отстают в росте и легко подвергаются заболеваниям. Это было показано при создании лесных полос в засушливых условиях степей нашей страны. Многочисленные исследования посвящены использованию микоризных грибов в лесном хозяйстве, в том числе при лесовосстановлении и защите деревьев от фитопатогенных грибов.
Симбиотрофия наблюдается преимущественно в эволюционно продвинутых группах агарикоидных грибов. Микоризы образуют все сыроежковые (Russulales), большинство белых (Boletales), паутинников (Cortinariaceae), виды рода мухомор (Amanita), среди представителей семейства рядковых (Tricholomataceae) — виды родов Tricholoma и Laccaria.

Распространенная форма роста многочисленных сапротрофов с многолетними мицелями, реже микоризообразующих грибов — так называемые «ведьмыны кольца». Мицелий таких грибов растет радиально во всех направлениях, а плодоношение формируется по периферии в виде кольца. Они могут достигать возраста нескольких сотен лет и диаметра от нескольких метров до нескольких десятков и даже десятков сотен метров. Кольца правильной формы наблюдаются обычно на открытых пространствах — в прериях, степях, на газонах. Так, луговой опенок — Marasmius oreades часто образует кольца плодовых тел на газонах. В лесах, где растущий мицелий встречает на своем пути многочисленные препятствия, плодовые тела часто располагаются незамкнутыми кольцами или отдельными дугами.

Паразитизм редко наблюдается среди агарикоидных грибов, но немногие паразиты известны на растениях и других грибах. Виды рода Armillaria, паразитирующие на широком круге деревьев и кустарников, — один из немногих паразитов, имеющих экономическое значение. Некоторые виды развиваются на старых деревьях, например Oudemansiella mucida, виды рода вешенка (Pleurotus), но характер их взаимодействий неясен: являются ли они сапротрофами или слабыми паразитами?

Известны немногочисленные виды агарикоидных грибов, паразитирующие на других грибах. Два вида рода Asterophora развиваются на плодовых телах видов сыроежка — Russula, три вида рода Collybia — на различных агариковых, Pseudoboletus parasiticus — на Scleroderma citrinum и др. Специальная форма паразитизма обнаружена у Gomphidius roseus, эктомикоризный мицелий которого паразитирует на эктомикоризном мицелии Suillus bovinus. Хотя эти виды всегда обитают только на агарикоидных грибах, характер их взаимодействия с хозяином практически не изучен.

Лихенизация известна у представителей рода Omphalina, в котором некоторье виды, особенно в условиях холодного климата, лихенизированы (см. также разд. «Лишайники»).

Большинство видов агарикоидных грибов встречается в лесах. Другие их местообитания — поля, луга, степи и дюны. Лишь немногие встречаются на безлесных болотах и в тундрах с Betula nana, Salix spp. Специальные местообитания представляют выжженные места и помет травоядных животных, где обитают многие виды этой группы (например, представители семейства навозниковые — Coprinaceae).

К агарикоидным грибам относится основная масса шляпочных грибов — съедобных и ядовитых, многие представители этой группы образуют биологически активные вещества, поэтому они всегда привлекали внимание многочисленных исследователей.
Группа агарикоидных грибов полифилетична: имеет по крайней мере три эволюционные ветви гомобазидиомицетов, включающих как агарикоидные, так и гастеридные формы (см. рис. 297), поэтому разработка ее естественной системы сопряжена с большими трудностями.

Система агарикоидных базидиомицетов за почти два века ее разработки претерпела большие изменения. В упоминающейся выше системе шведского ботаника Э.М. Фриза (Fries, 1794—1878), основанной на макроскопических признаках плодовых тел, прежде всего в строении гименофора, все представители этой группы были включены в семейство Agaricaceae. В дальнейшем М. Патуиар (Patouillard, 1900) выделил порядок Agaricales.

С начала XX в. основное направление исследований в систематике агариковых грибов представляли попытки создать филогенетическую систему этой группы. Полифилетичность ее была очевидна для агарикологов уже в первой половине прошлого века, что привело к пересмотру старой системы. Изучение онтогенеза плодовых тел, ряда микроскопических признаков, таких, как строение спор, тип трамы пластинок, некоторые характерные химические реакции плодовых тел и т.д., привело к увеличению числа семейств, включаемых в этот порядок.

Учитывая приведенные признаки, Р. Эйм (Heim, 1934) разделил порядок Agaricales M. Патуиар на три самостоятельных порядка: боблетовые (Boletales), агариковые (в узком смысле) (Agaricales sensu stricto) и сыроежковые (Russulales). Эти порядки в дальнейшем были признаны большинством микологов (Kreisel, 1969; Moser, 1978, 1983). Они хорошо подтверждаются современными данными молекулярной систематики и соответствуют в целом трем кладам — эуагариковых, боблетовых и русулоидных грибов, выделяемых на основании анализа последовательностей ядерных и митохондриальных рНК (Binder, Hibbett, 2002), а также других генов (Lutzoni et al., 2004). Эти же порядки приняты в последнем, девятом издании «Dictionary of the fungi» (Kirk et al., 2001).

Р. Зингер в фундаментальном труде «Agaricales в современной таксономии» (Singer, The Agaricales in modern taxonomy, 1962, 1975) принял только порядок Agaricales в понимании его М. Патуиаром. Он выделил в нем 17 семейств по строению плодового тела (по наличию или отсутствию частного и общего покрышки, строению и типу расположения пластинок по отношению к ножке), типу трамы гименофора, строению и окраске спор и т.д.

В последние 25 лет наблюдается общая тенденция к увеличению числа порядков и семейств, связанная с повышением в ранге до порядка ряда семей (например, семей Tricholomataceae, Cortinariaceae, Amanitaceae и др.), дробления семейств систем Р. Зингера (например, разделение семейства Tricholomataceae на 15 семей В. Юлихом — Jüllich, 1981) и введения в порядки Р. Эйма связанных с ними филогенетически семейств афиллофоридных и гастеридных грибов (например, введение в порядок Boletales семей Coniophoraceae, Sclerodermataceae, Rhizopogonaceae и др.). Таким образом, понимание порядков и их объема у разных авторов существенно различается. Наиболее взвешенной и удобной для упорядочения и определения грибов и в то же время не противоречащей современным молекулярным филогенетическим построениям мы считаем
систему, принятую М. Мозером (Moser, 1978, 1983), в которой выделены порядки Boletales, Agaricales и Russulales (по Р. Эйму) и семейства системы Р. Зингера (с некоторыми модификациями). Она и использована в настоящем учебнике.

ПОЯДОК БОЛЕТОВЫЕ
(BOLETALES)

У представителей порядка Boletales базидиомы большей частью мягкокислые, быстро загнивающие, с трубчатым, пластинчатым гименофором или гименофором переходного типа, из анастомозирующих пластинок. Трубочки легко отделяются от тяги шляпки. Трама пластинок и трубочек билатеральная. Развитие базидиом гимнакарпное или гемиангиокарпное с частным покрышаком. Споровый порошок — от светлолуккращенного до оливково-охрального, розового, бурого и почти черного. Ростковая пора в базидиоспорах отсутствует или мало заметна. У многих представителей в гимении есть цистиды.

В базидиомах или мицелии представителей Boletales присутствуют разнообразные производные пульвиновой кислоты или L-ДОФА (L-диоксифенилаланина), широко используемые в хемотаксономии этого порядка.

Важнейшие агарикоидные семейства этого порядка — болетовые (Boletaceae), свинушковые (Paxilaceae) и мокруховые (Gomphidiaceae). Многие микологи включают в этот порядок также ряд семей афиллофоридных (например, Coniophoraceae) и гастероидных (например, Rhizopogonaceae и Chamonixiaceae) базидиомицетов.

Семейство болетовые (Boletaceae). Гименофор трубчатый, легко отделяющийся от трамы плодового тела, по происхождению связан с пластинчатым. Споровый порошок бурый, оливково-бурый, желтый, розовый, белый. Базидиоспоры гладкие, без пор. Семейство включает около 300 видов, подавляющее большинство которых — симбиотрофы, образующие эктотрофную микоризу с древесными растениями. Представители семейства распространены исключительно в лесных экосистемах. К этому семейству относятся распространенные съедобные грибы: белый гриб — Boletus edulis (рис. 312, A); подосиновики — Leccinum aurantiacum (рис. 312, B); L. versipelle, L. percandidum; подберезовики — L. scabrum, L. melanum; маслята — Suillus luteus, S. granulatus, S. grevillei и др.; моховики — Boletus submontosus, B. chrysenteron и др.

Белый гриб характеризуется большим внутривидовым разнообразием. У него выделено 18 форм, отличающихся друг от друга окраской шляпки, наличием или отсутствием сеточки на ножке, приуроченностью к древесной породе и т.д. Некоторые микологи выделяют их как самостоятельные виды. Наиболее распространены следующие формы: еловая, типовая с буровато-коричневой шляпкой; дубовая с серовым оттенком шляпки; сосняковая, так называемая боровая, с буровато-вишневой или даже красноватой шляпкой; березовая с белой, беловатой или охристо-желтой шляпкой и т.д.

Семейство свинушковые (Paxilaceae). Свинушковые — грибы с крупными мясистыми базидиомами с центральной, эксцентрической или боковой ножкой.
Гименофор пластинчатый, причем нисходящие пластинки многократно разветвлены или соединены между собой многочисленными анастомозами, образующими сеточку, что сближает это семейство с Boletaceae. Споровый порошок — от белого до охрального. Споры гладкие, без поры. Семейство включает около 20 видов. Основной род свинушка — *Paxillus*. Наиболее распространены два вида: свинушка тонкая (*P. involutus*, рис. 312, В) и свинушка толстая (*P. atrotomentosus*). Первый вид встречается в разнообразных лесах, часто в изреженных, а также в нарушенных экосистемах, обычно большими группами. По данным многих авторов, вид ядовит.

Семейство мокруховые (*Gomphidiaceae*). У представителей этого семейства гименофор пластинчатый. Пластинки низбегающие или широко приросшие, толстые, тупые, восковидной консистенции, редкие, вильчато-разветвленные, беловатые, серые, охрено-розовые или оранжевые, затем темнеющие, до черных. Споровый порошок темно-бурый или черный. Базидиоспоры гладкие. Плодовые тела гемиангиокарпные, со слизистым или волокнистым частным покрывалом, быстро исчезающим. Виды этого семейства образуют микоризу с представителями семейства сосновых. Семейство включает два рода. В еловых лесах очень часто в августе и сентябре встречается мокруха еловая — *Gomphidius glutinosus* (рис. 312, Г), с толстым слизистым частным покрывалом, гладкой слизистой серо-коричневой шляпкой и очень характерной ножкой, ярко-лимонно-желтой в нижней части. Гриб съедобен.
ПОРЯДОК АГАРИКОВЫЕ, ИЛИ ПЛАСТИННИКОВЫЕ
(AGARICALES)

Базидиомы у представителей этого порядка мясистые, иногда хрящеватые, жесткие, кожистые, с центральной, эксцентрической или боковой ножкой, изредка сидячие. Гименофор пластинчатый, но у немногих видов редуцирован и тогда слабоскладчатый и даже гладкий. Трама пластинок разных типов, иногда даже в пределах одного семейства. Окраска спорового порошка также разнообразна — от белой до черной. Развитие базидиом гимнокарпное и гемиангиокарпное, могут присутствовать общее и/или частное покрывала. Группа, по многочисленным данным молекулярной систематики и традиционным таксономическим признакам, несомненно, филогенетически гетерогенна. Ниже приведены основные семейства, включаемые в этот порядок.

■ Семейство рядковые, или трихоломовые (Tricholomataceae). Это самое крупное семейство в порядке агариковые: включает до 70 родов и составляет около 25% всех видов этого порядка. Базидиомы рядковых обычно мясистые или волокнисто-мясистые, с центральной, эксцентрической или боковой ножкой. Гименофор пластинчатый, очень редко редуцирован до гладкого. Пластины приросшие или нисходящие. Трама пластинок правильная или неправильная. Базидиоспоры гладкие или орнаментированные (шероховатые, точечные, изредка шиповатые). Споровый порошок всегда светлоокрашенный — белый, кремовый, розовый, бледно-охристый или бледно-буроватый. Пряжки на мицелии присутствуют или отсутствуют, причем часто этот признак варьирует даже в пределах одного рода (например, Mycena). Среди рядковых представлены виды почти из всех экологических групп грибов: микоризообразователи, гумусовые и подстилочные сапротрофы, ксилотрофы, карпофилы, микофилы и т.д. Наиболее крупные роды: рядовка — Tricholoma (рис. 313, A), говорушка — Clitocybe (рис. 313, B), коллибия — Collybia, мицена — Mycena (рис. 313, B). Сюда относится широко известный сборный вид опенок осенний — Armillaria mellea (рис. 313, Г), разделенный сейчас на несколько биологических видов, один из немногих опасных паразитов деревьев и кустарников в группе агарикоидных грибов. Он распространяется при помощи ризоморф и часто занимает в лесах большие площади. В Северной Америке обнаружены клоны A. ostoyae и A. gallica, занимающие в лесах огромные площади (до 15 га). Виды этого рода образуют плодовые тела на деревьях и почвенных ризоморфах в августе—октябре. Зимний гриб (Flammulina velutipes) плодоносит поздней осенью и зимой во время оттепелей. Этот съедобный гриб культивируется в странах Дальнего Востока. У рода негниючник (Marasmius) плодовые тела не загнивают, а засыхают, а при увлажнении оживают и продолжают образование базидиоспор. К нему относятся съедобные луговой опенок (M. oreads, рис. 313, Д) и чесночник (M. scorodonius). Луговой опенок часто развивается на газонах и спортивных полях, образуя на них многочисленные «ведьмы кольца» и ухудшая их качество.

■ Семейство вещенковые, или плевротовые (Pleurotaceae). Семейство выделено из предыдущего и объединяет ксилотрофные грибы, обитающие преимущественно
на мертвой древесине и имеющие базидиомы в виде шляпок с эксцентрической или чаще боковой ножкой, иногда сидячие. Трама базидиом обычно плотная, в основании ножки часто жесткая. Пластинки низбегающие или приросшие. У некоторых видов на ножке присутствует кольцо. Споровый порошок белый или кремовый. К семейству относится род вешенка (Pleurotus), включающий
39 видов. Наиболее распространенный вид этого рода — вешенка утроичная (P. ostreatus, рис. 313, E), культивируется во многих странах. Этот вид способен активно разлагать субстраты, содержащие целлюлозу и лигнин, и может использоваться для утилизации различных отходов сельскохозяйственного производства. В последние годы установлено, что грибы рода Pleurotus образуют антибиотики, полисахариды с противоопухолевой активностью, действующие как иммуномодуляторы. У нескольких видов этого рода обнаружено образование ловастина — вещества, ингибирующего синтез холестерина.

Семейство мухоморовые, или аманитовые (Amanitaceae). Базидиомы у представителей этого семейства мякотястые, всегда с центральной ножкой. Гименофор состоит из свободных или почти свободных пластинок, трама пластинок всегда билатеральная. Базидиомы развиваются гемиангиокарпно, у всех представителей рода мухомор (Amanita) имеется общее покрывало, а у большинства видов этого рода — и частное покрывало. Вольва обычно хорошо выражена, свободная или приросшая (см. рис. 311, B). Базидиоспоры гладкие. Споровый порошок белый или зеленоватый. Представители семейства — симбиотрофы. Семейство включает два рода. Центральный род мухомор (Amanita) с белым споровым порошком, вольвой и у большинства видов с кольцом на ножке. Этот род содержит ряд ядовитых видов, из которых бледная поганка (A. phalloides, рис. 314, A) и мухомор вонючий, или белая поганка (A. virosa), смертельно ядовиты. Токсические вещества этих видов (валлоидины и аманитины) относятся к группе циклических полипептидов. Токсины из этой группы вызывают некроз клеток печени, а в более тяжелых случаях — и почек. Особенно опасны эти токсины потому, что не вызывают заметных симптомов отравления в течение длительного времени (до 24—48 ч), после чего помощь пострадавшему уже трудно.

Менее ядовиты мухомор поганковидный (A. mappa), мухомор пантерный (A. pantherina) и мухомор красный (A. muscaria) (рис. 314, B). Они содержат токсины с психотропным действием, т.е. вызывающие в первую очередь нарушения деятельности центральной нервной системы. Это три близких по структуре соединения — иботеновая кислота, мусцимил и мусказон.

Есть среди мухоморов и съедобные виды: мухомор толстый (A. spissa) и мухомор розовый (A. rubescens), растущие в лесах, однако их трудно отличить от ядовитых видов, поэтому они практически в пищу не употребляются.

Семейство плютеевые (Pluteaceae). Представителей этого семейства долгое время относили к семейству Amanitaceae, хотя они отличаются по ряду ключевых таксономических критериев. Пластинки у них свободные, как и в предыдущем семействе, но трама пластинок инвертированная. Базидиоспоры гладкие, без поры, но споровый порошок всегда розовый. Развитие базидиом может быть гемиангиокарпным, но в этом случае присутствует только общее покрывало, остакты которого хорошо заметны в виде свободной вольвы в основании ножки. Наконец, это семейство отличается от мухоморовых и по экологии. Его представители обитают на древесине, почве, иногда паразитируют на других агарикоидных грибах. К семейству относятся роды плютеев и вольвариелла. Род плютеев (Pluteus) включает съедобный вид плютеей оленей (P. cervinus) (рис. 314, B),
растущий в лесах на гниющих пнях и валежнике и образующий крупные плодовые тела без вольвы, с серовато-коричневой шляпкой. В его гимении кроме базидий с базидиоспорами и парафиз имеются крупные цистиды. Виды рода вольвариелла (Volvariella, рис. 314, Г) развиваются на древесине, часто в дуплах, реже на богатой перегнойной почве. Они всегда имеют вольву. Этот род включает съедобные виды, из которых V. esculenta и V. volvacea широко культивируют на рисовой соломе в странах Юго-Восточной Азии.

Шампиньоновые обитают на почве, часто на лесном и луговом перегоне, на муравейниках, на растительных остатках, изредка на живых растениях. В отличие от большинства агарикоидных грибов, обитающих преимущественно в лесных экосистемах, представители этого семейства часто встречаются в степях и полупустынях, на песчаных дюнах, полях, часто в теплицах и на городских газонах.

Наиболее крупные и широко распространенные роды семейства: шампиньон (Agaricus, рис. 315, A), зонтик (Lepiota), гриб-зонтик (Macrolepiota, рис. 315, B), виды которого имеют очень крупные плодовые тела с высотой ножки до 30 см и диаметром шляпки до 25 см. Шампиньон двуспоровый — A. bisporus, имеющий на базидии по две базидиоспоры вместо типичных четырех, — гумусовый сапротроф. Это один из немногих грибов, который успешно культивируют в специальных помещениях на конском навозе или других особом образом приготовленных субстратах во многих странах. История его культивирования насчитывает уже более 300 лет. Вид легко выращивается и в лабораторных условиях в вазонах. Плодовые тела можно получать даже в чашках Петри, что делает его удобным объектом для физиологических, биохимических, генетических и ряда других исследований.

Рис. 315. Семейства Agaricaceae (A, B) и Coprinaceae (B).
A — Agaricus; B — Macrolepiota; B — Coprinus

Представители этого семейства — сапротрофы, обитающие на подстилке, древесине, навозе. Род навозник (Coprinus) наиболее обширен: он включает около 100 видов. На богатой пергном почве особенно часто встречается очень крупный и съедобный в молодом возрасте навозник белый — C. comatus. У навозника домового — C. domesticus и некоторых других видов этого рода в лаборатории на искусственных питательных средах легко удается получать типичные плодовые тела. Эти грибы используют для генетических исследований, а также для изучения активности ферментов. У некоторых видов обнаружена способность синтезировать антибиотики.

Представители семейства Strophariaceae — сапротрофы на древесине, травянистых растительных остатках, реже на почве, немногие — паразиты на деревьях. Они распространены в лесах, парках, а некоторые виды — на лугах и пастбищах. Большинство видов этого семейства активно разрушают древесину и растительные остатки, участвуя в круговороте веществ.

Р. Зингер (Singer, 1986) включает в это семейство 9 родов. Из них широко распространены обитающие на древесине виды из рода гифолома (Hypholoma), включающего ложноопенок серно-желтый — H. fasciculare (рис. 316, А) и ложноопенок кирпично-красный (H. sublateritium), и рода чешуйчатка (Pholiota). К ним близок также род кюнеромицес (Kuehneromyces), к которому относится широко распространенный на древесине различных пород и всем хорошо известный вид летний опенок (K. mutabilis, рис. 316, Б). Этот вид успешно культивируется в ряде стран Европы на древесине и опилках. Широко используется в культуре
и кольцевик (Stropharia rugosa-annulata). Этот сапротрофный вид с крупными плодовыми телами легко вырашивается на соломе и картофельной ботве в ряде стран. Технология его выращивания была разработана специалистами-микологами в Германии в 60-х гг. прошлого века. К этому же роду относится распространенный съедобный гриб Stropharia aeruginosa (рис. 316, B), отличающийся редкой для грибов синевато-зеленой окраской. Этот вид образует небольшие группы базидиом в лесах на почве, часто у основания пней.

Род Psilocybe, принадлежащий к данному семейству, образует мелкие базидиомы с коническими или колокольчатыми шляпками и тонкими длинными ножками. Многочисленные виды этого крупного рода образуют галлюциногенные соединения псилоцибин и псилоцин, впервые полученные из гриба P. mexicana и близкие по действию к диэтиламиду лизергиновой кислоты (ЛСД). Многие виды этого рода хорошо растут и образуют базидиомы в культуре.

■ Семейство паутинниковые (Cortinariaceae). У представителей семейства паутинниковые образуется частое покрывало, большей частью паутинистое (корчина), реже слизистое или пленчатое; кольцо от него быстро исчезает или остается на ножке в виде волокон, часто расположенных кольцами (см. рис. 311, B). Ножка часто утолщена к основанию. Пластинки приросшие, иногда широко приросшие или нисходящие. Трама пластинок правильная. Базидиоспоры всегда без поры, разнообразные по форме и строению клеточной стенки. Спороный порошок ржаво-бурый. Виды этого семейства — часто микоризообразователи или гумусовые сапротрофы, редко — подстилочные сапротрофы, обитающие в лесах.

Семейство паутинниковые — одно из ведущих в микобиоте лесных экосистем. Оно включает до 14 родов, однако некоторые из них в настоящее время переходят в другие семейства. Наиболее крупные роды этого семейства — паутинник (Cortinarius) и волноконница (Inocybe). В первом из них насчитывают до 400 видов, преимущественно симбиотрофных. В еловых лесах часто встречается паутинник воючий — C. traganus желтовато-лиловатого цвета (рис. 317, A). Паутинник кроваво-красный — C. sanguineus также распространен в хвойных лесах. Этот вид легко узнается по кроваво-красной окраске базидиом. Повсеместно также
в хвойных лесах распространен паутинник красный — *C. armillatus* (рис. 317, Б). У этого вида корзина имеет буровато-красную окраску, и ее остатки образуют на ножке красные поперечные зоны.

В семействе паутинниковые известны смертельно ядовитые грибы. Это паутинник оранжево-красный — *C. orellanus* и близкие к нему виды, обрабатывающие группу токсинов орелланинов. По продолжительности латентного периода они превосходят даже токсины бледной поганки — аманиты. Первые симптомы отравления появляются не ранее 48 ч, а иногда — через две недели. Токсины отличаются очень высокой летальностью действия. Другой смертельно ядовитый вид из этого семейства — волоконница Патуйяра (*Inocybe patouillardii*, рис. 317, В) содержит в базидиомах большие количества алкалоида мускарина.

ПОРЯДОК СЫРОЕЖКОВЫЕ (RUSSULALES)

Этот порядок характеризуется прежде всего гетеромерной трамой базидиом, содержащей кроме гиф крупные пузырьковидные округлые клетки — сфероцисты (см. рис. 310, В), придающие ей на разломе слегка зернистый вид. Развитие базидиом происходит гимнокарпно, исключение составляют некоторые тропические виды и представители гастероидных семейств, включаемых многими микологами в этот порядок. Порядок включает одно агарикоидное семейство — сыроежковые.

■ **Семейство сыроежковые (Russulaceae).** Мякоть базидиом хрупкая, гетеромерная. У видов рода млекник — *Lactarius* в траме присутствуют толстостенные гифы, содержащие белый или окрашенный млекочный сок. Пластинки приросшие, выемчатые, слабонисходящие, при созревании часто почти свободные. Базидиоспоры имеют орнаментированную сетчатую оболочку. Споровый порошок и пластинки белые, кремовые или светло-окрашены. Практически все виды этого семейства микоризообразователи.
Семейство объединяет два рода и более 340 видов. Виды рода млекник (Lactarius) широко распространены в различных типах лесов. В хвойных лесах растут рыжик (L. deliciosus, рис. 318, A), волнушка (L. torminosus, рис. 318, B), груздь настоящий (L. resimus) и др. К роду сыройгек (Russula) принадлежат виды, не содержащие млекного сока. К нему относятся такие широко распространенные грибы, как подгрудок белый (Russula delica), валуй (R. foetens) и многочисленные виды сыройгек (рис. 318, B). Большинство видов семейства — съедобные грибы различных категорий.

Рис. 318. Порядок Russulales.
A — Lactarius deliciosus; B — L. torminosus,
B — Russula cyanoxantha

Гастероидные базидиомицеты

К сборной группе гастероидных базидиомицетов относят гомобазидиомицеты, имеющие плодовые тела гастерального типа. Развитие таких плодовых тел происходит ангиокарпно, т.е. они остаются закрытыми до полного созревания базидиоспор. Базидии к моменту созревания базидиоспор обычно разрушаются и не принимают активного участия в их освобождении. Базидиоспоры гастероидных базидиомицетов — статиспоры, в отличие от активно отbrasывающихся баллистоспор гомобазидиомицетов с гимениальным типом плодовых тел.

Форма плодовых тел у гастероидных грибов очень разнообразна. Они бывают шаровидными или (например, род порховка — Bovista, см. рис. 323, B) полушаровидными, клубневидными (роды Rhizopogon, Pisolithus, см. рис. 322, Г), в виде
ножки с головкой (например, род *Tulostoma*, см. рис. 322, 4) или шляпкой на вершине (веселка — *Phallus impudicus*, см. рис. 326, 4), бокальчатыми или часе-
видными (роды *Crucibulum* и *Cyathus*, рис. 324, 4, 5), звездчатыми (род *Geastrum*, рис. 323, 5) и т.п. Некоторые тропические представители группы имеют не-
обычную причудливую форму, например род решеточник (*Clathrus*, рис. 326, 6).
Размеры плодовых тел варьируют от нескольких миллиметров (например, у рода *Sphaerobolus*, см. рис. 325) до 50—70 см, иногда более метра в диаметре, как у лангерманий гигантской (*Langermannia gigantea*).

Плодовые тела гастерийидных грибов бывают подземными, полупогруженны-
ми в почву, развиваются под опавшими листьями в подстилке или на поверх-
nости почвы. Подземные и полупогруженные плодовые тела обычно бывают сидячими; фор-
mирующиеся на почве также могут быть сидя-
чими, но часто имеют ножку — настоящую или ложную. Последняя образуется вследствие раз-
растания периidia или стерильной части (тра-
мы) плодового тела (рис. 319, 4, 6), а также срастания ризоморф или мицелиальных тяжей.
У некоторых представителей порядка веселко-
вые (Phallales) — *P. impudicus* (см. рис. 326, 4), *Mutinus caninus* и др. — образуется специальная структура — рептичатка в виде ножки, имеющей губчатую структуру и выносящей наверх споро-
носную часть плодового тела — глюбу.

Плодовые тела гастерийидных грибов одеты периидием — оболочкой различного строения. У некоторых представителей этой группы пери-
dий простой, слабо дифференцированный, иногда исчезающий, например у клубнеобразных полуподземных плодовых тел видов рода *Gauteria*. У большин-
ства видов периидий хорошо развит и состоит из двух или более слоев, иногда функционально дифференцированных. В этом случае различают наружный слой — экзоперидий и внутренний слой — эндоперидий (рис. 319, 6). Экзоперидий часто бывает покрыт чешуйками, шипами или бородавками (рис. 319, 4), он мо-
жет слущиваться, открывая тонкий перепончатый эндоперидий.

У порядка дождевиковые (*Lycoperdales*) наблюдаются разные способы вскры-
vания экзоперидия. Так, у рода дождевик (*Lycoperdon*, рис. 319, 4) периидий двух-
слойный. Экзоперидий имеет вид многочисленных шипиков и бородавочек или чешуек, которые отпадают, освобождая эндоперидий. У видов рода звездовик (*Geastrum*) толстый гладкий периидий раскаляется лопастями (см. рис. 323, 6). Лопасти отгибаются и поднимают плодовое тело, одетое эндоперидием, над по-
верхностью почвы. В свою очередь эндоперидий вскрывается у представителей этого порядка одним (роды *Lycoperdon, Geastrum*), многочисленными отверстиями на вершине плодового тела, трещинами или в результате разрыва по экватору и опадения верхней части эндоперидия (род головач — *Calvatia*, см. рис. 323, 6).
В порядке веселковые — Phallales эндоперидий толстый, студенистый, предохра-
няющий спорообразующую часть от пересыхания.
Внутри плодового тела располагается спороносная часть, называемая глеобой. Глеба представляет сплошную массу и расположена в закрытых или сообщающихся камерах, стенки которых образованы стерильной тканью (сплетением гиф) — трамой (см. рис. 319, Б). Глеба в молодых плодовых телах белая или желтоватая, она меняет окраску на темную (оливковую, коричневую, бурую, иногда с фиолетовым оттенком) по мере созревания базидиоспор.

Форма базидий и расположение на них базидиоспор варьируют в широких границах — от недифференцированных, похожих на гифы, до яйцевидных, почти шаровидных и булавовидных. У некоторых представителей группы базидиоспоры сидячие, у других образуются стеригмы. Базидиоспоры формируются на базидиях апикально и латерально (рис. 320, А), их число часто больше четырех (6—14). Такое варьирование признаков базидий связано с тем, что они не участвуют в рассеивании базидиоспор, которые всегда освобождаются пассивно. Базидиоспоры имеют шаровидную, эллипсоидную, иногда цилиндрическую форму. Их стенка гладкая или орнаментированная (бородавчатая или бородавчато-сетчатая, рис. 320, Б), часто утолщенная и многослойная.

Базидии расположены в глебе или камерах неупорядоченно, например у представителей порядков тулостомовые (Tulostomatales) и склеродермовые (Sclerodermatales), или образуют гимений на стенках камер, например в порядках дождевиковые (Lycoperdales) и веселковые (Phallales). В настоящем гимении

Рис. 320. Гастеромицеты.
А — базидии, Б — капиллиций (1) и базидиоспоры (2)
базидии всегда выходят в полость камеры. У некоторых гастероидных грибов базидии образуют слой, но он не обращен в полость, а закрыт переплетением гиф. Такую структуру, типичную для порядка гнездовковые (Nidulariales), называют псевдогимением.

Глеба гастероидных грибов может иметь разнообразную консистенцию — пороистую, студенческую или мясистую. В плодовых телах многих видов с пороистой глебой присутствуют волокна капиллий, образующиеся из остатков трамы (см. рис. 320, Б). Капиллий обладает гигроскопичностью: длина его нитей изменяется в зависимости от влажности воздуха; они изгибаются, что способствует разрыхлению споровой массы и облегчает ее рассеивание. У некоторых видов трама сохраняется до созревания плодового тела. Так, у видов рода Scleroderma на разрезе плодового тела хорошо заметны белые участки трамы на фоне черных камер, заполненных окрашенными базидиоспорами. В порядке Nidulariales глеба распадается на небольшие округлые участки, одетые собственным перидилем — перидиоли, лежащие внутри бокаловидного или чашевидного плодового тела (см. рис. 324).

Выделяют несколько типов развития плодовых тел у гастероидных грибов:
- равномерный — базидии равномерно расположены по всей глебе и не образуют гименium (порядок Tulostomatales);
- лакунарный (рис. 321, А) — в плодовом теле формируются замкнутые камеры, на стенках которых неупорядоченно или в псевдогимении развиваются базидии (порядки Sclerodermatales и Nidulariales);
- кораллоидный, или фаротный (рис. 321, Б), — в центре плодового тела располагается трама, образующая коралловидные выросты и лопасти, формирующие камеры; базидии образуют на стенках этих камер гимениум; центральная часть трамы образует столбик — колумеллу (порядок Lycoperdales);
- аулеатный — развитие, обратное кораллоидному: трама закладывается по периферии плодового тела и дает коралловидные выросты и лопасти к его центру; как и в предыдущем типе, образуются камеры, в которых развиваются базидии, собранные в гимениум (род Rhizopogon);
- многошляпочный (рис. 321, В) — спорообразующие участки глебы развиваются независимо в нескольких местах плодового тела; трама часто образует рецептакул (род Clathrus);

![Рис. 321. Типы развития гастероидных плодовых тел.](image)

А — лакунарный; Б — кораллоидный; В — многошляпочный; Г — одношляпочный
• одношляпочный (рис. 321, Г) — трама развивается в верхней части плодового тела, образуя выrostы в виде пластинок, которые растут, ветвятся и анастомозируют, формируя камеры; базидии всегда образуют гимений. Из центральной части трамы развиваются колумелла или рецептакул; тип характерен для гастероидных грибов, образующих плодовые тела с ножкой или рецептакулом на поверхности почвы — семейства Phallaceae и так называемых агарикоидных гастеромицетов, плодовые тела которых очень похожи на плодовые тела агарикоидных грибов (см. рис. 327), а пластинки трамы и стенки камер напоминают их пластинчатый или трубчатый гименофор.

Хотя у гастероидных грибов не происходит активное отбрасывание спор, в процессе эволюции у этой группы возникли другие разнообразные механизмы эффективного рассеивания спор. Так, у видов рода Sphaerobolus (см. рис. 325) в результате внезапного расслоения периода и вовлекания его внутреннего слоя глеона базидиоспорами целиком выбрасывается из плодового тела на расстояние до нескольких метров. У большинства видов гастероидных грибов базидиоспоры переносятся токами воздуха. У видов, обитающих на открытых пространствах — в степях, полупустынях, пустынях, на лугах, споровая масса иногда почти полностью открывается и легко переносится ветром. Так происходит, например, у представителей родов Battarea и Calvatia, у которых отделяется или разрушается верхняя часть периода. У других шаровидные или почти шаровидные плодовые тела целиком отрываются от субстрата и, перемещаясь под действием ветра, рассеивают базидиоспоры.

У видов из порядка Lycoperdales, обитающих преимущественно в лесах, эффективность освобождения базидиоспор из плодовых тел повышается вследствие образования гигроскопического капилляра, способствующего разрыхлению массы базидиоспор.

В распространении базидиоспор многих гастероидных грибов участвуют животные. Так происходит перенос спор у некоторых грибов с подземными плодовыми телями, имеющими мясистую или студенистую в зрелости глеону (например, у видов из родов Melanogaster и Hymenogaster). Их запах привлекает насекомых или грызунов, которые поедают плодовые тела и переносят базидиоспоры. Хороший пример зоохории спор — представители порядка Phallales. Ослизняющаяся глеона Phallus impudicus издает резкий запах падали, привлекающий мух, которые переносят на теле слизистую массу с базидиоспорами гриба. У видов из семейства Clathraceae, принадлежащего к тому же порядку, слизистая глеона расположена внутри решетчатого рецептакула, яркая окраска которого, как и сильный запах, привлекают насекомых, переносящих их базидиоспоры.

Мицелий у гастероидных базидиомицетов хорошо развит и часто образует мицелиальные тяжи и ризоморфы толщиной до нескольких миллиметров, достигающие в длину нескольких метров. Такие мицелиальные тяжи образуют, например, Phallus impudicus, виды из родов Lycoperdon и многие другие. Образование тяжей повышает эффективность пространственного расселения и поиска подходящего субстрата.
Гастероидные базидиомицеты, в отличие от большинства агарикоидных грибов, часто обитают на открытых пространствах теплых регионов земного шара — степей, пустынь и полупустынь. Это — многочисленные виды из порядка Tulo-stomatales (например, виды из родов Battarea, Tulostoma, Phelloria), некоторые представители порядка Lycoperdales, так называемые «агарикоидные гастеромицеты», плодовые тела которых похожи на агарикоидные грибы (например, виды из родов Montagnea, Galeropsis, см. рис. 327) и др. Эти виды имеют многочисленные адаптации к обитанию в условиях сухого климата. Их микелиальные тяжи и ризоморфы часто проникают в почву на большую глубину и образуют песчаные чехлы с многочисленными капиллярами, по которым поступает вода. Они имеют обычно толстый перидий, у некоторых видов с желатинообразным слоем, хорошо защищающий глечку от высушивания. Нередко у таких видов плодовые тела имеют ножку, поднимающую глечку над поверхностью почвы, что улучшает рассеивание спор.

Большое разнообразие представителей гастероидных грибов наблюдается также в лесах. Виды из этой группы, обитавшие в лесах от умеренной зоны до зоны тропиков, разнообразны в экологическом отношении. Среди них есть кислотрофы (например, виды из порядка Nidulariales и некоторые представители порядка Lycoperdales), многочисленные почвенные грибы (представители порядков Phallales, Lycoperdales и др.), а также симбиотрофы, образующие микоризу с деревьями (виды из родов Scleroderma, Pisolithus, Rhizopogon и др.). Среди гастероидных гастеромицетов очень мало паразитов (например, Rhizopogon parasiticus, развивающийся на корнях некоторых видов сосен в Сев. Америке).

Гастероидные гомобазидиомицеты в традиционных системах группы объединяют в 9—12 порядков. Как отмечалось выше (с. 439), в классе гомобазидиомицеты представлено несколько эволюционных линий, в некоторых из них есть как гимениальные, так и гастеральные представители. Они имеют много общих черт в строении трамы плодовых тел, наличии стерильных элементов в гимении, строении и орнаментации базидиоспор и др. (например, присутствие сфероидов в траме и сетчатая орнаментация базидиоспор у Russulales и близких к этому порядку гастероидных грибов).

Данные молекулярной филогении подтверждают неоднократное возникновение гастерального типа плодовых тел в эволюции агарикоидных (Hibbett, Thorn, 2001; Binder, Hibbett, 2002). Поэтому многие микологии вводят в порядки и семейства агариковых грибов родственные им гастероидные группы (Heim, 1934; Kühner, 1980; Moser, 1983; Singer, 1986; Kirk et al., 2001). Так, семейства склеродермовые (Sclerodermataceae), ризопогоновые (Rhizopogonaceae), меланоспоровые (Melanosporaceae) и ряд других включают в порядок Boletales; дождевиковые (Lycoperdales), нидуляриевые (Nidulariaceae), готьериевые (Gautieriacae) и др. — в порядок агариковые (Agaricales). Некоторые гастероидные роды относят к семействам порядков Agaricales, Boletales и Russulales. Например, гастероидные роды Elasmomyces, Macowanites и др. включены в семейство Russulaceae, род Torrendia — в семейство Amanitaceae, Endotyphum — в Agaricales, Montagnea — в Coprinaceae, Galeropsis — в Bolbitiaceae и т.д. В некоторых системах (Kirk et al., 2001) сохраняется только один гастероидный порядок Phallales,
в который, однако, отнесены некоторые афиллофоридные семейства (Gomphaceae и др.).

Для удобства характеристики мы группируем гастеридные грибы в традиционные порядки, хотя они не всегда представляют монофилетичные группы. При их выделении учитывается комплекс признаков: тип развития плодового тела, образование базидий в гимении или неупорядоченно, характер глебы и трамы, строение и длительность сохранения периция и др. По длительности сохранения периция эти порядки можно разделить на две группы.

У первой группы глеба обнажается только после полного созревания базидиоспор, когда она почти или полностью разрушена. Глеба обычно превращается в порошок, содержащий споры и часто капиллиций. Лишь у немногих трама сохраняется до освобождения базидиоспор. Базидии расположены в камерах неупорядоченными группами или образуют гимении на стенках камер. Тип развития плодовых тел равномерный, лакунарный, или коралловидный. Ниже приводится описание основных порядков.

ПОРЯДОК ТУЛОСТОМОВЫЕ
(TULOSTOMATALES)

Развитие плодовых тел тулостомовых происходит по равномерному типу. Глеба не образует камер, базидии располагаются в ней одиночно или группами. Зрелая глеба распадается в порошок и не разделена стерильными участками. У части видов образуется капиллиций. Плодовые тела наземные, с вытянутым деревянистым стерильным основанием или у некоторых в зрелости — с хорошо развитой деревянистой ножкой, на вершине которой формируется головка, содержащая глебу. Периций двухслойный. Экзоперидий быстро исчезает или, разрываясь, образует вольву у основания ножки. Эндоперидий, одевающий глебу, тонкий, кожистый или бумагообразный, раскрывается на вершине правильным отверстием (род Tulostoma) (рис. 322, A) или экваториальным разрывом, после чего верхняя часть эндоперидия опадает, оставляя на ножке нижнюю часть с порошащей глей; (род Battarea, рис. 322, B). У рода Bellorinia эндоперидий вскрывается неправильно щелью или разрывается и опадает. Представители порядка — сапротрофы на почве, распространенные преимущественно в степных и пустынных регионах земного шара. Представители родов Battarea и Bellorinia часто встречаются на такрах и солончаках.

ПОРЯДОК ЛОЖНОДОЖДЕВИКОВЫЕ, ИЛИ СКЛЕРОДЕРМОВЫЕ
(SCLERODERMATALES)

Развитие плодовых тел у этой группы происходит по лакунарному типу. Типичного гимении нет, базидии располагаются группами в камерах глебы. Плодовые тела шаровидные или клубневидные, сидячие или изредка с ложной ножкой, часто с хорошо развитыми мицелиальными тяжами. Периций однослоинный, толстый, кожистый или корковидный, часто чешуйчатый или бородавчатый. Глеба сначала белая, плотномясиствая, позднее разделяется на камеры
и приобретает черноватую, с фиолетовым оттенком окраску с белыми прожилками трамы. Вследствие длительного сохранения трамы глеча у представителей этого порядка сохраняет жесткую консистенцию до освобождения спор. Глеча в зрелости порошистая, каппиллий не образуется. Представители этого порядка обитают преимущественно в лесах и образуют микоризу с деревьями.

Виды рода ложнодождевик, или склеродерма (Scleroderma), образуют клубневидные или округлые плодовые тела на поверхности почвы. В лесах разного типа очень часто встречается ложнодождевик обыкновенный (S. citrinum, рис. 322, B) с толстым, кожистым, бородачатым или чешуйчатым однослоистым перицием. Базидиоспоры гладкие. Плодовые тела с приятным пряным запахом. Вид ядовит. У видов рода пизолитус (Pisolithus, рис. 322, Г) плодовые тела имеют булавовидно-грушевидную форму и ложную ножку. Их глеча распадается в зрелости.
на гороховидные перидиоли с базидиями и шаровидными базидиоспорами. Виды этого рода активно образуют микоризы с деревьями и используются в последние годы при восстановлении лесов. *P. arrhizus* образует биологически активные вещества, защищающие деревья от инфекции фитопатогенными грибами.

ПОРЯДОК ДОЖДЕВИКОВЫЕ
(LYCOPERDALES)

Развитие плодовых тел у дождевиковых происходит по кораллоидному или лакунарному типу. В камерах глебы базидии образуют гимений. Плодовые тела наземные, разнообразной формы — шаровидные, грушевидные, булавовидные или звездообразные, сиячие или со стерильным основанием, часто вытянутым в ложную ножку (рис. 323). Перидий состоит из двух—четырех слоев. Экзоперидий распадается на чешуйки или куски или разрывается радиально на правильные отгибающиеся лопасти (рис. 323, Г). Эндоперидий кожистый или бумажообразный, вскрывается одним отверстием на вершине, многочисленными отверстиями или его верхняя часть отпадает, обнажая глебу (рис. 323, Б). Глеба состоит из многочисленных извилистых камер и пластинок трамы, при созревании распадается в порошкообразную массу с капилляцией. Порядок включает большое

Рис. 323. Порядок Lycoperdales.
A — Lycoperdon; Б — Calvatia; В — Bovista; Г — Geastrum
число видов, разнообразных по местообитанию. Это почвенные сапрофиты или ксилофиты, распространенные в лесах, на лугах, в степях и пустынях. Основные роды этого порядка — дождевик (Lycoperdon, рис. 323, A), головач (Calvatia, рис. 323, B), порховка (Bovista, рис. 323, B), звездовик (Geastrum, рис. 323, Г).

Виды рода Lycoperdon — всем хорошо известные «дождевики». Обычный вид, часто встречающийся на почве в лесах, на лесных полянах и на лугах, — дождевик шиповатый — L. perlatum, с эпидермисом, покрытым крупными пирамидальными бородавочками или шипами. Белая мякоть этого вида в молодом возрасте до образования базидиоспор и автолиза трамы и базидий съедобна. В лесах на гниющей древесине широко распространен другой вид этого рода — ксилофит L. pyriforme с мучнистым или мелкоклетчатым эпидермисом. Представители рода Calvatia с головчатыми сидячими или имеющими ложную ножку плодовыми телами обычно распространены на почве в лесах, на лугах, в степях, иногда в полупустынях. В зрелом плодовом теле эндоперидий в верхней части разрушается, и оно приобретает форму чашки или кубка, наполненного массой базидиоспор с капиллицием (рис. 323, Б). В лесах, на лугах, в садах, на пастве можно встретить C. utriformis с крупными плодовыми телами размером до 16 см.

Представители рода звездовик, или земляные звездочки, — Geastrum (рис. 323, Г), растущие преимущественно на песчаной почве в хвойных лесах, вначале имеют округлую форму. При созревании эпидермис звездчато разрывается на лопасти, которые отгибаются книзу. На вершине эндоперидия образуется отверстие, через которое рассеиваются базидиоспоры. Благодаря гироскопичности лопасти эпидермиса в сырую погоду отгибаются вниз, а в сухую загибаются вверху, прикрывая глюбу. Сейчас этот род на основании молекулярных данных отнесен к порядку Phallales (см. c. 479).

Молодая глюба дождевиков и головачей, находящаяся под перидием, остается стерильной и может использоваться как кровоостанавливающее средство. Из плодовых тел и культуры видов рода Calvatia и близкого к нему рода Langemannia выделен антибиотик кальвацин, обладающий противопухолевой активностью.

ПОЯДОК ГНЕЗДОВКОВЫЕ, ИЛИ НИДУЛЯРИЕВЫЕ (NIDULARIALES)

Развитие плодовых тел гнездовковых происходит по лакунарному типу. Базидии образуют псевдогимен. Плодовые тела значительно отличаются от плодовых тел других гастероидных грибов. Они обычно небольшого размера (от 0,1—0,2 до 1,5 см), чашевидные, бокаловидные или воронковидные, сидячие, с однослоинным или многослойным перидием. В них лежат, как яйца в гнезде, округлые тельца — перидиоли (рис. 324), откуда и произошло русское название группы. Перидиолы формируются в результате разрушения средних слоев трамы, образующей стерильные прослоеки между камерами. Слои трамы, окружающие камеры, формируют оболочку перидиолей. Перидиолы или лежат в перидиоле свободно (род Nidularia), или прикреплены к внутренней поверхности
ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

Рис. 324. Порядок Nidulariales.
A — Crucibulum; B — Cyathus

Рис. 325. Sphaerobolus.
A — внешний вид плодовых тел на субстрате; B — последовательные стадии отбрасывания перидиоли; В — строение плодового тела

перидий канатиком (роды Crucibulum и Cyathus). Перидиоли имеют шаровидную или линзовидную форму, часто с очень твердой оболочкой. Перидиоли выпадают из плодовых тел целиком или выбиваются из них каплями дождя на расстояние в несколько десятков сантиметров. Базидиоспоры освобождаются после разрушения оболочек перидиолей.

К порядку принадлежат преимущественно ксилофаги, обитающие на валежнике, небольших гнилушках, есть и сапрофаги на остатках травянистых растений. Основные роды порядка — гнездовка (Nidularia), бокальчик (Cyathus, рис. 324, B), крушибулюм (Crucibulum, рис. 324, A), сфераболюс (Sphaerobolus, рис. 325). Виды рода Sphaerobolus образуют очень мелкие плодовые тела (1—2 мм ширины), растущие скученными группами на гниющей древесине и содержащие всего одну крупную перидиолю. У сфераболюса звездчатого (S. stellatus) периций многослойный, он звездчато разрывается от вершины к основанию на пять—восемь лопастей, после чего внутренний слой (эндоперидий) быстро выворачивается наизнанку. Вследствие этого перидиоли получает сильный толчок и выбрасывается из плодового тела на большое расстояние.
ПОРЯДОК ГИМЕНОГАСТРОВЫЕ
(HYMENOGASTRALES)

Развитие плодовых тел у многих представителей этого порядка происходит по аулеатному типу. Базидии — от неравномерно разбросанных по стенкам камер до собранных пучками или образующих сплошной гимений. Плодовые тела подземные или выступающие на поверхность почвы, сидячие, иногда с ножкой. Перидий плодовых тел одно- или многослойный, иногда исчезающий, часто покрыт многочисленными мицелиальными тяжами. Камеры глеобы имеют разнообразную форму — от полушаровидных до вытянутых и извилистых. Трама состоит из мясистых пластинок, в зрелости соединенных с перидием; в этот период они часто расплываются, поэтому глеоба в зрелости слизистая. Гименогастровые обитают исключительно в лесах, где многие из них образуют микоризу с деревьями.

У видов рода ризопогон (Rhizopogon) плодовые тела клубневидные, 2—5 см в диаметре, образуются в почве на небольшой глубине и в зрелости часто выступают на поверхность почвы. При созревании перидий растрескивается, открывая слизистую зеленовато-желтую глеобу. Виды этого рода — микоризообразователи, перспективны для лесовосстановления.

У второй группы порядков гастероидных базидиомицетов глеоба обнажается рано, у зеленых плодовых тел она слизистая или в виде порошка базидиоспор без капиллиция. Базидии образуют гимений. Тип развития плодового тела одно- или многошляпочный, реже кораллоидный.

К этой группе принадлежат порядок веселковые (Phallales) и многочисленные «агарикоидные гастеромицеты», включавшиеся ранее в порядок подаксовые (Podaxales), а сейчас разнесенные по разным семействам порядков Boletales, Agaricales и Russulales.

ПОРЯДОК ВЕСЕЛКОВЫЕ, ИЛИ ФАЛЛЮСОВЫЕ
(PHALLALES)

Молодые плодовые тела представителей этого порядка имеют шаровидную или яйцевидную форму, реже цилиндрическую; одеты толстым белым или светлоокрашенным перидием. В зрелости перидий разрывается, и из него выходит рецепшакул различного строения, несущий глеобу. Глеоба мясистая или желатиносная, вначале разделена на лабиринтообразные камеры. В зрелости происходит автолиз стенок камер, и глеоба превращается в слизистую массу, содержащую базидиоспоры. Виды порядка Phallales обладают резким неприятным запахом, напоминающим запах падали и связанным с разложением глеобы. Запах привлекает насекомых, распространяющих базидиоспоры этих грибов.

Веселковые распространены преимущественно в тропических областях земного шара, где в тропических дождевых лесах их видовое разнообразие наиболее высоко. Они часто встречаются в субтропиках. Некоторые экзотические
виды (например, цветохвостник яванский — *Anthurus javanicus*, решеточник красный — *Clathrus ruber*, рис. 326, B), могут заноситься с почвой или растениями в оранжереи и акклиматизироваться в условиях умеренного климата. В лесах умеренной зоны широко распространена веселка обыкновенная — *Phallus impudicus* (рис. 326, A). Молодое плодовое тело этого вида одето белым толстым перидием и имеет вид крупного яйца. Внутри него дифференцируются рецептакул в виде цилиндрической полой ножки с губчатыми стенками и спороносная глеба в виде надетого на рецептакул колокола. При созревании рецептакул быстро вытягивается в длину до 30 см (скорость вытягивания может достигать 5 мм в минуту), разрывает перидий и выносит на вершине зеленовато-оливковую глебу в виде конусовидной ячеистой шляпки. Вскоре глеба расплывается в черно-зеленую слизь, содержащую базидиоспоры. В это время гриб легко обнаружить по издаваемому им неприятному запаху падали, привлекающему му, разносящих его базидиоспоры. Иногда у этого вида образуется индукция — ажурный сетчатый колокол, спускающийся из-под шляпковидной глебы и имеющий разную длину — до середины или до основания рецептакула. В народной медицине этот вид применяют как средство против подагры и ревматизма под названием «земляное масло», при этом используют внутренний слизистый слой перидия. Молодое плодовое тело в стадии яйца съедобно.

В подзоне широколиственных лесов большими группами встречается мутинус собачий (*Mutinus caninus*), по форме напоминающий веселку. Рецептакул у этого вида бледно-оранжевый или красноватый, переходящий на вершине в маленькую головку, несущую оливковую слизистую глебу. У решеточника красного (*Clathrus ruber*, рис. 326, B), распространенного в тропиках и субтропиках, рецептакул в виде сетчатого или решетчатого яйцевидного образования ярко-красного цвета, внутри которого находится темно-оливковая глеба, выстилающая его толстым слизистым слоем. Цветохвостник яванский (*Anthurus javanicus*) имеет сходное строение, но его рецептакул образует короткую ножку. От нее вверх отходят три—восемь лопастей, сросшихся на вершине, отчего плодовое тело имеет веретенообразную форму. Снаружи лопасти розово-красные, внутри покрыты оливковой глейбой. Причудливые формы плодовых тел и контрастные яркие краски рецептакула придают плодовым телам веселковых очень своеобразный красивый вид, за что они получили у ботаников название «грибы-цветы».

Рис. 326. Порядок *Phallales.*

А — Phallus; Б — Clathrus
Агарикоидные гастеромицеты

Так называемые «агарикоидные гастеромицеты» — группа гастероидных грибов, включаемых сейчас в различные семейства порядков агарикоидных грибов — Boletales, Agaricales и Russulales. Молодые плодовые тела у этой группы грибов яйцевидные или цилиндрические, одетые периидием. Затем периидий разрывается и глеба приобретает вид шляпки, сидящей на центральной ножке. Тип развития плодового тела одношляпочный. Глеба состоит вначале из лабиринтовидных камер, из стенок которых затем образуются пластинки, прикрепленные к внутренней стороне периидия. У части родов пластинки сохраняются (например, род монтанея — Montagnea, рис. 327, A), у других при полном созревании они превращаются в порошок (например, род подаксис — Podaxis, рис. 327, Б). Представители этой группы обитают преимущественно в степных и пустынных зонах земного шара.

Виды рода Montagnea образуют плодовые тела с сильно удлиняющейся ножкой, у основания которой остатки периидия образуют вольву. На вершине ножки

Рис. 327. Агарикоидные гастеромицеты.
A — Montagnea; B — Podaxis;
B — Endotyphum; Г — Galeropsis
Грибы и грибоподобные организмы

располагается шляпковидный диск. Глеба состоит из пластинок, которые радиально прикреплены к внутренней стороне или краю диска. Пластинки губы частые, немного извитые, твердые, черные. По внешнему виду такое плодовое тело напоминает шляпочные грибы. Род близок к семейству навозниковые (Coprinaceae), куда его и относят многие микологии. Montagnea arenicola широко распространена в песчаных пустынях и степях.

К этой группе относятся также роды галеропсис (Galeropsis, рис. 327, Г), плодовые тела представителей которого состоят из веретеновидной шляпки с тонкой длинной ножкой без вольвы, близкий к семейству Boletaceae; эндоптихум (Endopithewum, рис. 327, B), характеризующийся долго закрытыми плодовыми телями с очень короткой ножкой и широкооконечной или шаровидной шляпкой, близкий к семейству Agaricaceae, и многие другие.

ОТДЕЛ ДЕЙТЕРОМИЦЕТЫ, ИЛИ АНАМОРФНЫЕ ГРИБЫ (DEUTEROMYCOTA)

Дейтеромицеты, или анаморфные грибы, наряду с аскомицетами и базидиомицетами представляют один из крупнейших отделов грибов, включающий около 30% всех известных видов. Этот отдел объединяет грибы с септированным мицелием, весь жизненный цикл которых проходит в анаморфной, гаплоидной стадии, без смены ядерных фаз. Поэтому в прошлом эту группу грибов часто называли «неспособными грибами» в противоположность имевшим в цикле развития телеоморфу «совершенным гриbam».

Часто к группе дейтеромицетов относят как анаморфные виды, полностью утратившие способность образовывать телеоморфы, так и виды, обычно развивающиеся в анаморфной стадии, но в определенных условиях образующие телеоморфу, и анаморфы холоморфных видов (т.е. видов, всегда имеющих в цикле развития телеоморфу и анаморфу, см. также с. 338). Формально виды, образующие телеоморфы хотя бы спорадически, должны быть отнесены к таксону согласно этой телеоморфе, т.е. к соответствующим группам аскомицетов или, реже, базидиомицетов, и только строго анаморфные виды могут быть включены в Deuteromycota. В то же время в ключи для определения дейтеромицетов обычно включают и анаморфы холоморфных видов, так как в природе и в культуре на питательных средах исследователь чаще имеет дело именно с этой стадией.

Многие микологи возражают против выделения этого отдела, так как дейтеромицеты являются группой, гетерогенной по происхождению. В прошлом дейтеромицеты часто рассматривали как временную искусственную группу, объединяющую грибы, у которых известны только конидиальные стадии, а половые стадии — (сумчатые или базидиальные) пока не обнаружены. Предполагали, что по мере накопления знаний о всех несовершенных грибах будут найдены телеоморфы и эти грибы займут соответствующее место в системе среди аскомицетов или базидиомицетов.
Этот взгляд поддерживался тем, что у многих аскомицетов и некоторых базидиомицетов телеоморфы образуются редко, их трудно найти в природе и получить в условиях культуры. В процессе исследования дейтеромицетов многие из них действительно удалось связать с телеоморфными стадиями, доказать, что они представляют конидиальные стадии высших грибов (аскомицетов, значительно реже — базидиомицетов). Например, сумчатые стадии были найдены у многих видов аспергиллов (Aspergillus), фузариумов (Fusarium), представителей родов Bipolaris, Drechslera и многих других дейтеромицетов. Однако для большинства представителей этой группы связи с телеоморфами не установлена.

Особенно распространялся такой взгляд на дейтеромицеты в последние два десятилетия, когда в систематике и филогенетике грибов стали широко использоваться молекулярные методы и соответственно кладистский подход к системе, поскольку с позиций кладистики таксоном может быть только монофилетичная группа, а дейтеромицеты таковой заведомо не являются. Редукция полового процесса и увеличение роли анатоморф в сохранении вида хорошо прослеживаются в разных, далеко отстоящих друг от друга группах аскомицетов, например у эвроциевых (Eurotiales), гипокреных (Hypocreales), некоторых леоциевых (Leotiales) и в некоторых группах базидиомицетов. Утрата половых спороношений, по-видимому, происходила независимо в разных группах аскомицетов и базидиомицетов, поэтому полифилетичность дейтеромицетов очевидна.

Таким образом, дейтеромицеты существенно отличаются от других таксонов грибов, представители которых имеют общих предков, и могут образовать только формальный таксон. Искусственность любой системы такого таксона очевидна, а включение его составляющих в естественную систему возможно только путем установления их связей с исходными группами. Для некоторых из них аффинитет прослеживается достаточно четко (например, роды Aspergillus, Penicillium — Eurotiales; Trichoderma, Fusarium — Hypocreales), однако для большинства анатоморфных видов установление таких связей сложно и требует специальных исследований методами, ставшими доступными только в последние годы. Следует отметить, что анатоморфы мучнисторосляных (Erysiphales) и ржавчинных грибов (Uredinales), связи которых с телеоморфами очевидны, всегда помешались в соответствующие телеоморфные таксоны, а не в группу дейтеромицетов.

Молекулярные филогенетики считают необходимой интеграцию анатоморфных видов в систему телеоморфных грибов. Как результат такого подхода дейтеромицеты отсутствуют во многих современных системах в качестве самостоятельного отдела, а распределены по соответствующим таксонам аскомицетов.

Для практической интеграции анатоморфных грибов в систему аскомицетов и базидиомицетов рекомендуют использовать молекулярные методы. Однако, хотя сейчас уже собраны обширные данные о связях анатоморфных видов с телеоморфными, они далеко не полностью охватывают все их разнообразие. Дейтеромицеты (анатоморфные виды) — реально существующая группа грибов. Их полная интеграция в общую систему грибов — дело будущего, классификация же группы для практических целей требуется сейчас. Например, для идентификации видов необходимы таксоны и названия.
Исходя из этого мы сохраняем в системе грибов отдел дейтеромицеты (Deuteromycota), принимая во внимание, что это — искусственная формальная группа, выделяемая только на основании одного признака — отсутствия в цикле развития телеоморфы. Ниже приводится характеристика этого отдела.

Вегетативное тело дейтеромицетов представляет собой хорошо развитый ветвящийся гаплоидный мицелий, большей частью состоящий из многоядерных клеток. В мицелии всегда имеются септы (перегородки), обычно с прямыми порами, как у аскомицетов (см. рис. 233). Существуют немногочисленные дейтеромицеты и с септами, характерными для базидиомицетов. У аспорогенных дрожжей мицелий отсутствует, а вегетативное тело представлено почковующимися клетками (см. рис. 240).

Большинство дейтеромицетов размножаются при помощи конидий, лишь у немногих конидиальное спороношение отсутствует. Такие грибы часто образуют склероции (например, Rhizoctonia), а иногда встречаются только в виде стерильного мицелия.

Споры бесполого размножения — конидии — образуются на гаплоидном мицелии на многоклеточных, реже одноклеточных конидиеносцах, представляющих собой ветви мицелия, обычно поднимающиеся над ним. Они могут быть мальдифференцированными, могут не отличаться от вегетативных гиф мицелия, но чаще хорошо развиты. Увеличение продукции конидий достигается путем различного ветвления конидиеносцев (мутовчатое, моноподиальное, симподиальное, дихотомическое) (рис. 328, A), образования расширений или вздутий, несущих группы спор и расположенных на вершине конидиеносцев или интеркалярно (рис. 328, B), а также формированием конидий в длинных акропетальных и базипетальных цепочках (рис. 328, B).

У многих дейтеромицетов конидиеносцы объединены в группы на мицелии или внутри споровместилищ — пикнид. Простейшая форма такой агрегации конидиеносцев — коремии. Многочисленные конидиеносцы развиваются тесно сближенным пучком, обычно склеиваясь своими боками, а иногда анастомозируя. В результате этого образуется компактная колонка, на вершине которой на ветвях конидиеносцев синхронно развиваются конидии (рис. 328, Г). У ряда дейтеромицетов конидиеносцы образуют слой на поверхности выпуклого сплетения гиф или стромы в виде подушечек. Этот тип конидиального спороношения называют спороходиями (рис. 328, Д). Если конидиальные спороношения такого типа имеют слизистую или желобобразную консистенцию, а в основании более рыхлое сплетение гиф мицелия, их называют пионнотами. Конидии, формирующиеся в пионнотах, всегда погружены в слизь.

Ложа по характеру агрегации конидиеносцев напоминает спороходии, но конидиеносцы в них образуют тесный слой не на выпуклой строме, а на более или менее плоском сплетении гиф. Они часто встречаются у дейтеромицетов — паразитов растений. Ложе представляет собой в этом случае тесно скученные многочисленные конидиеносцы, сначала развивающиеся в ткани хозяина под кутикулой или эпидермисом, а затем прорывающие их и выступающие наружу (рис. 328, Е).
Рис. 328. Типы конидиальных спороношений.
A—B — одиночные конидиеносцы; Г — коремия; Д — спородохия; Е — ложе; Ж — пикнида

Наиболее сложная конидиальная структура — пикниды. Они имеют обычно шаровидную или кувшиновидную форму, одеты плотной светлой или темноокрашенной оболочкой с узким отверстием — порусом на вершине. Внутри пикниды плотным слоем образуются короткие конидиеносцы, на которых развиваются
конидии, выходящие затем из пикниды через порус или трещины в оболочке, часто в массе слизи (рис. 328, Ж).

Формирование конидий из конидиогенных клеток может происходить разными способами. По типу развития конидии дейтеромицетов относят к двум типам. Таллические конидии, или таллоконидии (артроконидии, меристемартроконидии и др.) образуются в результате трансформации элемента мицелия (конидиеносца или гифы). Увеличение размеров и дифференциация таких конидий происходят после отделения их септой от конидиогенной клетки; таким образом, конидии этого типа развиваются из целой клетки. Артроконидии образуются в результате фрагментации конидиеносца или гифы, например у видов рода Geotrichum (рис. 329, А). У некоторых грибов, например дерматофитов, образуются одиночные терминальные таллоконидии, или алевриоспоры (рис. 329, Б).

Второй тип образования конидий — бластический — характеризуется заметным увеличением зачатка конидии до его отделения перегородкой от конидиогенной клетки. Таким образом, конидии развиваются здесь из части клетки в отличие от конидий первого типа. На основе участия стенки конидиогенной клетки в формировании стенки конидии разграничивают три типа бластогенных конидий. У бластоконидий (или бластоспор) наблюдается холобластический тип развития: все слои стенки конидиогенной клетки участвуют в образовании стенки конидии. Бластоконидия развивается как вздутие конца конидиогенной клетки, которое затем отделяется перегородкой (этот процесс напоминает покачивание у сахаромицетов). Часто наблюдаются акропетальные цепочки бластоконидий, например у видов из рода Cladosporium (рис. 329, В).

Для пороконидий и фиалоконидий характерен энтеробластический тип развития. В формировании клеточной стенки пороконидий (или пороспор) принимает участие только внутренний слой клеточной стенки конидиогенной клетки. Они образуются путем покачивания через поры в стенках конидиогенных клеток. Пороконидии обычно толстостенные, располагаются по одной на вершине и по бокам конидиеносца. Конидии этого типа известны у представителей родов Bipolaris, Drechslera, Curvularia и некоторых других гифомицетов (рис. 329, Г). Наконец, при образовании третьего типа бластогенных конидий — фиалоконидий (или фиалоспор) клеточная стенка конидии формируется заново, и стенка конидиогенной клетки не участвует в ее возникновении.

Для некоторых видов грибов предполагают участие внутреннего слоя стенки конидиогенной клетки в построении стенки фиалоконидий, как и пороконидий. Фиалоконидии развиваются на фиалидах — конидиогенных клетках, обычно утолщенных у основания и слегка оттянутых в верхней части (рис. 329, Д). Важный отличительный признак фиалид — стабильный конидиогенный локус, т.е. их длина в процессе образования конидий не изменяется. Фиалоконидии образуют базипетальные цепочки или собираются в ложные головки, часто в слизи, на вершине фиалиды. Конидии такого типа характерны, например, для грибов из родов Acremonium, Penicillium, Aspergillus, Fusarium и многих других.

Близкий к фиалоконидиям тип конидий — аннелоконидии. Они образуются на конидиогенных клетках — аннелидах — энтеробластически, но в процессе их формирования аннелиды удлиняются в результате пролиферации через рубец отделявшейся конидии. В результате повторения этого процесса на вершине
Рис. 329. Типы морфогенеза конидий.

A — атроспоры; B — алевриоспоры; B — бластоспоры; Г — пороспоры; D — филоспоры

аннелиды образуются многочисленные следы рубцов от последовательных ко
нидий (рис. 328, B).

Конидии дейтеромицетов разнообразны по морфологии. Они могут быть одноклеточными или с различным числом перегородок, иногда муаральными (с поперечными и продольными перегородками). Обычно они шаровидные или эллипсоидные, но у некоторых известны нитевидные, звездчатые или спирально закрученные конидии. У водных гифомицетов они чаще всего три- или тетрарадиальные, реже симметричные (см. рис. 189, A). Окраска конидий светлая или темная, буровато-коричневая, что связано с наличием в них меланинов.
Грибы и грибоподобные организмы

Конидии несовершенных грибов, имеющие сухую поверхность, распространяются в основном воздушными течениями. В воздухе можно в больших количествах обнаружить конидии таких грибов, как виды из родов Alternaria, Cladosporium, Penicillium и многих других. В распространении представителей несовершенных грибов, конидий которых погружены в слизь, участвуют вода (часто капли дождя) или мелкие животные. При низкой влажности воздуха и высыхании слизи такие конидии переносятся также токами воздуха. Конидии детермомицетов, как правило, освобождаются пассивно.

Детермомицеты размножаются только бесполым путем, как клональные организмы, поэтому можно было бы предположить, что все особи, происшедшие из конидий, образовавшихся в одной колонии, и последующие их поколения будут изменяться очень мало — только за счет немногочисленных спонтанных мутаций и развиваться практически в виде чистых линий. Однако в природе у несовершенных грибов этого никогда не наблюдается. Напротив, они представляют одну из наиболее вариабельных и подвижных в экологическом отношении групп грибов, именно поэтому весьма широко распространенную в природе и заселяющую самые разнообразные субстраты. Это объясняется тем, что у несовершенных грибов очень часто мицелий гетерокариотичен, т.е. содержит генетически различные ядра. Происхождение гетерокарионов может быть различным — в результате мутации, изменений генома под воздействием мобильных, генетических элементов, формирования многоядерных конидий из многоядерных конидиогенных клеток, содержащих ядра разных типов, наконец, в результате образования анастомозов между мицелями. Однако образование гетерокариотического мицелия у детермомицетов в результате анастомозирования в значительной степени ограничено существованием вегетативной, или гетерогенной, несовместимости.

Гетерокариоз известен в различных таксономических группах грибов и грибоподобных организмов — у аскомицетов, ооомицетов и др., но у анаморфных грибов он представляет собой основной механизм изменчивости. В процессе развития гетерокариотического мицелия число ядер того или иного типа может варьировать в зависимости от изменения условий среды, обеспечивая таким образом адаптацию гриба к этим изменениям. Колебания числа ядер разных типов в зависимости от условий обитания обнаружены, например, у некоторых представителей родов Fusarium и Penicillium.

В некоторых случаях гетерокариоз может быть основой рекомбинации признаков. Однако в этом случае происходит не мейотическая, а митотическая рекомбинация: при митозе в изредка образующихся в гетерокариотическом мицелии диплоидных ядрах. Такие ядра, как правило, нестабильны и могут гаплоидизироваться в результате утраты ими хромосом. Процесс рекомбинации такого типа был назван парасексуальным процессом (Дж. Понтекорво). Парасексуальный процесс наблюдается в лабораторных экспериментах у разных групп грибов, однако его роль в природе пока остается неясной.

Детермомицеты широко распространены в природе во всех зонах земного шара. Многие из них обитают как сапрофиты в почве, составляя большую часть почвенных грибов. Они в изобилии встречаются на различных растительных
субстратах, реже на субстратах животного происхождения. Эти группы принимают активное участие в разложении органических остатков и почвообразовательном процессе. Например, виды рода Trichoderma — активные разрушители целлюлозы. Некоторые сапрофитные дейтеромицеты вызывают плесневение пищевых продуктов и порчу различных промышленных изделий.

Многочисленная группа несовершенных грибов паразитирует на высших растениях. Они вызывают серьезные болезни сельскохозяйственных культур, принося большой экономический ущерб: увядание (Fusarium oxysporum и Verticillium dahliae, поражающие хлопчатник и другие растения), различные пятнистости (виды Septoria, Cercospora и др.), гнили (виды Fusarium и др.).

Некоторые представители этого класса вызывают заболевания у животных и человека, например дерматомикозы. Развиваясь на зерне и других продуктах питания, отдельные несовершенные грибы выделяют в них токсины, которые могут вызывать тяжелые отравления при использовании таких продуктов в пищу человеком или при кормлении ими животных (например, трихотецы, образуемые многочисленными видами из родов Fusarium, Stachybotrys, Myrothecium и др.).

Среди несовершенных грибов известны многочисленные продуценты биологически активных веществ, используемые при производстве антибиотиков (пенициллин, гризеофульвина, фумагиллина, трихотецины, фузидина), различных ферментов и органических кислот. Несовершенные грибы, паразитирующие на насекомых-вредителях (энтомофильные грибы) и грибах, патогенных для растений (микопаразиты или микрофильные грибы), используются для разработки биологических методов борьбы с вредителями и болезнями.

Основной для современной системы дейтеромицетов послужила система несовершенных грибов, разработанная в конце XIX в. П.А. Саккардо. На основе строения конидиального аппарата этот отдель подразделяют на три класса. Кlass гифомицеты (Hyphomycetes) включает дейтеромицеты, образующие одиночные конидиеносцы и конидиеносцы, соединенные в керемии и спородохин, и соответствует порядку гифомицеты (Hyphomycetales) системы Саккардо. Кlass целомицеты (Coelomycetes) объединяет дейтеромицеты, формирующие ложа и пикники (порядки меланкониевые — Melanconiales и сфериопсидные — Sphaeropsidales системы Саккардо). Третий class (Agonomycetes) соответствует группе Mycelia sterilia системы Саккардо и объединяет дейтеромицеты, у которых отсутствуют конидиальные спороношения, а развиваются только стерильный мицелий, иногда со склероциями. Эта система искусственная и служит лишь для упорядочения большого разнообразия аноморфных видов.

Следует учитывать, что хотя в системе дейтеромицетов пользуются теми же таксономическими категориями, что и для других групп грибов, в них вкладываются иной смысл: это искусственные формальные группы, выделяемые на основе чисто внешнего сходства организмов, а не их родства. Например, род дейтеромицетов часто не соответствует истинному роду в обычном понимании — группе близкородственных видов. Он представляет искусственную группу, объединяющую виды со сходными конидиальными спороношениями, называемую обычно (в отличие от родов других организмов) формальным родом. Известно, что один род аскомицетов часто включает виды с разными конидиальными стадиями.
Так, у рода Mycosphaerella известны конидиальные спороношения типа Ramularia, Cercospora, Septoria и др., у рода Nectria — Acremonium, Fusarium, Tubercularia, Cylindrocarpon. С другой стороны, конидиальные спороношения различных родов аскомицетов, даже относящихся к разным порядкам, часто очень похожи. В результате этого в один род дейтеромицетов нередко входят роды, связанные по происхождению с представителями не только разных родов, но и разных порядков высших грибов.

Класс гифомицеты
(Hyphomycetes)

Гифомицеты — наиболее обширный и разнообразный в морфологическом и экологическом отношении класс дейтеромицетов. Они объединяют виды с одиночными конидиеносцами, а также с конидиеносцами, собранными в коконе и спороношении. Представители этого класса широко распространены в природе и имеют большое значение в практической деятельности человека. Они обитают как сапротрофы в почве и на растительных остатках, активно участвуя в процессах разложения органического вещества и образования гумуса. Некоторые из них могут служить индикаторами типа и стадии загрязнения водоемов. Водные гифомицеты играют существенную роль в разложении органических остатков растительного происхождения и образования детрита в водоемах.

Среди гифомицетов много паразитов, развивающихся на растениях, некоторых животных и грибах. Сюда относятся, в частности, дерматофиты так называемой антропофильной группы (заражают только человека), полностью утратившие телеоморфы. Многие болезни возделываемых растений, вызываемых гифомицетами, приносят большой ущерб сельскому хозяйству. Грибы — паразиты насекомых-вредителей и фитопатогенных грибов нередко значительно снижают численность популяций своих хозяев и используются для разработки биологических методов их контроля.

Известны хищные грибы, способные при помощи специальных ловчих при способлений улавливать микроскопических животных (нematод и др.) и использовать их в пищу. Многие гифомицеты — продуценты антибиотиков, ферментов и других веществ — широко используются в микробиологической промышленности. Большая группа представителей этого класса образует микотоксины, вызывающие токсикозы у человека и животных.

Наиболее широко распространенная группа гифомицетов — представители рода пеницилл (Penicillum) (см. также с. 362). Конидиеносцы у видов этого рода образуются на мицелии одиночно; у некоторых видов объединяются в коремии. Они разветвлены на вершине в виде кисточки. Наиболее просто устроенные кисточки пенициллов состоят из мутовки фиалид, расположенных на вершине конидиеносца, однако чаще они сложены из веточек, на которых развиваются метулы, а на них — мутовки фиалид (см. рис. 243). У некоторых пенициллов есть телеоморфы; такие виды относятся к отделу аскомицеты (см. с. 362). Однако у большинства видов этого рода сумчатые стадии неизвестны.
Пенициллы широко распространены в почве, они часто развиваются в виде плесеней на различных субстратах преимущественно растительного происхождения. Среди них известны немногочисленные паразиты невегетирующих частей растений — плодов, луковиц и др. Как пример можно привести виды пенициллов, поражающие плоды цитрусовых и вызывающие их гниение, — *P. digitatum* и *P. italicum*. Развиваясь на апельсинах или других цитрусовых, эти грибы образуют на их поверхности хорошо заметную плесень — налет конидиеносцев зеленовато-оливкового или сине-зеленого цвета.

Большое значение имеют представители этого рода, синтезирующие биологически активные вещества — антибиотики. Первым антибиотиком, получившим широкое распространение в медицине, был пенициллин, продуцируемый *P. chrysogenum* и другими видами этого рода. *P. chrysogenum* встречается в почве и на различных органических остатках. В культуре на питательных средах он образует зеленые колонии, выделяющие в среду желтый пигмент. Этот вид используемся как продуцент пенициллина в производстве. Пенициллин подавляет развитие многочисленных патогенных грамположительных бактерий — стафилококков и др. Сейчас получены полусинтетические производные этого антибиотика, действующие на более широкий круг болезнетворных бактерий (грамотрицательные, бактерии, устойчивые к природным пенициллинам, и др.).

Пенициллы используются и для производства другого антибиотика — гризеофульвина, применяемого в медицине для лечения дерматомикозов, вызываемых грибами-дерматофитами.

Представители широко распространенного рода аспергилл (*Aspergillus*) образуют конидиеносцы, верхняя часть которых имеет вздутие в виде пузыря. На нем развиваются фиалиды, а на них — базипетальные цепочки фиалоконидий (см. рис. 242). Как и у пенициллов, у некоторых аспергиллов известны сумчатые стадии, относящиеся к порядку эвроциевые (с. 361).

Аспергиллы обитают в почвах и на различных субстратах преимущественно растительного происхождения. Хорошо известный вид этого рода — *A. niger*. Он встречается в почвах всего земного шара, а также часто образует черную плесень на различных продуктах и материалах. В культуре этот гриб формирует характерные черные колонии. Он широко используется в микробиологической промышленности для получения органических кислот (например, лимонной) и ферментов — амилаз, протеиназ и др.

Распространенный в почвах и особенно на продуктах растительного происхождения (зерно, земляные орехи и др.), *A. flavus* образует микотоксины — афлатоксины, обладающие гепатотоксическим и канцерогенным действием.

Среди гифомицетов известны многочисленные паразиты растений, нередко вызывающие их серьезные заболевания, например гнили различных органов (серая гниль многих растений, вызываемая грибами из рода *Botrytis*, корневые гнили злаков и др.), поражения проводящей системы, приводящей к увяданию (вилт хлопчатника и других растений, вызываемый грибами из родов *Verticillium* и *Fusarium*), некрозы тканей, проявляющиеся в виде пятнистостей различных органов (церкоспороз сахарной свеклы, вызываемый *Cercospora beticola*), гельминтоспориозы многих растений, вызываемые грибами из родов *Bipolaris*, *Drechslera*, др.
и многие другие. Некоторые из этих грибов вызывают большие потери урожая.

Примером грибов этой группы могут служить виды рода *Fusarium*. У его представителей образуются два типа конидий — макроконидии и микроконидии. Макроконидии имеют веретеновидную или серповидную форму, состоят из нескольких клеток (4—10) и имеют довольно крупные размеры. Они образуются на конидиеносцах, часто собранных в спородохии. Микроконидии — мелкие одноклеточные конидии, реже они имеют одну-две поперечные перегородки (рис. 330).

Грибы этого рода широко распространены в природе как сапротрофы в почве и на растительных остатках, но большинство из них — паразиты растений, вызывающие увядание, корневые гнили и другие заболевания. Некоторые виды образуют микоризы.

Грибы этого рода известны телеморфы, относящиеся порядку гипокре́йные (с. 370).

Один из наиболее важных видов — *F. oxysporum*, возбудитель вилта (увядания) многих культурных растений (хлопчатника, льна, овощных и декоративных культур). При поражении этим грибом у растений замедляется рост, они теряют тургор, желтеют, а затем полностью усыхают. Иногда растения гибнут в течение нескольких дней после заражения. Многие виды служат причиной корневых гнилей злаков и ряда других растений.

Большое значение имеет способность грибов рода *Fusarium* образовывать токсины. Развиваясь на зерне или других растительных продуктах, многие фузариумы выделяют токсические вещества, вызывающие пищевые отравления у людей и животных. Известно несколько токсинов различной химической структуры, например сесквитерпеновые токсины — трихотецы и др.

Класс целомицеты
(Coelomycetes)

Класс объединяет дейтеромицеты, образующие конидии в специальных споровместилищах — пикнидах (порядок сфераопсидные — Sphaeropsidales) или на ложах (порядок меланконийевые — Melanconiales).
ПОРЯДОК МЕЛАНКОНИЕВЫЕ
(MELANCONIALES)

К порядку меланкониеевые относятся дейтеромицеты, у которых конидиеносцы собраны на сплетении гиф мицелия, образуя плотный слой. Такой тип спороношения называется ложем (см. рис. 328, Е). Ложе обычно погружено в субстрат и сверху прикрыто эпидермисом, кутикулой или перидермой растения-хозяйна.

Среди представителей этого порядка известны как сапрофиты на растительных остатках, так и паразиты растений. Паразиты вызывают у растений пятнистости и так называемый анtrakноз — пятнистость, сопровождающуюся изъязвлением тканей. Некоторые меланкониеевые служат причиной опасных заболеваний культурных растений: например, виды рода Gleosporium — возбудители анtrakноза винограда, смородины и других растений, а виды рода Colletotrichum — анtrakноза цитрусовых и фасоли. У некоторых представителей этих родов известны телеоморфы.

ПОРЯДОК СФЕРОПСИДНЫЕ
(SPHAEROPSIDALES)

В порядок сферопсидные объединены дейтеромицеты, образующие конидии в пикнидах (см. рис. 328, Ж; 331, А). Пикниды имеют шаровидную или грушевидную форму, иногда приплюснуты и открываются отверстием на вершине. Конидии развиваются на конидиеносцах, расположенных в полости пикниды на внутренней поверхности ее стенки. Иногда хорошо выраженные конидиеносцы отсутствуют, а конидиогенные клетки формируют слой на внутренней поверхности полости пикниды. Конидии в пикнидах обычно погружены в слизь и выходят наружу при ее набухании.

Сферопсидные обитают как сапротрофы на растительных остатках, иногда встречаются в почве, могут вызывать повреждения различных материалов и промышленных изделий. Большое число видов этого порядка — паразиты. Многие из них развиваются на высших растениях, вызывая у них пятнистости, некрозы и другие поражения. Среди них известны также паразиты грибов и насекомых (например, Coniothyrium).

Представители обширного рода септория (Septoria) образуют в шаровидных или приплюснутых пикнидах веретеновидные или нитевидные конидии с поперечными перегородками (рис. 331). У некоторых видов известны телеоморфы. Все виды рода — паразиты растений, вызывающие у них пятнистости — септориозы. Известны возбудители септориозов злаков, томатов и многих других растений.

Рис. 331. Septoria.
А — пикнида; Б — конидии

Опасное заболевание цитрусовых — усыхание, или мальсекко, вызываемое *Phoma tracheiphila*. Развиваясь в тканях растения, гриб синтезирует токсины, вызывающие их гибель. Пикниды гриба образуются на отмерших тканях дерева и содержат массу мелких одноклеточных конидий, выходящих из них в длинных слизистых шнурах.

Из сапротрофных сферопсидных можно назвать часто встречающийся на сухих стеблях травы и участвующий в их разложении вид из рода *Phoma* — *P. herbarum*. Он образует массу темных пикнид, содержащих одноклеточные эллипсоидные конидии. Конидиеносцы у этого гриба отсутствуют, и конидии развиваются из конидиогенных клеток, располагающихся слоем на внутренней поверхности стенки пикниды.

ЛИШАЙНИКИ
(ЛИХЕНИЗИРОВАННЫЕ ГРИБЫ)

Лишайники — симбиотрофные организмы, состоящие из микобионтов (грибы) и фотобионтов: популяций водорослей (включая цианобактерии), расположенных экстрацеллюлярно между грибными гифами. В отличие от грибов, паразитирующих на водорослях, лихенизированные грибы (грибы, образующие лишайники) не уничтожают своих фотоаутотрофных партнеров, от которых получают необходимые для жизни органические соединения.

Вегетативное тело лишайников — слоевище, может быть белым, серым, сизым, зеленоватым, различных желтоватых, оранжевых и коричневатых оттенков, почти черным. Окраска обусловлена наличием различных пигментов. Лишайники нередко смешивают с мхами, но они отличаются от последних отсутствием дифференциации слоевища на органы и отсутствием типично зеленой окраски.

Двойственная природа лишайников была открыта в 60-х гг. XIX в. немецким ботаником С. Швенднером. Доказательством такой природы служат: 1) морфолого-анатомическое строение лишайников; 2) отсутствие генетических связей между фотобионтом и микобионтом; 3) возможность изолирования в чистую культуру микобионта и фотобионта; 4) возможность ресинтеза лишайника из спор микобионта и соответствующей культуры фотобионта на синтетических средах.

Ископаемые находки лишайников редки. Самая ранняя находка — остатки циано лишайника *Winfrenatia reticulata*, современника самых ранних арбускулярных микоризных грибов, — датируется ранним девоном.
ЛИШАЙНИКИ (ЛИХЕНИЗИРОВАННЫЕ ГРИБЫ)

ОБЩАЯ ХАРАКТЕРИСТИКА
КОМПОНЕНТЫ ЛИШАЙНИКОВ

Известно 15—20 тыс. видов лишайников. Около 98% лихенизированных грибов относится к аскомицетам (из известных аскомицетных грибов лихенизировано 46%) и только 2% — к базидиомицетам. Около 85% лихенизированных аскомицетов образуют ассоциацию с одноклеточными или нитчатыми зелеными водорослями, приблизительно 10% — с синезелеными водорослями (цианобактериями), и 3—4% объединяются и с зелеными водорослями, и с цианобактериями (в цефалодиях). Из цианобактерий в лишайниках встречаются Dichotrix, Chlorella, Hyella, Calothrix, Scytopenema, Stigonema, но наиболее часто Nostoc и Gloeocapsa, из зеленых водорослей — Myrmecia, Coccomyxa, Chlorococcum, Gloeocystis, Trentepohlia, Stichococcus, Asterochloris. У 50% лихенизированных аскомицетов встречаются представители рода Trebouxia, которых известно около 20 видов. Изредка в лишайниках встречаются желтозеленые (Heterococcus) и бурье (Petroderma) водоросли.

Некоторые фотобионты широко распространены и встречаются вне лишайников как компоненты аэрофильных водорослевых или цианобактериальных сообществ, но водоросли из класса Trebouxiophyceae, характерные для многих видов лишайников, вне лишайниковых слоевищ встречаются очень редко. Так же редко встречаются вне лишайников Coccomyxa, Lobococcus и ряд других родов водорослей.

Фотобионты определены до вида менее чем у 2% лишайников (около 100 видов фотобионтов). У многих лишайников неизвестен даже род водоросли. Это связано с тем, что определить вид водоросли можно, только выделив ее в культуру, так как в лихенизированном состоянии у фотобионтов наблюдаются изменения в росте клеток и отсутствует половая стадия.

Внутри слоевищ лишайников у фотобионтов полностью или в значительной степени отсутствуют запасные вещества — крахмал, липиды, зерна цианофицина, гликогена и некоторые другие. Многие нитчатые водоросли распадаются на отдельные клетки. Половой процесс у водорослей подавлен, и внутри лишайникового таллома они размножаются апланоспорами.

В лихенизированном состоянии у водорослей рода Trebouxia в субапикальных частях слоевищ лишайников наблюдается задержка клеточного цикла, за счет чего увеличиваются размеры материнских водорослевых клеток, образующих автоспоры, и таким образом поддерживается определенный размер водорослевых клеток внутри слоевища. В старых, нерастущих частях слоевищ микобионт тормозит рост водорослевых клеток.

В отличие от многих родов фотобионтов, встречающихся вне лишайникового слоевища, микобионты в свободном состоянии в природе не найдены. Строение гиф микобионтов несколько отличается от строения гиф нелихенизированных грибов. Гифы микобионтов имеют утолщенные клеточные стенки, более широкие поперечные перегородки. В местах утолщения поперечных перегородок гифы расширенны, что способствует увеличению диаметра перфораций в перегородках.
и соответственно утолщению плазматического тяжа, обеспечивающего обмен веществами между соседними клетками.

Во внешних слоях оболочки гиф слизистых лишайников содержится большое количество пектина, поэтому при увлажнении такие оболочки сильно разбухают и осыпаются.

У лишайников, развивающихся на карбонатных породах, в гифах нижней части слоевища, контактирующей с субстратом, образуются крупные вздутые, мешковидной или шаровидной формы клетки с большим количеством жира. В слоевищах лишайников, которые растут на гранитах или на древесном субстрате, жировые клетки образуются очень редко.

По периферии внутрь клеток большинства исследованных микобионтов встречаются концентрические белковые тельца неизвестного происхождения и функции. Однако эти тельца не найдены у водных лишайников. Долгое время считалось, что концентрические тельца встречаются только у лихенизованных грибов, но они обнаружены также у некоторых групп сапротрофных нелихенизованных грибов.

Козеволюция с фотобионтами способствовала развитию у микобионтов специальных типов гиф, отсутствующих у других групп грибов: ищущих, охватывающих и двигающих. Ищущие гифы представляют собой боковые ответвления обычных гиф и имеют вид длинных тонких нитей с перегородками лишь у самого основания. Они служат для поиска фотобионтов. Эти гифы особенно хорошо заметны после прорастания споры. После того как ищущие гифы обнаруживают водорость, у них образуются тонкие боковые ответвления, с помощью которых они захватывают и оплетают клетки или нити водоросли. Эти повторно ветвящиеся гифы называются охватывающими. Если водорость подходит для образования нового слоевища, то охватывающие гифы делятся поперецными перегородками на короткие, обычно слегка вздутые клетки и вступают в контакт с будущим фотобионтом.

Двигающие гифы образуются в зоне развития фотобионта и служат для перемещения его клеток в растущий край слоевища, туда, где фотобионт отсутствует. Двигающие гифы окружают клетку фотобионта. Постепенно они увеличиваются в размерах и образуют пучок, обращенный к периферии слоевища. От сдавливания гифами фотобионт приобретает элипсоидную или грушевидную форму. Пучок двигающих гиф растет в направлении края слоевища и давит на окружающие гифы, в результате чего впереди пучка гифы расходятся и между ними образуется маленькая клиновидная полость, в которую и проталкивается клетка фотобионта. Так постепенно двигающие гифы переносят клетки фотобионта в растущий край слоевища.

МОРФОЛОГИЯ И АНАТОМИЧЕСКОЕ СТРОЕНИЕ СЛОЕВИЩ АСКОМИЦЕТНЫХ ЛИШАЙНИКОВ

Внешне лишайниковые слоевища кардинально отличаются от образующих бионтов. Поскольку большая часть слоевища большинства видов аскомицетных лишайников образована грибом, то такие лишайники можно рассматривать как
симвиотический фенотип грибов. Слоевище лишайника фактически представляет собой специализированные камеры для клеток фотобионтов, которые обычно обладают слабой конкурентной способностью в отношении лишенинизированных грибов.

Морфологически наиболее простым симбиотическим фенотипом является лепрозное слоевище. Оно встречается у некоторых порошкоплодных лишайников из подпорядка Lecanorineae порядка Lecanorales (например, у видов рода Chaenotheca) и представителей порядка Arthoniales (виды рода Chrysothrix), у стриальных лишайников неопределенной таксономической принадлежности (виды рода Lepraria). Внешне лепрозное слоевище выглядит как бельй, палевый или сернисто-желтый налет пудры на скалах или коре деревьев. В лепрозном слоевище гифы микобионта хаотически переплетены и оплетают группы одноклеточных зеленых водорослей. Многие виды лепрозных лишайников почти не намокают, поскольку поверхности клеточных стенок гиф гидрофобны и способны отталкивать воду. Слоевища лепрозных лишайников получают необходимую для жизнеобеспечения влагу из воздуха. Они часто развиваются в сухих, но затененных местах, нередко под нависшими скалами.

Примитивные слоевища встречаются также у некоторых лишайников, фотобионтом которых являются нитчатые зеленые водоросли из семейства Trentepohliaceae (виды родов Trentepohlia или Physollinium) или нитчатые цианобактериальные колонии Scytonema. Такие слоевища имеют микронитчатое строение, так как микобионт повторяет форму роста фотобионта.

Накипное слоевище (рис. 332) встречается во всех порядках. Исключение составляют виды из подпорядка Peltigerineae. Оно развивается на поверхности или внутри субстрата, и тогда его можно заметить только по плодовым телам, выступающим наружу. На поверхности субстрата слоевище выглядит как тонкая или толстая, гладкая или бородавчатая корочка. Корочка бывает сплошной или поделенной трещинками на маленькие площадочки — ареолы. Ареолированные слоевища развиваются только на каменистом субстрате. Иногда по краям накипного слоевища развиваются маленькие лапостинки. У некоторых накипных лишайников по краю слоевища имеется нелихенинизированная зона — подслоевище, в котором отсутствуют клетки фотобионтов. Подслоевище нередко окрашено иначе, чем слоевище, и тогда оно выглядит как кайма вокруг слоевища, обычно черного или белого цвета. Накипное слоевище настолько точно срастается с субстратом, что отделить его от субстрата, не повредив, практически невозможно.

Слоевище накипного слоевища может быть гомеомерным (однородным, не разделенным на слои) или гетеромерным (слоистым): с развитым коровым слоем, обособленной зоной фотобионта и сердцевиной, которая контактирует с субстратом.

Особое положение занимают слизистые лишайники, фотобионтом которых являются цианобактерии: виды рода Nostoc у представителей порядка Lecanorales (250 видов из 8 родов) и виды родов Calothrix, Dichotheix, Stigonema у представителей порядка Lichinales (260 видов из 37 родов). Для слизистых лишайников характерно гомеомерное слоевище.
Гомеомерное слоевище (рис. 333) характеризуется отсутствием обособленной зоны фоторионта и воздушной полости внутри слоевища. Гифы микобионта в таком слоевище растут внутри желятинового чехла цианобактериальной колонии, контактируя с клетками фоторизонта, но, как правило, не проникают в их муреновые мешочки. Желятиновые чехлы способны абсортировать большое количество воды, и при полном насыщении водой слоевище лишайника становится желеподобным, слизистым на ощупь. В слизистых лишайниках фоторионт играет значительную роль: он влияет на морфологию, водный обмен, определяет окраску слоевища. Коровый слой у большинства слизистых лишайников отсутствует; он развивается лишь у представителей некоторых родов (например, Leptogium). У видов сем. Collema-taceae слоевище лопастное (чешуйчатое или листоватое), у видов сем. Lichinaceae — ветвящееся.

Рис. 335. Cladonia stellaris. Кустистое слоевище
Большинство листоватых (рис. 334) и кустистых (рис. 335) лишайников имеют гетеромерное, т.е. состоящее из нескольких слоев, слоевище (рис. 336).

Слоевище листоватых лишайников обычно распространено по субстрату и имеет вид чешуек, розеток или довольно крупных, обычно разрезанных на лопасти пластинок. Слоевище кустистых лишайников имеет форму ветвящихся лент или развевленных стволиков, срастающихся с субстратом только своим основанием. У кустистых лишайников слоевище растет вертикально вверх или вбок от субстрата или свисает вниз в виде более или менее длинных прядей.

У морфологически продвинутых таксонов есть коровый слой, который развивается с обеих сторон или только с одной стороны слоевища. Нередко верхний и нижний коровые слои у листоватых лишайников отличаются по цвету, размерам и анатомическому строению.

Рис. 336. Анатомическое строение гетеромерного слоевища.

А — листоватый лишайник: 1 — верхний коровый слой, 2 — зона водорослей, 3 — сердцевина, 4 — нижний коровый слой; Б — кустистое слоевище Usnea: 1 — коровый слой, 2 — зона водорослей, 3 — периферическая часть сердцевины, 4 — осевой тяж (централизованная часть сердцевины)
Коровый слой (псевдопаренхима) образован параллельно или перпендикулярно (такой слой называется палисадным) расположенноими по отношению к поверхности слоевища, плотно прилегающими друг к другу гифами микобионта. Эти гифы имеют гидрофильные клеточные оболочки и обычно выделяют большое количество глюканов типа лихенина или пустулина, которые склеивают гифы, так что они оказываются в желатиновом матриксе.

Одиночные коровые клетки могут вытягиваться в нити, образуя на поверхности слоевища войлок. Нередко коровый слой сверху бывает покрыт тонкой полисахаридной пленкой, называемой эпикортеком. Эпикортек защищает нижележащие слои от потери воды. Иногда на поверхности корового слоя встречается эпинекральный налет. Он образуется в результате отмирания клеток корового слоя, реже — клеток водорослей или состоит из кристаллов оксалата кальция. У некоторых лишайников эпинекральный налет образован отмершими клетками корового слоя и кристаллами оксалата кальция. Он способствует рассеиванию света, а оксалат кальция в засушливых местообитаниях может быть также источником воды для лишайников.

Толстый коровый слой, который развивается у многих видов лишайников, особенно в аридных областях или в условиях высокой освещенности, препятствует газовому обмену. Поэтому в коровом слое таких лишайников имеются аэрационные поры: цибулли или псевдоцибулли. Цибулли образуются в результате расхождения гиф корового слоя, а псевдоцибулли (рис. 337) — при разрыве гиф. Гифы, окаймляющие цибулли или псевдоцибулли, имеют гидрофобную поверхность, поэтому в отличие от гиф корового слоя они не смачиваются водой, что способствует газообмену в насыщенном водой слоевище.

Коровый слой играет ключевую роль в водо- и газообменах и световой абсорбции. Поступление света к фотообионтам обусловлено гидратацией корового слоя. Свет частично задерживается корой. В этом процессе нередко участвуют и вторичные метаболиты («лишайниковые кислоты»), выделяемые микобионтом. Многие из них ярко окрашены и образуют кристаллы на поверхности корового слоя или в его желатиновом матриксе. Некоторые из них способны поглощать, преобразовывать или отражать свет, другие обладают антибиотической активностью и защищают лишайники от поедания животными. Коровый слой придает лишайникам также эластичность и механическую прочность, что препятствует разрыву слоевища.

Сердцевинный слой (пленкенхима) образован слабо переплетенными гифами микобионта, которые покрыты слоем гидрофобного белка гидрофобина. Пространство между гифами заполнено воздухом. У многих лишайников в сердцевинном слое откладывается большое количество кристаллов вторичных метаболитов («лишайниковых кислот»). В отличие от вторичных метаболитов нелихенизированных грибов, у лишайников это в основном полифенольные соединения, почти не растворимые в воде. Откладываясь на поверхности или внутри гидрофобного белкового чехла, они повышают гидрофобность гиф сердцевинного слоя.

Некоторые кустистые лишайники (виды рода Cladonia) имеют в сердцевине полость; у других, например у видов рода Usnea, в центре слоевища проходит сердцевинный тяж. Он образован параллельно идущими, плотно прижатыми друг
к другу гифами микобионта (рис. 336, Б). Длина слоевищ некоторых видов рода Usnea достигает десятков сантиметров, и сердцевинный тяж наряду с коровым слоем повышает прочность, препятствуя разрыву слоевища.

Зона фотобионта расположена у периферии сердцевинного слоя, ближе к верхней поверхности. Клетки фотобионта не имеют непосредственного доступа к воде и растворенным питательным веществам. Трехмерная дифференциация слоевища позволяет фотобионту располагаться в пространстве в некотором отрыве от субстрата, в оптимальных условиях освещенности и в оптимальном положении для осуществления газового обмена. Этому способствует и возможность перемещения клеток фотобионта в оптимальное для их жизнедеятельности положение внутри слоевища, осуществляемое гифами микобионта.

Некоторые лишайники помимо первичного фотобионта — зеленой водоросли, фиксирующей углерод, — имеют также вторичный фотобионт — цианобактерию, которая фиксирует также азот. Вторичный фотобионт располагается в специальных вместилищах, получивших название цефалодии. У большинства видов лишайников цефалодии внешние (рис. 338). Они представляют собой галлоподобные образования на верхней поверхности слоевища. Внутренние цефалодии расположены в сердцевинном слое; они характерны для небольшого числа видов (Nephroma arcticum, Solorina crocea и т.п.). Обычно в цефалодиях встречается только один вид цианобактерии. При этом для некоторых видов характерна удивительно высокая специализация. Например, у Peltigera aphthosa в цефалодиях развивается только Nostoc punctiformis. Но имеются лишайники, например виды рода Stereocaulon, у которых в цефалодиях несколько видов цианобактерий, относящихся к разным таксонам.

Процесс образования цефалодий изучен у ограниченного числа видов лишайников. Волосовидные грибные выросты корового слоя верхней или нижней поверхности или гифы нижней поверхности, при отсутствии нижнего корового слоя, при контакте с подходящей цианобактерией изменяют направление роста, выделяют слизистое вещество и обволакивают цианобактериальную колонию, формируя вокруг нее коровый слой. При образовании внешних цефалодий коровый слой слоевища в местах контакта с цефалодиями постепенно разрушается, и цефалодии оказываются непосредственно над слоем водорослей (первичного фотобионта), выступая на поверхности слоевища в виде крупинок или бородавочек. При образовании внутренних цефалодиев гифы нижнего корового слоя расходятся, и колонии цианобактерий проталкиваются внутрь слоевища, где располагаются под слоем водорослей.

Микобионт стимулирует у цианобактерий, заключенных в цефалодии, образование большого числа гетероцит, в которых фиксируется азот, и таким образом получает дополнительное азотное питание.

Лишайники прикрепляются к субстрату гифами сердцевинного слоя, ризоидами, ризинами или гомфом. Накипные лишайники не образуют специализированные органы прикрепления. Они плотно прирастают к субстрату всей своей нижней поверхностью. Листоватые чаще прикрепляются с помощью ризоидов, ризин, реже гомфом (род Umbilicaria), а кустистые — с помощью псевдогомфа или ризоидами. Органы прикрепления образованы микобионтом. Очень редко
у листоватых слоевищ органы прикрепления отсутствуют, и тогда они прикрепляются к субстрату отдельными малюсенькими выростами корового слоя (род Hypogymnia).

Ризоиды представляют собой тонкие нити, состоящие из одного ряда клеток. Они образуются из клеток гиф корового слоя. В образовании ризин принимают участие гифы нижнего корового слоя и сердцевины. Такой прикрепительный тяж снаружи покрыт гифами корового слоя, а внутри него располагаются гифы сердцевины. Гифы ризин плотно прилегают друг к другу и нередко склеены между собой желатинообразным веществом. Вблизи субстрата у самого кончика ризины гифы расходятся в стороны, образуя кисточку или формируя прикрепительную пластинку. На конце некоторых ризин выделяется желатинообразная капля, способствующая приклеиванию кончика ризины к субстрату. Образование ризин обычно начинается после соприкосновения слоевища с субстратом.

Ризины могут быть простыми, или в виде косиц, лохматых пучков, или фибриллезными, т.е. внешне походить на маленькие ершки. Хорошо развитые, густые ризины способствуют капиллярному поднятию воды от субстрата к слое-
вишу, что важно для лишайника, поскольку у него нет специальных структур для проведения и удержания воды внутри слоевища.

Гомф также образован гифами нижнего корового слоя и сердцевины, но внешне похож на толстую короткую ножку. В месте прикрепления гифы гомфа образуют зубцы, с помощью которых плотно прикрепляются к субстрату. В отличие от гомфа псевдогомф образован только гифами сердцевины.

ВЗАИМОДЕЙСТВИЕ МИКБИОНТА С ФОТОБИОНТОМ

Лишайники — комплексная система взаимодействия симбионтных партнеров, которая развидалась в процессе коэволюции, однако регуляторные механизмы симбиоза до сих пор неясны. Близкий кронтакт между обоими бионтами в лишайниковом симбиозе следует за попыткой гриба паразитировать на хозяине — фотобионте. У микобионтов имеются гифы, которые формируют аппрессории и гаустории, проникающие в клеточную стенку, но не проникающие обычно в плаэмомеми фотобионта. За исключением очень небольшого числа плохо сбалансированных лишайников, микобионты большинства лишайников переваривают только мертвые клетки водорослей.

Выделяемые микобионтом секреты представляют собой гидрофобный матрикс, располагающийся на поверхности гиф. В результате этого гриб и водоросль образуют структурное и функциональное единство. При этом фотобионт получает от микобионта только воду и питательные соли, а микобионт получает от водорослей продукты фотосинтеза, а от цианобактерий еще и азотистые соединения.

Тип взаимодействия определяется таксономической принадлежностью микобионта и фотобионта, тонкой структурой и составом клеточной стенки фотобионта, а также уровнем морфологической дифференциации слоевища. Морфогенетическое влияние фотобионта на симбиотические взаимоотношения велико, об этом свидетельствует тот факт, что у некоторых видов подпорядка Peltigerineae микобионт образует морфологически различные слоевища — кустистые или листоватые, в зависимости от того, зеленая водоросль или цианобактерия являются первичным фотобионтом. Такие морфы называют фотосимбиобиодесмами.

В местах контакта лихенизированных аскомицетов с цианобактериями гифы микобионта образуют выросты, проникающие в желатиновые чехлы цианобактериальной колонии, но которые не проникают в их муреновые мешочки.

В слоевищах накипных лишайников, фотобионтами которых являются зеленые водоросли (например, из родов Trentepohlia, Trebouxia), имеющие целлюлозные клеточные стенки, микобионты образуют внутриклеточную гаустории пальцеобразной формы (рис. 339, B).
Однако у многих лишайников контакт микобионта с водорослями осуществляется с помощью внутримембранных гаусторий, не проникающих внутрь клетки. Различают 2 типа такого контакта. Для первого типа характерны короткие палочковидные гаустории, проникающие внутрь клеточной стенки *Trebouxia*. В месте проникновения гаустории стенка фотобионта утолщается (рис. 339, B). Такой тип контакта встречается у представителей порядка Lecanorales, имеющих накипное или чешуичатое слоевище, например у видов семейства Cladoniaceae.

Второй тип контакта обнаружен у лишайников с листоватыми и кустистыми слоевищами, фотобионтом которых является *Trebouxia*. Микобионт образует едва различимые внутритехренные гаустории, не деформирующие клеточные стенки фотобионта (рис. 339, Г). Этот тип контакта характерен для представителей под порядков Teloschistineae и Lecanorineae (особенно для видов сем. Parmeliaceae).

РАЗМНОЖЕНИЕЛИШАЙНИКОВ

У лишайников существует три типа размножения: вегетативное, бесполое и половое. Размножается либо только микобионт, либо лишайник.

- Наиболее часто наблюдается **вегетативное размножение**, основанное на способности слоевища лишайника регенерировать из отдельных участков. Оно осуществляется путем фрагментации (отделение участков) слоевища или с помощью специальных образований — соредий или изидий.

Фрагментация происходит механически. Хрупкие в сухую погоду лишайники легко ломаются от прикосновения проходящих животных или людей, которые и переносят фрагменты слоевищ на различные расстояния. Обломки слоевищ, попав в соответствующие условия, развиваются в новые слоевища, однако фрагментация возможна только при механическом повреждении или разрушении слоевища. Обломки обычно остаются и развиваются в новое слоевище недалеко от материнского организма, что мало способствует расселению лишайников.

В процессе длительной эволюции лишайники выработали для размножения специальные приспособления, в которых присутствуют гифы микобионта и клетки фотообионта, но которые нередко значительно легче фрагментов слоевищ и поэтому могут расселяться на большие расстояния, — это соредии и изидии. Благодаря им микобионту не нужно затрачивать усилия на поиск подходящего фотообионта.

Соредии состоят из одной или нескольких клеток фотообионта, окруженных сплетением тонких, состоящих из коротких клеток, гиф микобионта. Скопления соредий в виде порошистой или гранулированной массы называются сора-
Рис. 340. Строение соралей.
А — сораль; Б — отдельные соредии

лями (рис. 340). Их форма и расположение на слоевище постоянна для вида. Они могут быть точковидными, головчатыми, щелевидными, манжетовидными, губовидными, шлемовидными; краевыми или поверхностными. Соредии образуются в зоне фотобионта. В некоторых местах фотобионты начинают усиленно делиться. Гифы микобионта, соприкасающиеся с делящимися клетками, начинают расти, вклиниваются между дочерними клетками фотобионта, разветвляются, разделяются и обвивают каждую клетку. Разрастаясь, гифы микобионта, как оберткой, покрывают клетки фотобионта. Постепенно образуются слои из таких клеток. Они давят на коровый слой, который от сильного давления разрывается, и соредии выходят на поверхность.

У некоторых лишайников, например у Lobaria pulmonaria или некоторых накипных лишайников, началу процесса деления водорослей предшествует усиленное разрастание гиф микобионта. И только после того, как образуется рыхлая масса гиф, начинается процесс деления клеток фотобионта.

Накипные лишайники значительно реже, чем листоватые и кустистые, образуют соредии. У слизистых лишайников соредии не образуются.

На образование соредий влияют экологические факторы — освещение, влажность и даже ориентация поверхности субстрата. На горизонтальных субстратах соредии образуются реже, чем на вертикальных.

Изидии представляют собой маленькие выросты на верхней поверхности слоевища (рис. 341). Они повторяют строение таллома лишайника, т.е. если лишайник покрыт верхним коровым слоем, то изидии также будут с коровым слоем, а если у лишайника, как, например, у Collema, коровый слой отсутствует, то его у изидий тоже не будет. Форма изидий различна: шаровидная, палочковидная, шпателевидная, коралловидная. Цвет изидий обычно такой же, как у слоевища, или чуть темнее. Строение изидий, их форма и местоположение являются значительными таксономическими характеристиками на видовом уровне.
У лишайников с коровым слоем изидии образуются путем разрастания и выпячивания гиф корового слоя. В дальнейшем сюда переходят клетки фотобионта. Расположение основных плентенхим внутри изидий соответствует такому же в слоевище.

Когда изидии отламываются и попадают на подходящий субстрат, из них развивается новое слоевище. Изидии не только участвуют в размножении лишайников, они увеличивают ассимиляционную поверхность слоевища. Кроме того, большое количество близко расположенных друг к другу изидий способствует задержке на поверхности слоевища влаги, которая так необходима для жизнедеятельности лишайников. У некоторых видов лишайников изидии развиваются только в очень засушливых местах, а в местах с высокой относительной влажностью воздуха изидии не образуются. На вершине изидий некоторых
видов лишайников развивается воздушная пора, и, таким образом, эти изидии участвуют также в аэрации внутренних слоев слоевища.

Виды, образующие соредии или изидии, реже образуют апотеции или перитеции.

Почти 60% известных лихенизированных грибов образуют конидиальные анаморфы. Конидии обычно образуются в конидиомах, которые могут быть шаровидной или грушевидной формы и имеют одночную пору, открывающуюся на вершине. Эти структуры называют также пикнидиами (рис. 342). Конидии образуются конидиогенными клетками, которые могут быть прямыми или ветвящимися и анастамозирующими. Конидии лишайников очень разнообразны по форме и величине. У некоторых видов лишайников одновременно развиваются разные типы конидий: микро-, мезо- и макроконидии. Конидии используют как диагностический критерий при разграничении видов и некоторых родов лишайников.

Роль конидий у лишайников до сих пор дискутируется. Имеются указания, что некоторые конидии могут функционировать как спермации. Другие исследователи считают их структурами бесполого размножения. Однако ни одна из этих точек зрения не имеет убедительных подтверждений.

Половое размножение у лишайников свойственно только микобионту. При половом размножении на слоевищах лишайников в результате полового процесса образуются плодовые тела, дающие споры много лет.

Плодовые тела лихенизированных аскомицетов принципиально не отличаются от нелихенизированных грибов. У лишайников встречаются апотеции, перитеции, псевдотеции и гистеротеции (исключение — клейстотеции, которые у лишайников не найдены). Развиваются плодовые тела у лишайников так же, как и у нелихенизированных грибов, по аскогимениальному или аскоколокулярному типу. Большинство лихенизированных грибов относится к аскогимениальным гриbam.
Рис. 343. Внешний вид апотециев и гистеротециев.
А — апотеций: 1 — край апотеция, 2 — диск апотеция; Б — гистеротеций.

При асколокулярном типе развития сумки появляются в полостях на ранних этапах формирования стромы, которая в дальнейшем будет образовывать гомокариотичную часть зрелого плодового тела. При аскогименциальным типе плодовое тело образуется после возникновения дикариотичной фазы.

Развитие плодового тела асколокулярных лишайников начинается с возникновения особой ткани, состоящей из тесного сплетения гиф, — стромы. В строме закладывается архиарх (женский половой орган), а затем появляются особые камеры — локулы, в которых формируются сумки со спорами. Большая часть грибной части между локулями отмирает, и от нее остаются лишь отдельные вертикально расположенные гифы, сросшиеся своими верхушками, — парафизы.

У аскогименциальных лишайников архиарх закладывается в верхней части сердцевинного слоя непосредственно среди вегетативных гиф. В плодовых телах формируется настоящий гимениальный слой, образованный вертикально стоящими сумками со спорами и развивающимися между ними грибными гифами — парафизами. Парафизы — это тонкие, простые или ветвящиеся, нитевидные гифы, толщиной не более 1,5—2 мкм, верхушки которых не срастаются.

Большинство лишайников образуют плодовые тела открытого типа — апотеции (рис. 343, А). Это округлые дисковидные образования, внешне похожие на маленькие блюда. Если несколько апотециев развивается рядом, то они нередко становятся угловатыми. Гистеротеции — это удлиненные, вытянутые в виде линий апотеции (рис. 343, Б). Апотеции располагаются обычно на поверхности слоевища, но у некоторых лишайников они могут быть погруженными.

В апотециях различают центральную часть — диск и периферическую — округлый, выпуклый валик, окружающий диск. Гаматеций развивается на поверхности диска. В нем выделяют три слоя: эпигимений (или эпитеций), гимений и гипотеций. Эпитеций образован выступающими над сумками, нередко булавовидно утолщенными, окрашенными и плотно прилегающими друг к другу концами парафиз. Этот слой защищает сумки со спорами. От окраски эпитеция зависит цвет диска. Ниже расположен гимениальный слой. В нем находятся сумки со спорами и парафизы. Под гимениальным слоем расположен слой из плотно
переплетенных гиф — гипотеций. **Гипотеций** образован основаниями парафиз и здесь же располагается аскогенный аппарат, из которого по мере созревания вырастают сумки. Гимениальный слой и гипотеций окружен, как оболочкой, слоем гиф — экципулом. Он может окружать их с боков и снизу, и тогда он напоминает чашу, или охватывать их только с боков в виде кольца. В экципуле различают внутреннюю часть — паратеций и внешнюю боковую часть — амфитеций.

Край апотеция окружает диск снизу и с боков. В зависимости от строения различают три типа апотеций: лецидеевые, леканоровые и биаторовые. Эти названия произошли от латинских названий родов лишайников: Lecidea, Lecanora, Biaora.

У лецидеевых апотеций экципул хорошо развит (рис. 344, A). Диск апотеция и край очень твердые и имеют одинаковую, обычно темную окраску. Гифы, образующие экципул, темноокрашены, плотно прилегают друг к другу, защищая апотеций с трех сторон. Верхний, кольцевой край экципула называют собственным краем апотеция. В собственном kraе и под апотецием фотобионт не встречается.

Леканоровые апотеции встречаются только у лишайников и имеют более сложное строение (рис. 344, B). У них развивается слоевищный край, в котором имеются клетки фотобионта. Происходит слоевищный край из кольцевого края амфитеция экципула. В амфитеции леканоровых апотеций можно различить коровый слой (иногда он отсутствует) и зону водорослей, которые у гомеомерных лишайников распределены равномерно в толще амфитеция. У гетеромерных лишайников встречается также сердцевинный слой. Слоевищный край окрашен так же, как слоевище, а диск может быть окрашен иначе.

Биаторовые апотеции по строению сходны с лецидеевыми (рис. 344, B). Отличаются от них более мягкой консистенцией и обычно светлоокрашенными гифами экципула и светлой окраской диска.

На образование апотеций влияют различные факторы. Неблагоприятные условия, такие, как высота снежного покрова и, следовательно, уменьшение периода вегетации, сильные ветры, отрицательно влияют на образование апотеций. В теплых местообитаниях количество апотеций обычно больше, чем

Рис. 344. Анатомическое строение апотеций разных типов.

A — лецидеевый; B — леканоровый; V — биаторовый; 1 — эпитеций; 2 — гимениальный слой; 3 — гипотеций; 4 — экципул; 5 — паратеций экципула; 6 — амфитеций экципула (слоевищный край)
в холодных. В полярных областях половой процесс у лишайников подавлен и репродуктивные структуры либо вообще не закладываются, либо встречаются крайне редко.

Перитеции — плодовые тела закрытого типа, кувшинкообразной или овальной формы, более или менее погруженные в слоевище лишайника (рис. 345). На вершине перитеция имеется отверстие — устьище, через которое выбрасываются зрелые споры. Стенки перитеция состоят из нескольких слоев. Типичный гимениальный слой располагается на внутренней, чашевидно вогнутой поверхности перитеция и заметен на ранних стадиях развития плодового тела. Он состоит из сумок со спорами и паразиз, которые у некоторых лишайников вообще не образуются или очень рано расплываются в слизь. Снаружи гимениальный слой окружает светло- или темноокрашенная оболочка — экскипула, состоящий в свою очередь из нескольких слоев гиф, разделенных на удлиненные клетки. Нередко сам экскипула снаружи бывает покрыт оболочкой — покрывальцем. Обычно покрывальце темноокрашенное и в зависимости от вида лишайника может охватывать экскипула со всех сторон, покрывать его до половины, развиваться только около устьища или вообще отсутствовать. Около устьища нередко развиваются особые защитные нитевидные гифы — перифизы.

У лишайников встречаются прототуникатные, уни-туникатные, фисситуникатные, битуникатные и леканоровые сумки (рис. 346).

Рис. 345. Перитеции.
А — внешний вид; Б — анатомическое строение; 1 — гимениальный слой; 2 — перифизы; 3 — гипотеций; 4 — экскипула
Они отличаются механизмом освобождения спор. В прототуникатных сумках специальный механизм освобождения спор отсутствует, и они просто освобождаются после разрушения стенки сумки. У лихенизированных грибов прототуникатные сумки вторичны. Унитуникатные сумки могут открываться с помощью крышек и без крышек, но у лишайников унитуникатные сумки с крышечками не встречаются. У многих лишайников унитуникатные сумки имеют 2 оболочки, которые не разъединяются при освобождении спор и функционируют как единая оболочка.

Фисситуникатные сумки представляют собой разновидность битуникатных. При освобождении спор оболочки разъединяются. Внутренняя сумка (эндоаск) выпрыгивает из расколающейся внешней оболочки, за что получила название «джек в ящике». Многие лихенизированные грибы, например роды Arthonia, Verrucaria, Opegrapha и др., имеют фисситуникатные сумки.

Наиболее распространен у лихенизированных аскомицетов леканоровый тип сумок (рис. 347). Леканоровые сумки представляют собой эволюционно древний тип сумок. Для них характерен комплекс верхушечного купола, который является утолщением внутренней оболочки сумки (эндоаска). Эта структура называется толусом. Внутренняя структура толуса хорошо просматривается в поле светового и электронного микроскопов. Она может быть довольно простой, но чаще высокодифференцирована. Здесь имеются окулярная камера и осевой канал. Если окулярная камера вытянута далеко внутрь верхушечного купола, то она может быть закрыта пробкой, но тонкий осевой канал обычно проникает внутрь этой пробки. Самая верхняя часть пробки называется осевым телом. Разные структуры верхушечного купола могут быть амилоидными (и тогда они окрашиваются раствором Люголя в синий цвет) и неамилоидными (не окрашиваются). Эти реакции имеют важное значение в диагностике семейств и родов лишайников.

Размеры спор лишайников разных видов и родов сильно колеблются. Максимальные размеры спор известны у Pertusaria velata и Varicellaria rhodocarpa. У последнего вида размеры спор 350×115 мк. Однако самые длинные споры у Bacidia marginalis — до 510 мкм. Самые маленькие споры имеют сферическую форму и встречаются у видов родов Biaorella и Acarospora.

Форма спор и их строение также разнообразны (рис. 348). Они бывают округлыми, эллипсоидными, яйцевидными, игловидными, веретеновидными, прямыми и изогнутыми, одноклеточными, двух- и многоклеточными. Кроме
поперечных перегородок в многоклеточных спорах встречаются продольные перегородки. Такие споры у лишайников называют муральными. Только у лишайников встречаются полярные споры (их чаще называют билатеральными). Эти споры имеют посередине толстую перегородку, внутри которой проходит тонкий канал. Лишайники с полярными спорами предпочитают в качестве субстрата морские скалы или известняки.

Распространяются лишайники с помощью ветра, капель дождя, струями воды, насекомыми. Тяжелые и большие пропагулы, какими являются, например, изделии или крупные споры, обычно прорастают недалеко от материнской особи. На небольшие расстояния их разносят дождевые капли или животные. Мелкие пропагулы (соредии, мелкие споры) распространяются на большие расстояния. Нередко их разносит ветер.

Попав в благоприятные условия, пропагула прежде всего «стремится» закрепиться на субстрате, и только после этого образуется новое слоевище. Рост соредии начинается с разрастания гиф микобионта, соприкасающихся с субстратом, чтобы закрепиться на нем. Соредии могут сливаться друг с другом. Внутри соредии или такой соредиозной массы происходит усиленное деление клеток фотобионта, рост гиф микобионта, и только после этого образуется новое слоевище.

Освободившиеся из сумок споры прорастают, образуя на поверхности субстрата тонкую сеточку из гиф. Гифы прилипают к субстрату желатинообразным веществом. Если гифы не встретят соответствующую данному микобионту водоросль, то они вскоре погибают. Однако некоторое время гифы могут существовать за счет любых водорослей, которые они встречают на своем пути, но образовать с ними новое слоевище лишайника не могут. При встрече с подходящим фотобионтом они охватывают его и заставляют усиленно делиться, образуя вместе с ним соредиоподобный налет на поверхности субстрата. Только после увеличения биомассы фотобионта до необходимого количества начинается процесс дифференциации слоевища.
По отношению к субстрату и факторам окружающей среды лишайники подразделяют на ряд экологических групп. Различают лишайники, растущие на почве, деревьях, камнях, мхах и других субстратах. Основное условие поселения лишайников — длительная неподвижность субстрата. Хотя некоторые лишайники могут расти на самых разнообразных субстратах, многие виды обладают избирательной способностью и поселяются на немногих или даже на одном типе субстрата. Нередко переход на другой субстрат вызван ухудшением условий существования вида, например макроклиматическими факторами, загрязнением воздуха и т.п. По отношению к субстрату выделяют эпигейные, эпилитные, эпифитные, эпиксильные, эпийроитфитные и эпифильные лишайники.

Эпигейные (напочальные) лишайники обычно поселяются на бедных питательными веществами почвах (песчаных, торфянистых, щебнистых и т.п.), мало пригодных для развития растений. В значительной степени видовой состав эпигейных лишайников обусловлен рН субстрата. Лишайниковые группировки формируются на почвах, имеющих кислую реакцию, отличаются от группировок лишайников, произрастающих на почвах, богатых известковым. Среди эпигейных лишайников встречаются кочующие формы, у которых связь с почвой практически отсутствует и они переносятся ветром (например, Xanthoparmelia camtschadalis, Aspicilia esculenta и др.), и постоянно прикрепленные формы. Отдельные пространства тундр и лесотундр покрыты лишайниками, среди которых встречаются роды Cladonia, Alectoria, Cetraria, Stereocaulon, Peltigera, Nephroma и др. В суших борах-беломошниках развит лишайниковый покров из кустистых лишайников рода Cladonia. Эпигейные лишайники часто растут вдоль дорог, на опушках, где слабо развит напочвенный растительный покров. В пустынях и полупустынях эпигейные лишайники часто представлены накипными формами, хорошо различимыми лишь во влажный период года. Здесь же встречаются кочующие лишайники.

Эпилитные лишайники развиваются на каменистом субстрате. Среди них есть виды с лепрозными, накипными, листоватыми и кустистыми слоевищами. Накипные могут быть эндоморфными — со слоевищем, великом погруженным в субстрат (например, некоторые виды рода Verrucaria), и полукамным, у которых внутри субстрата находится только сердцевина и прикрепляющие слоевища гифы, а верхняя кора и зона фотобионта расположены на поверхности. Из лишайников с накипными слоевищами на камнях произрастают виды родов Leccanora, Leceidea, Aspicilia, Acaerospore, Rhizocarpus и др., с листоватыми — Parmelia, Physcia, Umbilicaria и др., с кустистыми — Sphaerophorus, Stereocaulon и др. Среди эпилитных лишайников имеются кальциево-карбонатные виды, поселяющиеся на известняках и других горных породах, содержащих известковые (многие виды рода Verrucaria), и кальциево-карбонатные, растущие на гранитах и других неизвестковых породах (например, виды рода Umbilicaria). Среди эпилитных лишайников много видов с узкой субстратной амплитудой, которые растут исключительно на камнях и не переходят на другие субстраты.
Эпифитные лишайники, растущие на стволах и ветвях деревьев и кустарников, включают накипные, кустистые и листоватые формы. Среди накипных имеются гипофлеоидные виды, слоевища которых растут под корой, а на поверхность выступают только плодовые тела, и эпифлеоидные, слоевища которых произрастают на коре. Среди лишайников рода Graphis есть виды с гипофлеоидными и эпифлеоидными слоевищами. Эпифлеоидное слоевище характерно для G. scripta, развивающегося на гладкой коре многих древесных пород. К наиболее распространенным эпифитным кустистым и листоватым лишайникам относятся виды родов Bryoria, Evernia, Usnea, Parmelia, Hypogymnia, Physcia, Xanthoria и др. Физические и химические свойства субстрата сильно влияют на видовой состав и распределение эпифитных лишайников. Большое значение для лишайников имеет возраст дерева, структура коры, жесткость, ее расчленение, частота отслаивания, pH. Имеется некоторое тяготение разных видов лишайников к частям деревьев (основанию, средней и верхней частям стволов, ветвям), что обусловлено не только свойствами коры разных частей дерева, но и условиями освещенности и влажности. Во влажных условиях горных ущелий эпифитные лишайники затрудняют доступ воздуха к коре, способствуют накоплению влаги и являются приютом для насекомых и грибов, многие из которых разрушают древесину. Возможен переход эпифитных лишайников с коры на листья и хвою, что вызывает их пожелтение и отмирание (например, Hypogymnia physodes может развиваться на хвое елей).

К эпиксильным лишайникам, развивающимся на обработанной, обнаженной или гниющей древесине, относятся многочисленные виды накипных, листоватых и кустистых лишайников. На древесину чаще переходят эпифитные и эпигейные виды, значительно реже, обычно в арктических широтах, эпилиты. Это одна из молодых субстратных групп. В ней мало видов, приуроченных только к этому субстрату.

Эпирнотфитные лишайники обитают на дерновинках мхов. В лесах северной и умеренной зон на замшелые субстраты (стволы поваленных деревьев, камни) нередко переходят напочвенные лишайники родов Cladonia, Peltigera, Nephroma и др. В тундре на мхах много накипных лишайников. Здесь обычна Ochrolechia tartarea, обрастающая беловатой корочкой мхи и другие растения. В субстратах стволы деревьев нередко бывают покрыты мхами, поверх которых развиваются лишайники (Physcia, Collema, Lobaria и др.). Виду сходства экологических ниш мхи и лишайники в ряде растительных сообществ нередко выступают как потенциальные конкуренты, при этом на их взаимоотношения большое влияние оказывают микроклиматические факторы. Не исключено, что некоторые виды лишайников способны даже паразитировать на мхах.

Эпифильные лишайники, растущие на листьях и хвое вечноzelеных пород, немногочисленны и произрастают главным образом в тропиках и субтропиках. Вероятно, это одна из наиболее древних субстратных групп. Здесь в основном преобладают виды, не встречающиеся на других субстратах. Развиваются они на поверхности листьев, редко проникая в их ткани. Вопрос о паразитизме лишайников до сих пор не решен, хотя имеются наблюдения, что среди эпифильных
личайников существуют переходные формы от чистого паразитизма к умеренному паразитизму. На Кавказе на листьях чая встречается *Fellhanera bouteillei*. Снижая фотосинтез, этот лишайник ослабляет чайный куст.

В зависимости от условий произрастания также выделяют различные группы лишайников. **Амфибические (водные) лишайники** растут в непосредственной близости от воды или в местах, часто заливаемых водой: в зоне брызг, приливов, прибоя, в горных ручьях и небольших речках, пересыхающих в летний период, — или погружены в воду, как это характерно для *Collema ramenskii*, обитающей в оз. Байкал. Одним из приспособлений к жизни в этих условиях является защита органов размножения микобионта; поэтому они закладываются глубоко в слоевище.

Ксерофитные лишайники развиваются в открытых, сухих местообитаниях. Преобладают в степных и пустынных районах, а в северных областях нередко отдают предпочтение хорошо прогреваемым субстратам, например известнякам. Для защиты от инсоляции у этих лишайников нередко имеется эпикеральный слой, коровый слой утолщен, а плодовые тела глубоко погружены в слоевище.

Ареалы, т.е. области распространения, лишайников различны. Эти организмы встречаются во всех ботанико-географических зонах. На их распространение влияют влажность, температура, условия освещенности, наличие подходящего субстрата. Наибольшего развития они достигают в умеренных и холодных областях, в горах. Значительно меньше их в сухих местностях (например, в пустынях). Среди лишайников встречаются **стенотопные** виды, т.е. приспособленные к жизни в строго определенных условиях, например на определенной горной породе, и **эвритопные** виды, способные существовать в разнообразных условиях. Ареалы их обычно очень обширны. Например, *Rhizocarpon geographicum, Peltigera canina* и др. встречаются от Арктики до тропиков. Эвритопные виды нередко имеют широкую субстрактную амплитуду. Например, *Xanthoria parietina* (стенная золотянка) отмечена на мхах, растительных остатках, коре деревьев, выходах горных пород, железе, костях, рогах, черепице, кусках свинца, стекле, картоне, шлаке, старых плодовых телях трутовых грибов, слоевищах разных лишайников и других субстратах.

ЗНАЧЕНИЕ ЛИШАЙНИКОВ

Как автогетеротрофные компоненты биогеоценозов лишайники одновременно аккумулируют солнечную энергию и разлагают органические и минеральные вещества. Первыми колонизируя субстраты, непригодные для поселения других растений (например, скалы, горные отвалы и др.), лишайники участвуют в «биологическом выветривании», подготавливая почву для других организмов. Гифы микобионта, проникая по микротрецинкам или спайкам в глубь породы, постепенно разрушают ее. В этом процессе велика роль «лишайниковых кислот», которые взаимодействуют с катионами горных пород, что приводит к изменению кристаллической решетки и, как следствие этого, изменению цвета и прочности породы.
ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

Эпигейные лишайники селективно влияют на микроорганизмы, препятствуют микоризообразованию, тормозят прорастание семян и развитие проростков растений, прорастание спор и развитие протонемы мхов, обогащают почву органическими веществами, а виды с цианобактериями — также азотом.

Долговечность, нетребовательность и устойчивость к неблагоприятным условиям среды делают лишайники в некоторых биогеоценозах (например, тундровых) основными компонентами. Значение лишайников во флоре того или иного региона определяется лишайниковым коэффициентом (ЛК), отражающим отношение количества видов лишайников к числу видов высших растений. Чем выше этот коэффициент, тем большее значение имеют лишайники на определенной территории (например, ЛК Эстонии — 0,54; полуострова Таймыр — 4; Антарктиды — 117). Биомassa лишайников разных территорий неодинакова, наибольших величин она достигает в тUNDрах.

Распределение лишайников на территории зависит от многих причин, в том числе от степени загрязнения воздуха. Они могут служить индикаторами его чистоты. Особенно заметна разница в количестве и видовом составе лишайников при сравнении естественных и нарушенных фитоценозов. Имеются виды лишайников, устойчивые (полеотолерантные) и чувствительные к загрязнению. Выявлена корреляция между загрязнением воздуха отходами промышленных производств (серным диоксидом, окислами азота, соединениями фтора и т.п.) и видовым разнообразием лишайников: чем выше загрязнение атмосферы, тем меньше лишайников. При повышении загрязнения воздуха отмечается последовательное исчезновение лишайников: сначала вымирают кустистые, потом листоватые, затем накипные. Многие виды рода Usnea — хорошие индикаторы чистоты атмосферы, так как не выносят загрязнения. Устойчивы к загрязнению некоторые виды родов Xanthoria, Physcia, Lecanora и др.

Лишайники тUNDр служат основным кормом северных оленей, и миграция этих животных по тUNDре объясняется поисками лучших пастбищ. Кроме оленей кустистые виды рода Cladonia — «оленевого мха» (ягеля) могут потреблять и другие, в том числе домашние, животные — свиньи, овцы, коровы. Некоторые улитки и другие беспозвоночные животные также питаются лишайниками, но большинство беспозвоночных используют лишайники лишь как убежище.

Значение лишайников в рационе человека невелико, хотя известно, что в Японии готовят различные блюда из Umbilicaria esculenta; в Египте при выпечке хлеба для его ароматизации добавляли Pseudevernia furfuracea; индейцы Северной Америки использовали для приготовления пищи некоторые виды рода Bryoria; в северных районах России во время голода в муку при выпечке хлеба добавляли Cetraria islandica. В качестве источника витамина С известна Flavocetraria cucullata. Во время Великой Отечественной войны в СССР был разработан способ промышленного получения глюкозы из слоевищ лишайников.

Некоторые виды лишайников (Roccella fucoides, Ochrolechia tartarea) ранее применялись для получения красок и лакмуса. Вещества, экстрагируемые из видов родов Evernia, Ramalina, Parmelia, раньше использовались в парфюмерной промышленности.
Многие лишайники продуцируют антибиотические вещества. К их числу относится усиновая кислота. На основе этой кислоты в середине XX в. в России был создан промышленный препарат «бинан» (натриевая соль усиновой кислоты), применявшийся в 60—80-х гг. в медицине. Некоторые виды лишайников издавна используются в народной медицине.

При определении возраста горных пород, а также в археологии используют лихенометрический метод, основанный на знании ежегодного прироста лишайников, растущих на определенном субстрате и в определенной климатической области.

Среди лишайников почти нет ядовитых видов, хотя известны ядовитые свойства Letharia vulpina и некоторых других лишайников, содержащих вульпи новую кислоту, которая вызывает раздражение дыхательного, вазомоторного и рвотного центров центральной нервной системы мlekопитающих, сопровождающееся затруднением дыхания, судорогами, повышением кровяного давления.

СИСТЕМАТИКА ЛИШАЙНИКОВ

Классификация лишайников базируется на характере и онтогенезе плodoноше ния микобионта, строении сумок и спор, характере пикидиального спороноше ния, морфологии слоевищ, систематической принадлежности фотобионта, наличии различных вторичных метаболитов лишайников («лишайниковых кислот»). Онтогенез плодового тела используется при разграничении таксонов высокого ранга: от семейства и выше, размеры и форма конидий — для разграничения родов и видов; химические данные — при разграничении видов и разновиднос тей, а на родовом уровне — как дополнительный критерий. Единый систем лишайников нет, объемы порядков и семейств в разных системах различаются. Однако в настоящее время все исследователи размещают лишайники среди грибов. Лишайники относятся к отделам Ascomycota и Basidiomycota. Характе ристики этих отделов приведены в соответствующем микологическом разделе учебника.

ОТДЕЛ ASCOMYCOTA.
ЛИХЕНИЗИРОВАННЫЕ АСКОМИЦЕТЫ

ПОДОТДЕЛ PEZIZOMYCOTINA
Класс Arthoniomycetes
ПОРЯДОК ARTHONIALES

Плодовые тела — гистеротеции или апотеции, лецидеевые или леканоровые — развиваются по аскогенинальному, гемиангикарпному или гимнокарпному типу. Эксципул кольцеобразный или отсутствует. Гимений с парафизоидами, слабоамилоидный или неамилоидный. Сумки битуникатные и фисситуникатные,
амилоидные или неамилоидные. Цвет гипотеции от темно-коричневого до угольно-черного. Споры бесцветные или коричневые, от поперечно-многоклеточных до муральных. Пикнидии с конидиеносцами 1—4-го типов. Конидии гантелевидные, нитчатые или яйцевидные. Слоевище накипное, пластинчатое, листоватое или кустистое. Фотобионты — нитчатые зеленые водоросли (чаще встречается Trentepohlia) или отсутствуют. Химические соединения — алифатические кислоты, хромоны, дигенсофураны, нафтопраны, депсиды орцинала и β-орцинала, депсидоны β-орцинала, хиноны, терпены, ксантоны. Большая часть таксонов лихенизирована. Порядок включает 4 или 5 семейств, много монотипных родов.

Большинство представителей этого порядка встречаются в тропических и субтропических областях, нередко также в умеренной зоне. Они предпочитают кору деревьев, реже растут на скалах, мхах, гнилой древесине. Особенности географического распространения, наличие большого числа монотипных родов, примитивность строения в ряде родов плодовых тел микобионтов — всё это свидетельствует о древности порядка.

Род Arthonia (рис. 349) — один из наиболее крупных в порядке, насчитывает около 500 видов. Для них характерно накипное слоевище, у некоторых представителей оно гипофлеоидное. Многие виды развиваются на гладкой коре лиственных пород деревьев.

У высокоорганизованных форм, например у видов рода Roccella, слоевище кустистое, с палисадным коровым слоем. Эти виды встречаются по всему земному шару, но больше всего видов в Южной Америке. Растут обычно на скалах морских побережий.

Рис. 349. Arthonia radiata.

A — внешний вид апотеции; B — поперечный разрез через группу апотеции; V — сумка со спорами; Г — споры

Класс Lecanoromycetes

ПОРЯДОК LECANORALES

Порядок Lecanorales — самый крупный из лихенизированных грибов. Он включает 5 подпорядков и более 50 семейств полифилетического происхождения, что подтверждается молекулярными данными. Плодовые тела — апотеции: леканоровые, лецидеевые, биаторовые — развиваются по аскогенинальному, гемиангиокарпному или гимнокарпному типу. Эксципил кашевидный или коллеобразный. Гимений со зрелыми парафизами, амилоидный. Сумки леканорового типа, амилоидные или прототунникатные. Споры бесцветные или коричневые, одноклеточные, поперечно-многоклеточные или муральные. Пикнидии
с конидионосцами различного типа. Форма конидий разнообразна. Слоевище накипное, пластинчатое, чешуйчатое, листоватое, кустистое. Фотобионты — зеленые водоросли или/и цианобактерии. Химические соединения — алифатические кислоты, бензиловый эфир, хромоны, депсида, депсидон, дифензифур-.

гранич, дифениловый эфир, дериваты пульвиновой кислоты, хиноны, стероиды, терпены, ксантоны. Большинство таксонов лишеннизированы. Включает от 4 до 8 подпорядков.

ПОДПОРЕДОК LECANORINAE

Lecanorinae — самый крупный подпорядок, объединяющий большое число таксонов лишеннизированных грибов. Фотобионт многих лишенников этого подпорядка — Trebouxia.

Особый интерес представляет группа порошкоплодных лишенников, в которую входит несколько семейст. Эти лишенники отличаются тем, что сумки в апотециях рано разрушаются и споры свободно лежат между выступающими парафазами, образуя порошкообразную массу — мазедий. Эволюция этой группы шла по пути выработки приспособлений для лучшего рассеивания спор ветром. Апотеции большинства видов приподнятые над слоевищем. У видов родов Calicium и Coniochybe слоевище обычно накипное, а плодовые тела напоминают маленькие гвоздики (рис. 350). У Sphaerophorus слоевище кустистое, апотеции располагаются на концах булавовидных веточек и глубоко в них погружены (рис. 351).

![Рис. 350. Coniochybe furfuracea.](image)

A — внешний вид плодовых тел на слоевище;
B — продольный разрез через плодовое тело:
1 — мазедий

![Рис. 351. Sphaerophorus.](image)

A — внешний вид веточки с плодовым телом:
1 — плодовое тело;
2 — продольный разрез через плодовое тело:
1 — мазедий, 2 — слоевищный экскипул, 3 — ножка, 4 — устьище
Порошкоплюдные — одна из древних групп, рано отделившаяся от основной линии развития гимнокарповых лишайников, в ней много монотипных родов. У некоторых из них союз с водорослями необлигатный: водоросли присутствуют только на ранней стадии развития, а на поздних стадиях водорослей нет. На основании этого некоторые исследователи относят их к свободноживущим грибам.

Роды Lecidea, Rhizocarpon, Biatora, Lecanora имеют накипное слоевище, но относятся к разным семействам. У видов рода Lecidea слоевище эпилитное или эдификацированное, поскольку эти лишайники встречаются на камнях; апотеции лецидевого типа; экскипул светлый; гимениальный слой амиллоидный; сумки без окулярной камеры, слабоамиллоидные, за исключением сильно синеющей, на подобие колпачка, самой верхней части; споры одноклеточные, бесцветные.

Большинство видов рода Rhizocarpon растет на каменистом субстрате, но некоторые паразитируют на других лишайниках и изредка заходят на древесину и почву. Наиболее многочисленны в северных и горных районах. Апотеции лецидевые, погруженные в слоевище; экскипул темноокрашенный; эпигименей и гипотеции темные, гимениальный слой бесцветный; сумки без окулярной камеры, слабоамиллоидные, и лишь в верхней части сумки имеется серповидная сильноамиллоидная область; споры 2—4-клеточные или муральные, от бесцветных до почти черных, с отчетливой слизистой оболочкой.

Виды рода Biatora имеют биотиповые светлоокрашенные апотеции; эпигимений плохо развит; сумки с окулярной камерой толстыми амиллоидными толстыми, споры бесцветные 1—4(6)-клеточные. Встречаются в северных и умеренных областях, редко заходят южнее 40° сев. ш.; растут на мхах, растительных остатках, гнилой древесине, редко на коре деревьев.

Род Lecanora содержит около 400 видов, для которых характерны леканоровые апотеции, сумки с окулярной камерой и толстым амиллоидным толстым толстым, споры бесцветные, одноклеточные, элипсоидные или округлые. Распространены очень широко — от тропиков до Арктики, растут на всевозможных субстратах. Некоторые эпифитные виды выносят сильное загрязнение, что позволяет расти им в промышленных зонах.

Род Umbilicaria характеризуется моно- или полифильным слоевищем, т.е. состоящим из одной или многих листовидных пластинок, прикрепленных к субстрату центральным гомфом (рис. 352). Апотеции лецидевого типа, но своеобразного строения, так как имеют орнаментальные выросты, напоминающие извилины головного мозга. Такие апотеции называют гирофороидными, или гирозными. Для видов рода характерна кальцефобность, т.е. они никогда не растут на известковых субстратах. Долгое время считалось, что это типично эпилитные лишайники, но некоторые виды были найдены в Монголии на стволах деревьев.

У видов рода Physcia слоевище листоватое (рис. 353), с параллектенхимным верхним и прозоплектенхимным нижним коровым слоем; апотеции леканоровые; споры коричневые, 2-клеточные; кониции цилиндрические; из химических соединений всегда присутствует атранирин. Растут на камнях, коре деревьев, древесине, на моховом покрове. Многие виды устойчивы к загрязнению воздуха.
Слоевище видов рода *Anaptychia* листоватое или в виде низких кустиков (рис. 354); верхний коровый слой прозоплектенхимный; нижняя поверхность слоевища часто без корового слоя, с ризинами и/или ресничками (фибриллами); апотеции леканоровые; споры коричневые, 2-клеточные. Растут на коре деревьев, скалах, реже на древесине.

Для родов *Cladonia* и *Stereocaulon* характерно кустистое слоевище, состоящее из двух частей: первичного, горизонтального слоевища в виде бугорчатой корочки или мелких чешуек, которое нередко исчезает, и вторичного слоевища в виде вертикальных выростов — подециев у *Cladonia* (рис. 355) и псевдоподециев у *Stereocaulon* (рис. 356). Подеции и псевдоподеции отличаются происхождением: псевдоподеции образуются экзогенно из поверхностных слоев бугорков первичного слоевища, подеции — эндогенно. На них часто образуются чешуйки разнообразной формы — филлокладии, увеличивающие фотосинтетическую поверхность. Подеции *Cladonia* имеют внутри полость, снаружи они могут быть покрыты коровым слоем или же коровый слой отсутствует. Форма подеций разнообразна: шиловидная, кубковидная (цифовидная), кустистая. Апотеции лецидеевые, споры бесцветные, одномклеточные. Род включает более 300 видов, сотни разновидностей и форм, распространенных во всех растительно-климатических зонах — от полярных пустынь до тропиков. Растут на почве, валеже, на основании стволов деревьев, мхах. Многие из них имеют хозяйственное значение. В отличие от *Cladonia*, псевдоподеции у *Stereocaulon* заполнены внутри толстоственными гифами и, как правило, с цефалодиами. Апотеции биаторовые, споры бесцветные, 2—14-клеточные. Растут на скалах и почве, нередко вперемежку со мхами.

Семейство Parmeliaceae. Это самое крупное семейство в подпорядке, объединяющее около 90 родов лишайников. Слоевище обычно листоватое или кустистое; апотеции леканоровые; экзипул с антиклинальными, анастамозирующими
Рис. 354. Слоевище Anaptychia ciliaris (1 — апотеций)

Рис. 355. Формы подошв кладоний (A — шиловидная, B — цилиндрическая, V — цилиндрическая-кустистая)

гифами; споры обычно одноклеточные (реже 2-клеточные до муральных), чаще бесцветные, иногда коричневые. На основании строения апикального аппарата, формы конидий, химических соединений и прочих признаков выделено много новых родов. Лишайники с листвоватым слоевищем, как правило, эпифиты или эпилиты, с кустистым — чаще эпифиты или эпигейды. Но есть и эврисубстратные (с широкой субстратной амплитудой) виды.

Роды Parmelia и Hypogymnia имеют листоватое слоевище. Виды Parmelia прикрепляются с помощью ризин. У Hypogymnia ризины отсутствуют, а слоевище прикрепляется с помощью небольшого выроста корового слоя; внутри сердцевины имеется воздушная полость. Из этого рода наиболее широко на территории России распространена H. physodes. Вид очень полиморфный, имеющий много форм, произрастающий на различных субстратах, относительно устойчивый к загрязнению воздуха.

Слоевища родов Bryoria, Cetraria, Evernia, Usnea кустистые. У Bryoria и Usnea (рис. 357) слоевище имеет радиальное строение, у Cetraria и Evernia (рис. 358) оно дорсовентральное. Слоевища Bryoria и Usnea напоминают бороды соответственно коричневого и зеленоватого цвета. Все виды Usnea содержат усиновую кислоту. Кроме того, эти роды отличаются анатомически: внутри слоевища Usnea проходит сердцевинный тяж, в то время как сердцевина Bryoria рыхлая, без тяжа. Апотеции у них образуются редко. Среди этих родов преобладают эпифиты. Большинство видов рода Usnea очень чувствительны к загрязнению воздуха.
Виды рода Cetraria обитают на почве. Наиболее широко они распространены в тундре и лесотундре. У многих видов в коровом слое имеются псевдоцифеллы. Апотеции располагаются на верхней стороне краев лопастей; верхняя часть сумок с амилоидным кольцом. *C. islandica* — «исландский мох» — полиморфный вид, встречается в различных местообитаниях: в сосновых лесах, верещатниках, на болотах, в тундре и лесотундре.

ПОДПОРЯДОК ACAROSPORINEAE

Включает 2 семейства. Слоевище обычно накипное или чешуйчатое, реже кустистое; плодовые тела биаторовые, лецидеевые или леканоровые, часто погруженные в слоевище; сумки без окулярной камеры, неамилоидные, с большим количеством (100—200) одноклеточных очень мелких спор или спор по 4—8 в сумке; фотобионты — одноклеточные зелёные водоросли. Растут в основном на скалах, реже на бедных почвах, слоевищах других лишайников; имеются кочующие формы; ксерофиты. К подпорядку Acarosporineae относятся, например, роды *Aspicilia* (в сумке 4—8 спор) и *Acarospora* (сумки с многочисленными спорами).
ПОДПОРЯДОК PELTIGERINEAE

Подпорядок включает 7 семейств. Многие виды предпочитают влажные местообитания. Слоевища листоватые или чешуйчатые; споры обычно поперечно-многоклеточные, бесцветные или окрашенные. У некоторых родов, например Leptogium и Collema, слоевище гомеомерное с фотобионтом Nostoc. У Collema коровый слой не развит, у Leptogium коровый слой состоит из 1 или нескольких рядов крупных бесцветных клеток.

У родов Peltigera, Nephroma, Lobaria слоевища крупнолопастные, гетеромерные, в качестве фотобионта обычно присутствует цианобактерия, реже зеленая водоросль. Если фотобионтом является зеленая водоросль, то развиваются также цефалодии. Фотобионтом родов Peltigera и Nephroma является Nostoc, реже зеленая водоросль Coccomyxa, в этом случае Nostoc встречается в цефалодиях. У Lobaria фотобионт — Nostoc или Scytonema, а из зеленых водорослей — Dictyochloropsis или Trebouxia. Виды этих родов часто растут на почве, коре деревьев, нередко встречаются на замшелых субстратах.

Для видов рода Peltigera характерно развитие апотеций в верхней стороне слоевища по краю лопастей, отсутствие корового слоя на нижней стороне слоевища и развитие здесь сети жилок, от которых отходят пучки ризин (рис. 359). Гифы, образующие жилки, имеют гидрофильные стенки, что способствует подъему и проведению воды к верхним и внутренним частям слоевища. У P. aphthosa цефалодии развиваются на верхней стороне слоевища.

Виды рода Nephroma покрыты коровым слоем с обеих сторон, ризины обычно отсутствуют, но на нижней стороне иногда развивается войлочек; апотеции образуются по краю лопастей с нижней стороны. У N. arcticum цефалодии развиваются внутри слоевища в сердцевинном слое.

Слоевища у видов рода Lobaria обычно сетчато-складчатые (рис. 360), покрыты коровым слоем с обеих сторон, нередко с густым войлочком на нижней поверхности; цефалодии также развиваются на нижней поверхности; леканоровые апотеции располагаются по всей поверхности слоевища или по краям.

ПОДПОРЯДОК TELOSCHISTINEAE

Подпорядок включает 3 семейства. Слоевище накипное, листоватое или кустистое; апотеции леканоровые или лецитидные; споры биполярные. У большинства видов слоевище и апотеции (или только диск апотеции) оранжевого цвета, что обусловлено присутствием папирина (антрахинон); папирина с едким калием дает малиновую окраску. Растут на различных субстратах.

Род Caloplaca насчитывает около 450 видов. Слоевище или полностью накипное, или в центре накипное, а по краям лопастное; без нижнего корового слоя; апотеции леканорового типа, реже биаторовые. Имеются виды, паразитирующие на других лишайниках.

Род Xanthoria (рис. 361) объединяет виды с листоватым слоевищем, покрытым коровым слоем с обеих сторон; апотеции леканоровые. Эти лишайники предпочитают солнечные местообитания. Один из самых распространенных видов — нитрофильный лишайник X. parietina, довольно устойчивый к загрязнению воздуха.
ПОРЯДОК PERTUSARIALES

Порядок представляют 2 (3) семейства. Плодовые тела леканоровые, развиваются по аскогимениальному и гемиангиокарпному типу, нередко погружены в слоевище; экскипул чашевидный; гимений с парафизоидами, амилодийный, слабоамилодийный или неамилодийный; сумки с окулярной камерой; споры бесцветные, толстостенные, от одноклеточных до поперечно-многоклеточных, нередко очень крупные; пикнидии с конидинными 3, 4 типа; конидии гантителевидные, нитчатые; слоевище накипное или чешуйчатое; фотобионт — зеленые водоросли; химические соединения, входящие в состав лишайника, — алифатические кислоты, депсиды, депсидоны, депсоны, ксантоны. Все таксоны лихенизированы.

В роде Pertusaria насчитывается до 250 видов, произрастающих на разных субстратах; распространены в Арктике и умеренных зонах Северного полушария. Слоевище накипное; апотеции у многих видов глубоко погружены в слоевище и внешне напоминают перитеции; гимений амилодийный; споры одноклеточные, обычно очень крупные (длиной до 300 мкм), толстостенные, особенно на концах, часто с ясно различимыми слоями.
ПОРЯДОК VERRUCARIALES

Систематическое положение порядка неясно. Плодовые тела — перитеции, развиваются по аскогимениальному типу. Перициум окрашенный или бесцветный. Гимений неамилоидный, с перицизами, парафизы обычно отсутствуют. Сумки битуникатные, часто с толстой внутренней оболочкой, неамилоидные. Споры одноклеточные, поперечно-многоклеточные или муральные, бесцветные или коричневые. У большинства представителей фотообионтами являются зеленые одноклеточные водоросли (например, Myrmecia), у двух видов — желтоватые водоросли (Heterococcus), у одного — бурая водоросль (Petroderma), или фотообионты отсутствуют. Слоевище накипное, нитчатое, пластинчатое, чешуйчатое или листоватое. Лишайниковые вещества не найдены. Большинство таксонов лихенизировано. Порядок включает от 1 до 2 семейств.

Род Verrucaria — один из самых крупных в порядке, насчитывает около 350 видов, которые распространены преимущественно в умеренных областях, особенно в горных районах. Растут обычно на известковых скалах и доломитах. Большинство ксерофиты, но есть и амфибиические виды.

ПОРЯДОК OSTROPALES

Растут на коре лиственных, реже хвойных пород деревьев, на листьях вечнозеленых деревьев, иногда на скалах. Распространение и большое видовое разнообразие многих таксонов этих лишайников в тропиках дают основание предполагать, что они имеют тропическое происхождение. Ископаемые находки некоторых таксонов в слоях мезозойской эры свидетельствуют о древности группы.

Род Graphis — один из крупных таксонов, насчитывает около 300 видов. Почти все виды этого рода встречаются в тропиках и субтропиках, и лишь несколько видов заходят в умеренные области. В России наиболее распространен G. scripta (см. рис. 326). Слоевища этого лишайника выглядят как беловатые пятна с гистеротециями в виде черных извилистых или ветвистых линий, напоминающих восточные письмена. Слоевища хорошо заметны на гладкой коре лиственных пород деревьев.
ОТДЕЛ BASIDIOMYCOTA.
ЛИХЕНИЗИРОВАННЫЕ БАЗИДИОМИЦЕТЫ

Количество базидиальных лишайников в отличие от асколишайников невелико: только 8 родов из гомобазидиомицетов лихиенизированы. Среди гетеробазидиомицетов лихиенизированные виды неизвестны. Морфологически слоевища базидиальных лишайников не отличаются от слоевищ свободноножиевых базидиальных грибов. Взаимодействие микобионта и фотобионта обычно происходит в основании плодового тела. У большинства базидиальных лишайников отсутствуют также специализированные пропагулы — соредии и изидии, осуществляющие вегетативное размножение у асколишайников.

Микобионты лихиенизированных видов базидиальных грибов облигатно ассоциированы с цианобактериями (виды рода Scytonema) и/или зелеными водорослями (виды рода Coccomyxa). В лихиенизированном состоянии трихомы Scytonema иногда укорочены и свернуты кольцом, так что их можно принять за зеленые хлорококковые водоросли. Зеленые водоросли внутри слоевищ обычно сформированы в глобулы. Размножаются они апланоспорами. Микобионты образуют плодовые тела. Несмотря на то что плодовые тела образуются спорадически и ограничены во времени, количество базидиоспор в них огромно, что и способствует распространению базидиолишайников.

Химические компоненты изучены плохо. Из специфических лишайниковых веществ у некоторых видов отмечены атранорин, тенуиорин и эргостерин.

У базидиальных лишайников описано 3 типа взаимодействия микобионта с фотобионтом: гифы микобионта образуют: 1) гаустории, 2) апрессории, 3) водоросли оплетены гифами микобионта, но ни гаустории, ни апрессории не образуются. Первый тип взаимодействия выявлен у видов, фотобионтом которых является Scytonema. Трихомы Scytonema окружены плотным чехлом параллельно идущих гиф, от которого отходят гаустории. При этом нередко наблюдается сжатие трихом и отсутствие у цианобактерий цианофицина.

Два других типа взаимодействия выявлены у лишайников, фотобионтом которых являются зеленые водоросли. Апрессории микобионта вызывают необратимые изменения водорослевых клеток: цитоплазма отходит от клеточной стенки, разрушается, и водорослевая клетка погибает. Клетки без апрессорий жизнеспособны и размножаются. В случае отсутствия апрессорий и гаусторий гифы плотно окружают водоросли, образуя твердые округлые комочки.

Долгое время считалось, что базидиолишайники приурочены только к тропической и субтропической областям. Но некоторые виды растут в умеренных областях, заходят в арктические и субарктические регионы или склонны к космополитизму. Базидиальные лишайники растут на мхах, коре, слоевищах других лишайников, почве, влажной гниющей древесине.
Семейство Thelephoraceae. Одним из представителей этого семейства является род Dictyonema, образующий рожкообразные плодовые тела с гладкими, бесцветными базидиоспорами. В основании плодовых тел, в плотных чешуях из параллельно идущих гиф микобионта, находятся длинные трихомы Scytonema. При этом типичное лишайниковое слоевище не образуется. Род распространен в тропической и субтропической областях, где растет в верхнем поясе гор, поскольку адаптирован к прохладным, влажным, но хорошо освещенным экотопам.

Семейство Clavariaceae. Для лишеницированных родов, входящих в это семейство, характерны клавариоидные плодовые тела, гладкие бесцветные базидиоспоры, фотобионты типа Coccomyxa или Scytonema и отсутствие типичного лишайникового слоевища. У видов рода Multiclavaula ассоциация микобионта с фотобионтом может быть представлена в виде неправильной формы шариков, погруженных в желатиновый матрикс на влажной разлагающейся древесине или в виде тонкого, однородного или гранулированного слоя на поверхности почвы. В Центральной Европе вид этого рода предпочитает развиваться на древесине хвойных деревьев, но в субтропической и тропической областях встречается несколько видов, которые растут в местах, где хвойные породы отсутствуют.

Семейство Tricholomataceae. Типичный представитель семейства — род Omphalina, однако не все виды этого рода лишеницированы. У лишеницированных видов плодовые тела маленькие, ворсистые, имеющие центральную ножку и пластинчатую шляпку. Согласно морфологическим данным и данным по рибосомальной ДНК, лишеницированные виды образуют монофилетичную группу. Некоторые из них развиваются на поверхности субстрата тонкий зеленоватый слой, состоящий из гиф микобионта и клеток зеленых водорослей. Слоевища других видов, например O. hudsoniana, представляют собой хорошо развитые чешуйки (рис. 362). Чешуйчатое слоевище организовано сложнее. В центре слоевища находятся камеры с водорослями, а сверху и снизу оно покрыто псевдопаренхимными коровыми слоями, образованными гифами микобионта. Нижний коровый слой может быть прерывистым.

Долгое время некоторых представителей семейства относили к разным родам, так как на них находили без плодовых тел. Виды, у которых слоевище было в виде тонкой пленки, относили к роду Botrydina, а имеющие чешуйчатое слоевище — к роду Coriscium.

Представители рода Omphalina широко распространены в арктической и субарктической областях, некоторые из них космополиты. На территории России встречается O. hudsoniana. Растет на влажной почве в затененных местообитаниях, на мхах и растительных остатках, торфяниках, болотах. Вид занесен в Красную книгу.
Миксомицеты, или слизевики

У миксомицетов сложный цикл развития, включающий зооспоры с двумя гладкими жгутиками, гаплоидные и диплоидные миксоамёбы, у представителей отделов Dictyosteliomycota и Acrasiomycota жгутиковая стадия отсутствует (рис. 364).

Миксомицеты в большинстве сапротрофы, живущие в гнилой древесине и листовом опаде, немногие — внутриклеточные паразиты растений. Группа включает около 500 видов и подразделяется на 4 отдела и 6 классов (табл. 8) по уровню организации плазмодия, особенностям цикла развития и способу питания — сапротрофному или паразитному.
Таблица 8

<table>
<thead>
<tr>
<th>Отдел</th>
<th>Класс</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muyomycota</td>
<td>Ceratiomyxomycetes</td>
</tr>
<tr>
<td></td>
<td>Myxomycetes</td>
</tr>
<tr>
<td></td>
<td>Protosteliomycetes</td>
</tr>
<tr>
<td>Plasmodiophoromycota</td>
<td>Plasmodiophoromycetes</td>
</tr>
<tr>
<td>Dictyosteliomycota</td>
<td>Dictyosteliomycetes</td>
</tr>
<tr>
<td>Acrasiomycota</td>
<td>Acrasiomycetes</td>
</tr>
</tbody>
</table>

ОТДЕЛ МИКСОМИКОТА (МУХОМЫСОТА)

Отдел составляют типичные миксиомицеты. Вегетативное тело (ассимилиативная стадия) — саптрофный плазмодий. Имеется жгутиковая стадия — миксофлагелляты. В состав клеточных стенок спорангииев и спор входит целлюлоза. Отдел включает три класса.

Класс миксиомицеты, или миксогастровые (Muyomycetes, Muxogasteromyctes)

Наиболее крупный класс отдела, включающий около 400 видов-саптрофов, обитающих главным образом в лесах. Плазмодий живет внутри растительного субстрата: в глубине гниющих пней, валежа, в лесной подстилке среди опавших перегнивающих листьев. В субстрате он амёбообразно передвигается со скоростью 0,1—0,4 мм/мин.

Плазмодий содержит около 70% воды и 25—30% белков. В его составе имеются липиды, гликоген, пигменты и некоторые другие вещества.

Ядра плазмодия диплоидны. Находясь в субстрате, он обладает положительными гидро- и трофотаксисами и отрицательным фототаксисом. В определенный момент развития плазмодий, достигнув определенных размеров, приобретает положительный фототаксис, выполняет на поверхность субстрата, где его можно обнаружить в виде бесцветной или окрашенной слизистой массы. Здесь он переходит к генеративной стадии — образованию спорангииев со спорами. Обычно в спорангиях (или в спорангии) превращается весь плазмодий, причем это превращение происходит очень быстро, часто в течение нескольких часов. Спорангии миксогастеровых разнообразны по форме и строению (рис. 365—367). Внутри спорангииев образуется масса спор. Из спавшихся при образовании спор вакуолей, находившихся в плазмодии, у многих родов и видов формируются особые нити — капилярии с неравномерно утолщенными стенками. Благодаря этим утолщениям
в виде колец, спиралей, шипиков и т.п., нити способны к гигроскопическим движениям и содействуют, таким образом, разрыхлению и рассеиванию спор.

Образованию спор и спорангий предшествует редукционное деление диплоидных ядер плазмодия (Р). Гаплоидные споры, попав на субстрат, прорастают в гаплоидные зооспоры с двумя гладкими жгутиками на переднем конце. Зооспоры могут размножаться делением, затем теряют жгутики и превращаются в гаплоидные миксоамёбы, которые также могут размножаться делением; затем эти миксоамёбы попарно сливаются и образуется диплоидная миксоамёба. Последняя разрастается, число ядер в ней увеличивается за счет митотических делений диплоидных ядер и таким образом вновь образуется плазмодий, уходящий в глубь субстрата (см. рис. 364). Это общая схема цикла развития миксосциетов, от которой могут быть отклонения. Так, имеются указания на наличие у сапротрофных миксосциетов бесполового размножения двугнутыми зооспорами, образующимися из отдельившихся участков плазмодия.

Широко распространены в лесах на мелких гнилушках виды родов трихия (Trichia) с мелкими золотистыми цилиндрическими спорангиями 1—2 мм высотой, расположенными тесными группами (рис. 365), и стемонитес (Stemonites), спорангии которых после разрушения оболочки имеют вид крошечных перышек темно-коричневого цвета 5—15 мм высотой. В этой стадии они состоят из капиллиции, ветвящегося и образующего сеточку на длинной тонкай ножке, коричневого от покрывающей его массы спор (см. рис. 366).

Хорошо заметна и часто встречается на замшелой древесине ликогала древесинная (Lycogala epidendrum). Ее довольно крупные, до 1 см в диаметре, шаровидные плодовые тела кораллово-красной окраски представляют собой соединение нескольких спорангий под общей оболочкой. При этом собственные оболочки спорангий разрушаются, а их остатки образуют псевдокалипий. Такое плодовое тело миккосциетов называется элайй (см. рис. 367).
Глава 10. ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

Ил. 366. Stemonites: ножка и капиллиции с колонкой

Ил. 367. Lycogala epidendrum.
1 — эпилии; 2 — зрелый эпилий в разрезе; 3 — псевдокапиллиции; 4 — споры

ОТДЕЛ ПЛАЗМОДИОФОРОВЫЕ (PLASMODIOPHOROMYCOTA)

Плазмофорофоры имеют интразеллюлярную фаготрофную стадию, т.е. внутриклеточный (паразитический) плазмодий. Отличаются сложным циклом развития, с продолжительными гаплоидной и диплоидной стадиями. Отдел включает один класс плазмофорофоромицетес (Plasmodiophoromycetes).

Внутриклеточные паразиты высших растений. Не образуют спорангииев. Вместо них спор становятся пораженные клетки растения-хозяина. Цикл развития сходен по типу с развитием миксогастровых, но отличается еще большей сложностью за счет удлинения гаплоидной стадии. Наибольшее значение в практической деятельности человека имеет род плазмофорофора (Plasmodiophora) с хорошо изученным видом P. brassicae, возбудителем килы крестоцветных. Паразит поражает корни капусты и других крестоцветных, вызывая на них образование больших опухолей. Особенно вреден для рассады в парниках; пораженные растения в дальнейшем не образуют кочанов. При поражении взрослого растения
кочаны недоразвиваются. Опухоли образуются за счет интенсивного деления здоровых клеток, окружающих инфицированные. На срезах через опухоли видны гипертрофированные клетки с желтоватым плазмодием паразита, часто заполняющим всю клетку хозяина, или зернистой массой спор (рис. 368). Корни больного растения развиваются плохо. В результате гниения опухоли споры оказываются в почве, где могут сохраняться в течение многих лет.

Рис. 368. Возбудитель килы крестоцветных Plasmodiophora brassicae.
1 — опухоли на корнях капусты; 2 — клетки растения с плазмодием паразита; 3 — клетки растения со спорами паразита в световом микроскопе; 4 — клетки растения с плазмодием (a) и спорами (b) в СЭМ.

Оказавшиеся в почве споры прорастают, образуя двуугутиковые зооспоры; затем они теряют жгутики и превращаются в гаплоидные миксоамёбы. Такие миксоамёбы живут в почве, откуда проникают в корневой волосок и, разрастаясь, образуют первичный гаплоидный плазмодий. Он не проникает глубоко в ткани
корня и не образует опухолей. Далее он выходит из корневых волосков и формирует гаплоидные зооспоры (которые можно трактовать как гаметы), попарно копулирующие и образующие сначала двухъядерную, а после слияния ядер диплоидную зооспору, которая теряет жгутики и превращается в диплоидную миксоамёбу. Последняя заражает клетки корня и разрастается в нем в диплоидный вторичный плазмодий. После периода вегетативного роста и мейотического деления ядер вторичный плазмодий распадается на гаплоидные споры. Необходимо отметить, что диплоидная стадия приурочена к тканям растения-хозяина и именно диплоидная миксоамёба способна вызывать основное заражение растения-хозяина с образованием опухолей (рис. 369).

Рис. 369. Схема предполагаемого цикла развития киля крестоцветных (по В.В. Мазину и Е.П. Проценко).

Первичная стадия: 1 — спора; 2 — прорастание споры; 3 — зараженный корневой волосок, содержащий одноядерный первичный плазмодий; 4 — синхронное митотическое деление ядер первичного плазмодия; 5 — многоядерный первичный плазмодий; 6 — дробление на зооспорангии; 7 — митоз ядер зооспорангив; 8 — дробление цитоплазмы на одноядерные зооспоры, освобождающиеся через пору; 9 — свободные зооспоры; 10 — плазмогамия. Вторичная стадия: 11 — двухъядерный вторичный плазмодий; 12 — митотическое деление ядер плазмодия; 13 — многоядерный вторичный плазмодий; 14 — кариогамия во вторичном плазмодии; 15 — дробление цитоплазмы плазмодия на гаплоидные покоящиеся споры.
Отдел диктиостелиевые (Dictyosteliomycota)

От описанного цикла развития могут быть некоторые отклонения. В частности, вторичное заражение корня может осуществляться двухъядерной или диплоидной зооспорой, минуя стадию диплоидной миксоамёбы.

Сходный цикл развития имеет спонгоспора Spongospora solani, возбудитель порошистой парши картофеля, наносящей серьезный ущерб сельскому хозяйству. Поражаются клубни, на поверхности которых образуются язвочки с коричневатым порошистым содержимым. Споры этого паразита в клетке хозяина склеены в губчатые комочки (рис. 370).

Рис. 370. Возбудитель парши картофеля Spongospora solani.
1 — парша на клубнях; 2 — губчатые комочки спор в клетке клубня

Отсутствие дифференцированных спорангиев в цикле развития плазмодиофоровых относят за счет внутриклеточного паразитизма, когда стенки клетки растения-хозяина выполняют функции оболочки спорангия.

ОТДЕЛ ДИКТИОСТЕЛИЕВЫЕ
(DICTYOSTELIOMYCOTA)

Отдел включает миксосоцитоподобные организмы, ассимиляционную (трофическую) стадию которых представляют свободноживущие миксоамёбы, размножающиеся продольным делением, а затем перед размножением объединяющиеся в псеудоплазмодий. Образование псеудоплазмодия происходит путем сползания (агрегации) миксоамёб, не теряющих при этом своей обособленности. Этим псеудоплазмодий отличается от настоящего плазмодия. Миксоамёбы в основном с нитевидными выростами — псеудоподиями. Ядра имеют два и более периферических ядрышка. Клеточные стенки спорангиев и спор содержат целлюлозу. По способу существования — почвенные сапротрофы, живущие в богатых органическими веществами субстратах, например в навозе и гниющих растительных остатках. Питаются в основном путем захвата клеток бактерий и органических частиц. Представитель — Dictyostelium discoideum, обитающий в навозе (рис. 371).
Рис. 371. Диктиостеллиум дисковидный (Dictyostelium discoideum).
1 — амёбы; 2 — псеvдоплазмодий; 3—5 — миграция псеvдоплазмодия и формирование спороношения;
6 — спороношение; 7 — амёбы

При исчерпании пищи (голодании) отдельно живущие амёбы сплазгаются, образуя псеvдоплазмодий, — стадия агрегации. Псевдоплазмодий D. discoideum движется по направлению к источнику тепла, улавливая перепад температур до 0,0005°C. В нем амёбы, прилегая друг к другу, формируют ножку длиной 3—8 мм, на которой образуется спорангий (спорокарп) диаметром 0,2—0,3 мм, одетый целлюлозной оболочкой.

Особенностью морфологии данного вида является то, что задняя по ходу движения часть псевдоплазмодия образует головку спорокарпа, а передняя — ножку, или спорофор. Амёбы в ножке отмирают, и она становится полой. Амёбы внутри спорангия превращаются в покоящиеся споры, также с целлюлозной оболочкой. Из них при наступлении благоприятных условий выходят амёбы. Такой цикл развития проходит за 3—4 дня. Этот вид хорошо развивается на сенном отваре с добавлением кишечной палочки в качестве источника питания, поэтому он представляет хороший объект для экспериментальных исследований (изучение таксисов, ядерные циклы и т.п.).

У некоторых диктиостелиевых выявлено слияние двух гаплоидных миксоамёб со слиянием ядер и последующим мейозом.

Диктиостелиевые, предположительно, происходят от наиболее простых Myxomycota. Их сближает присутствие целлюлозы в клеточных стенках спорангиев и спор. Основное отличие — отсутствие жгутиковых стадий.

ОТДЕЛ АКРАЗИЕВЫЕ
(ACRASIOMYCOTA)

Акразиевые — это клеточные слизевики. Трофическая (вегетативная) стадия — свободноживущие почвенные миксоамёбы, объединяющиеся в псевдоплазмодий перед размножением; миксоамёбы имеют лопастные псевдоподии. Ядро с центрально расположенным ядрышком. Два последних признака существенно
Отдел акразиевые (Acrasiomycota)

отличают их от дикиостелиевых. В цикле развития отсутствует жгутиковая стадия (миксофлагеллята). Целлюлоза не обнаружена. Сапротрофы в почве, на растительных остатках. Отдел включает 30—40 видов.

Представитель — Acrasia rosea (рис. 372). Миксоамёбы движутся с помощью псевдоподиев, поглощая одноклеточные организмы и даже амёбы своего вида. Миксоамёбы образуют псевдоплазмодий оранжевого цвета, который достаточно быстро дифференцируется на спороносный орган — спорокарп, состоящий из ножки и головки — сорогена. Сороген расщепляется на доли, каждая из которых дает простую или разветвленную цепочку спор, образовавшихся вследствие округления отдельных амёб и формирования ими клеточной стенки. Амёбы в ножке не отмирают в отличие от дикиостелиевых, а также превращаются в споры.

Цикл развития акразии розовой:

миксоамёба → инницирование → новое прорастание в миксоамёбу → размножение делением → агрегация миксоамёб в псевдоплазмодий → формирование спорокарпа (из ножки и сорогена) → ветвление сорогена → образование цепочек спор → спора → прорастание в миксоамёбу.

Акразиевые гипотетически рассматриваются как филогенетическая ветвь свободноживущих почвенных амёб. Основанием для этого служит отсутствие у них жгутиковой стадии и целлюлозы в цикле развития.

Происхождение группы миксомицетов в целом связывают или со свободноживущими почвенными амёбами, или с амёбоидными жгутиковыми (флагеллятами).

Рис. 372. Акразия розовая (Acrasia rosea).
1—4 — прорастание споры миксамёбой, инницирование ее и новое прорастание; 5 — агрегация миксоамёб; 6—8 — образование сорокарпа с дифференцировкой на ножку (н) и сороген (со); 9 — разветвление сорогена, формирование из миксоамёб цепочек спор; 10 — зрелый спорокарп.
1. НАУЧНЫЕ НАИМЕНОВАНИЯ ОРГАНИЗМОВ И МЕЖДУНАРОДНЫЙ КОДЕКС БОТАНИЧЕСКОЙ НОМЕНКЛАТУРЫ

Основные правила научного наименования организмов

Земля населена огромным множеством организмов разнообразных видов. Они тесно взаимодействуют между собой и с компонентами неживой природы, составляя и поддерживая биосферу планеты.

Уже в первобытном обществе возникла необходимость узнавать растения и животных, заранее, без риска для собственной жизни, знать, какие растения съедобные, ядовитые, лекарственные и т.д. Постепенно было установлено, что живые организмы обладают постоянными признаками, по которым их можно распределить в отдельные, хорошо различающиеся группы. Возможность группирования организмов по внешнему сходству основана на том, что группы живых организмов в той или иной степени связаны между собой эволюционным родством. Совершенствование процессов узнавания и группирования организмов постепенно превратилось в научное исследование, давшее начало отрасли биологии — систематике. Задача систематики — создание таких систем классификации, которые наилучшим образом отражали бы степень общего сходства организмов. Такие системы используются в биологии для накопления, отыскания и передачи информации, а также для надежных прогнозов и обобщений.

Классификационные системы основаны на самом широком изучении изменчивости организмов и стремлении установить группы, члены которых обладают наибольшим общим числом признаков. Это становится возможным благодаря их родственным, филогенетическим связям, эволюционному родству. Именно это позволяет устанавливать четкие систематические группировки, основанные на связях общих признаков.

Систематика состоит из двух частей — классификации и номенклатуры. Под классификацией понимается процесс установления и характеристики таксономических групп (таксонов), а номенклатура — это распределение названий для установленных таксонов. Таким образом, систематики вначале выполняют классификационную работу, а затем присваивают названия выделенным таксонам. Назначение названий — служить средством общения.
Таксоны расположены в ряд соподчиненных групп, т.е. таксонов разного таксonomicкого ранга, составляющих так называемую иерархическую систему. Традиционно в ботанической систематике приняты 24 уровня — от царства (Regnum) до подформы (Subforma) включительно. Число иерархических уровней установлено произвольно, на основе практического опыта.

Названия организмов по существу представляют условный код (шифр), позволяющий ссыльаться на конкретный таксон без необходимости постоянного использования обширных описательных фраз, как это было в долинневский период. Например: Scutellinia scutellata называлась Peziza lutea marginibus pilosis (Пезиза желтая с волосистым краем), в отличие от Cyathicula cyathoidea — Peziza lutea marginibus laevis (Пезиза желтая с гладким краем). Подобные наименования представляли собой по существу краткие морфологические описания (диагнозы) видов. Их использование усложняет общение и обмен информацией.

Основной принцип номенклатуры и основной критерий эффективности любой системы номенклатуры — однозначность наименований, применяемых для одного и того же таксона. Названия, каким бы образом они ни сообщались (в письменной или устной форме), должны сразу и однозначно ассоциироваться с теми же представлениями, которые в них вкладывает тот, кто их сообщает.

Часть организмов, главным образом используемых человеком в своей жизни или имеющих крупные размеры, имеют народные названия, носящие обобщающий характер. Они обычно соответствуют уровню рода или группы видов, различных неспециалистом. Например, морская капуста (бурые водоросли Laminaria saccharina, L. digitata), олений мох, или ягель (комплекс видов лишайников — Cladonia rangiferina, C. mütis, C. sylvatica), исландский мох (Cetraria islandica), названия деревьев (береза, ель, липа, дуб, сосна), кустарников (орешник, бересклет, крушина), некоторых травянистых растений (клевер, осот, пырей, кислица, копытень, овес, пшеница), крупных животных (корова, лось, олень, орел, кит, тигр) и т.д. Но при этом одни и те же организмы могут одновременно иметь разные наименования (орешник и лещина, медуница и легочница). Одни и те же организмы имеют разные бытовые (народные) названия в разных странах и даже в разных регионах одной страны, или же под одним наименованием могут подразумеваться разные организмы. По этой причине эти названия, в соответствии с основным принципом номенклатуры, не пригодны для использования в биологической номенклатуре и научного общения. Кроме того, существуют разные языки, алфавиты, многозначность наименований, различные местные наименования одного и того же организма. Наконец, огромное число организмов не имеют собственных общеупотребительных названий. Так, например, все неизвестные макромицеты обычно называют поганками. Для огромного числа микромицетов наименований вообще не существует, и они известны под сборным наименованием — плесени. Основная масса населения не имеет также представления о существовании огромной группы микроводорослей, и соответственно они также не имеют бытовых наименований.

В 1753 г. великий шведский ботаник Карл Линней (1707—1778) опубликовал свой классический труд «Spécies Plantarum», в котором он в качестве средства научного общения специалистов-биологов выбрал латинский язык и предложил бинарную систему номенклатуры организмов. С тех пор мы пользуемся научными наименованиями видов растений, грибов, животных, состоящими из двух слов (бинама) и включающих название рода и видового эпитета — уникального для каждого вида. Поэтому каждому биологу в мире понятны и имеют однозначный смысл такие наименования, как Solánum tubérosum (картофель), Pícea abies (ель), Pópulús trémula (осина), Bolétus edúlis (белый гриб, боровик), Agáricus bísporus, Phytóphthora inféstans, Fusárium avenáceum, Aspérgillus nídulans, Chlorélla ellípoídea, Eucléá víride, Hydrodícyon réticulátum и т.д.
Установление единых принципов и правил биологической номенклатуры, образование и применение научных названий растений, включая грибы, животных и бактерий, регламентируется Международным кодексом ботанической номенклатуры (МКБН), Международным кодексом зоологической номенклатуры и Международным кодексом номенклатуры бактерий. Впервые МКБН был принят на I Международном ботаническом конгрессе в Париже в 1867 г., на котором швейцарский ботаник Альфонс де Кандоль предсказал обсуждение 68 разработанных им правил ботанической номенклатуры.

Современный кодекс представляет собой свод 6 пронумерованных принципов, 62 статей (правил), сопровождаемых советами (рекомендациями). Принцип V МКБН гласит: «Научные названия таксономических групп рассматриваются как латинские независимо от их происхождения».

Условия правил кодекса обязательны, их следует использовать во всех случаях, когда наименования присваиваются или используются. Советы указывают оптимальные пути решения возникающих вопросов. Текст кодекса написан строгим юридическим языком и является юридическим документом. Юридической силы, как, например, гражданские и прочие кодексы, МКБН не имеет, однако несоблюдение правил МКБН при присвоении наименований дает полное право другим систематикам игнорировать их.

Для соблюдения принципа однозначности и универсальности номенклатуры научные названия пишутся буквами латинского алфавита и подчиняются правилам латинского биологического языка.

Названия таксонов в ранге выше рода представлены одним словом, т.е. они универсальные. Это имена существительные множественного числа (мн. ч.) или прилагательные, используемые в мн. ч. и написанные с заглавной буквы. Названия таксонов рангом выше рода имеют стандартизированные окончания, по которым можно определить ранг таксона.

<table>
<thead>
<tr>
<th>Ранг таксона</th>
<th>Растения</th>
<th>Грибы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отдел</td>
<td>-phyta</td>
<td>-mycota</td>
</tr>
<tr>
<td>Подотдел</td>
<td>-phytina</td>
<td>-mycotina</td>
</tr>
<tr>
<td>Класс</td>
<td>-phyceae</td>
<td>-mycetes</td>
</tr>
<tr>
<td>Подкласс</td>
<td>-physidea</td>
<td>-mycetidae</td>
</tr>
<tr>
<td>Порядок</td>
<td>-áles</td>
<td>-áles</td>
</tr>
<tr>
<td>Подпорядок</td>
<td>-íneae</td>
<td>-íneae</td>
</tr>
<tr>
<td>Семейство</td>
<td>-áceae</td>
<td>-áceae</td>
</tr>
<tr>
<td>Подсемейство</td>
<td>-óideae</td>
<td>-óideae</td>
</tr>
<tr>
<td>Колено (триба)</td>
<td>-eae</td>
<td>-eae</td>
</tr>
<tr>
<td>Подколено (подтриба)</td>
<td>-íneae</td>
<td>-íneae</td>
</tr>
</tbody>
</table>

Название рода (génum) также универсальное. Это существительные мужского, женского и среднего рода единственного числа (ед. ч.), написанные с заглавной буквы.

МКБН принимает несколько категорий таксонов, имеющих ранг между родом и видом — подрод (subgénum), секция (séctio), подсекция (subséctio), ряд (sérias), подряд (subséries). Названия таких таксонов уже не являются универсальными. Они представляют комбинацию наименования рода, к которому относится таксон, и другого слова, обозначающего сам таксон, а между ними вставляется слово, указывающее на ранг субродового таксона.

Названия видов (spécies) бинонимальные (бинарные), т.е. образованы двумя словами. Они включают наименование рода, к которому они относятся, и второго слова, или видового эпитета, обозначающего конкретный вид (Gónium pectorále, Scenedésmus quadicáuda, Laminária saccharína, Nóstoc coerúleum, Múcór hiemális, Nécterra cinnabárína, Bolétus edúlis, Rúsula délíca, Aspergillus flávus).

В качестве видового эпитета может быть использовано прилагательное в родительном падеже, причастие в роли прилагательного, имя существительное в виде приложения к родовому наименованию, и род видового эпитет должен соответствовать грамматическому роду родового таксона, к которому он принадлежит. Видовой эпитет, взятый
отдельно, не имеет статуса в номенклатуре и не может быть использован для обозначения какого-либо организма. МКБН разрешает после первого упоминания полного названия вида при последующих его цитированиях сокращать наименование рода до первой буквы, если это не влечет за собой каких-либо неясностей и сомнений, неизбежно возникающих в случае видов (особенно с одинаковыми эпитетами) разных родов, начинающихся с одинаковой буквы. Например: *Cosmoastrum enonthekiense* (Groenbl.) Pal.-Mont. и *Cosmárium enonthekiense* Groenbl.; *Clostréum angusztáum* Kutz. и *Cosmárium angusztáum* (Witr.) Nordst.; *Plasmapára alpína* (Johans) Blytt и *Peronóspora alpína* Johans.

Название таксона указывает на его ранг, а иногда и на систематическое положение, поэтому изменение ранга или систематического положения таксона обязательно влечет за собой изменение наименования. Следовательно, научные наименования (подобно общепотребительным), строго говоря, не являются недвусмысленными. Многим таксонам в разное время было дано несколько наименований. Такая нестабильность ботанической номенклатуры представляет недостаток, вытекающий из особенностей, присущих классификации живых организмов, и постоянного изменения по объективным причинам системы классификации, а также вследствие недостатка информации.

МКБН регламентирует процесс присвоения и использования наименований и пытается обеспечить таксон любого ранга только одним наименованием, под которым оно должно быть известно. Кодекс содержит ряд положений и правил, которым необходимо следовать при установлении и использовании наименований таксонов. Эти положения основаны на так называемых действующих принципах, таких, как обнародование, типификация и приоритет. Эти принципы называют также номенклатурными фильтрами, регулирующими присвоение и использование наименований таксонов.

Законное и правильное по форме наименование может приобрести любой статус при соблюдении двух условий: наименование должно быть обнародовано (опубликовано) таким способом и должно сопровождаться описанием, которое удовлетворяет требованиям кодекса. Наименование таксона должно быть опубликовано в печатных, доступных и длительного пользования работах. К ним относятся статьи в специальных научных журналах, монографиях. С 2000 г. Сент-Луисский кодекс разрешил обнародование и распространение наименований новых таксонов на лазерных компакт-дисках.

Публикация должна содержать исчерпывающую информацию, т.е. описание таксона либо ссылку на ранее обнародованное описание. В некоторых случаях можно сослаться на изображение, представляющее существенные детали строения организма. Описание таксона должно быть сделано как на современном, так и латинском языке, сопровождаться изображением (рисунки, фотографии и т. п.) важнейших признаков таксона. Кроме собственно описания (диагноза) публикация нового таксона должна сопровождаться дополнительными данными, содержащими дату, место сбора образца. Если номенклатурным типом таксона является экземпляр, то необходимо указывать место его хранения (гербарий учреждения или личный). Автор должен указать также сходные и отличительные признаки в сравнении с близкими таксонами, т.е. представить его родство (affinitas) с близкими таксонами и экологические особенности. Диагноз вместе с дополнительными сведениями называют протологом (protólogus).
Элемент (образец), на основе которого составлено описание таксона, называется номенклатурным типом — это чисто номенклатурное понятие. Он не является типичным образом в ряду изменчивости. Согласно МКБН, типом названия семейства является род, рода и секции — вид, а вида — конкретный экземпляр.

Один организм, как было отмечено выше, по вполне объективным причинам (одновременное описание разными авторами одного и того же вида, недостаток информации) может иметь 2 и более научных наименования. В этом случае необходимо решить, под каким из наименований он должен быть ясен. Определение такого наименования определяется принципом приоритета, при этом предпочтение отдается более старшему (по дате описания) природному таксону, действительно обнародованному в соответствии с требованиями МКБН.

Действие принципа приоритета ограничено определенными пределами. Он не распространяется на таксоны рангом выше семейства. Кроме того, определение приоритетного наименования связано с установлением так называемых «исходных дат», детально рассмотренных в МКБН. Они были назначены в 1910 г. на Брюссельском международном ботаническом конгрессе. Исходными датами называются крупные обобщающие монографические публикации по отдельным группам организмов, до которых ни одно из ранее опубликованных названий не было признано пригодным. Для растений исходной датой является классическая ботаническая работа К. Линнея «Spéces Plantárum», вышедшая 1 мая 1753 г. Разные группы грибов имели разные исходные даты: для порядков Uredináles, Ustilagináles и группы Gasteromycétés — 31 декабря 1801 г. (Persoon, Synópsis Methódica Fungórum), для остальных грибов (Fungi céteri) — 1 января 1821 г., когда появился том 1 Systéma Mycológicum (E. Fries); для ископаемых грибов — работа Штернберга (Steinberg), вышедшая в 1820 г. в публикации Flóra der Vorweldt. С 1981 г. Сиднейский международный ботанический конгресс изменил исходные даты для грибов (включая слизевики и лишайникобразующие грибы), назначив для них единую дату 1 мая 1753 г., когда вышла в свет работа К. Линнея «Spéces Plantárum». Однако за работами Персона и Фриза сохранено санкционирующее значение, и наименования, включенные в эти работы, обладают приоритетом.

Названия грибов, включенные в эти крупные сводки грибов, являются приоритетными при сопоставлении синонимов, а сами работы считаются санкционирующими в области номенклатуры.

Особая ситуация складывается у сумчатых и некоторых базидиальных грибов, в жизненном цикле которых существуют две стадии — половая, или совершенная (теломорфа), и бесполая, или несовершенная (анаморфа). Проблема наименований у этих грибов специально регулируется правилами, изложенными в статье 59 МКБН.

Правильным наименованием для гомоморфы (т.е. вида во всех его морфах) является наиболее раннее законное наименование, типифицированное элементом (образцом), представляющим телеоморфу. Описание и протолог должны включать описание гомоморфы. Если такое описание отсутствует, то название будет относиться только к формальному таксону, т.е. только к анаморфе. На приоритет названий гомоморф не влияет более раннее обнародование названий анаморф, соответствующих данной гомоморфе. Эти положения не препятствуют обнародованию и использованию бинарных наименований для формальных таксонов (анаморф), когда необходимо использовать только наименование анаморфы. Это означает, что наименование анаморфы нельзя использовать для обозначения гомоморфы.

Существует несколько типов действительно обнародованных наименований, но тем не менее не принимаемых во внимание при определении приоритета. К ним относятся: а) названия родовой группы с окончаниями на -ites, -ithes, -ythes, которые даются только ископаемым животным; б) названия, типами которых служат несовершенные стадии грибов, конкурирующие с наименованиями типов, представленных совершенными стадиями.
МКБН рассматривает такие наименования как незаконные; в) младшие омонимы (омо-
ным — наименования, одинаковые по написанию, но основанные на разных типах;
г) тавтологимы (tautonymum) — наименования видов, в которых видовой эпитет полностью
повторяет наименование рода (тавтологимы рассматриваются как законные кодексом зоол-
огической номенклатуры); д) синонимы (synonymum) — существование двух или более
наименований для одного таксона. Согласно принципу приоритета, такой таксон дол-
жен быть известным только под одним наименованием (более ранним или старшим
по дате обнародования). Остальные наименования рассматриваются как его синонимы.
Существует два типа синонимов: 1) обозначаемые — номенклатурные синонимы,
основанные на одном и том же номенклатурном типа (образце); их синонимия абсолют-
ная — это облигатные синонимы; 2) — таксономические синонимы, основанные
на разных типах (образцах). Они остаются синонимами до тех пор, пока соответствующие
им номенклатурные типы считаются принадлежащими к одному таксону.
Для обеспечения стабильности и целостности номенклатуры МКБН предусматривает
исключения из правил, позволяющие избежать неблагоприятных изменений, возможных
при строгом соблюдении правил и особо рассмотренных в МКБН.

Цитирование авторов научных наименований
и библиографические ссылки

Статья 46 МКБН гласит: «...для указания наименования таксона — точного и более
полного и для легкой проверки приведенных сведений, необходимо цитировать фами-
лии авторов, которые законно опубликовали рассматриваемое наименование». Поэтому
за научными названиями организмов в таксономических и флористических публикациях
следуют одно, два или несколько имен личных, записанных полностью или в сокращен-
ном виде. Личные имена — это фамилии авторов, действительно впервые обнародовав-
ших наименование таксона, который может иметь различный таксономический ранг.
Фамилия(ии) автора(ов) не входит в состав научного наименования, а представляет биб-
лиографическую справку, увеличивающую номенклатурную точность (Puccinia graminis
Pers., Aspergillus répens de Bary, Múcor mucédo Fr.). Фамилия автора оказывает сущест-
венную помощь в различении омонимов. Например, наименование рода Gloeophyllum
Korschik., 1953 является поздним омонимом Gloeophyllum P. Karst., 1882. Согласно МКБН,
одно наименование для разных организмов существовать не может. Таксон Карстена
как обладающий приоритетом (был обнародован ранее), считается законным, тогда как
наименование таксона Коршикова для рода протококковых водорослей должно быть
заменено, поскольку является младшим омонимом. Более того, первое наименование
использовано для обозначения рода афиллофорового гриба, тогда как второе — для про-
тококковых водорослей.
Авторские ссылки могут включать две и более фамилии, соединенные разными ла-
тинскими связующими словами — et, in, ex и некоторыми другими. Союз et (и) применя-
ется при описании одного таксона двумя авторами — Penicillium parvum Raper et Fennell,
Sphaerotéca móis-úvae (Schweinitz) Berk. et Curtis, Erysíphe convólului DC et St.-Amans,
Aspergillus níger Raper et Thorn. Предлож in используется в том случае, если автор дей-
ствительно опубликовал наименование таксона в работе другого автора. Например:
Phíálea subhydálna Rehm in Rabenh., Fusárium semítéctum Berk. et Rav. in Berk. Предлож
ex (из) употребляется, когда второй автор только предложил наименование (запись, остав-
шаяся на гербарном конверте, в рукописи), но не опубликовал его в соответствии с требо-
ваниями кодекса, тогда как первый автор действительно его обнародовал, использовав
наименование, предложенное предшествующим автором (Spathulária Pers. ex Wallr., Píthya
suécica de Bary ex Fuckel, Lepióta grácilis Kuhn. ex Horak, Puccínia stipína Tranzsch. ex Kleb.).
Следует иметь в виду, что в связи с изменениями исходных дат, принятыми XIII Международным ботаническим конгрессом, для наименований таксонов, санкционированных Ц. Персоном и Е. Фрисом (Persoon C.H. Synopsis Methódica Fungórum, 1801; Fries E. Systema Mycológicum, 1821—1832), следует заменять предлог ex на двоеточие (:). Например, Amanita muscária (L.: Fr.) Hook., Bolétus piperátilus Bull.: Fr. Это правило действительно только для таксонов, принятых в вышеотмеченных работах Персона и Фриса; во всех остальных случаях предлог ex сохраняется.

Один или несколько авторов могут быть заключены в круглые скобки, например: Sepultária arenósa (Fuckel) Rehm.; Geopóyxis carbonária (Alb. et Schw.) Sacc. Это означает, что автор, помещенный за скобками (в приведенных случаях Rehm и Saccardo соответственно), предложил новую номенклатурную комбинацию, например осуществил перенос таксона, описанного другим автором или авторами, из одного рода в другой или изменил ранг таксона. В этом случае авторы старого наименования цитируются в скобках; прежнее наименование переводится в разряд синонимов. Это увеличивает номенклатурную точность наименования, позволяет проверить номенклатурные изменения наименования таксона, осуществленные ранее.

Правило обязательного цитирования авторов наименования таксона было изменено в 1993 г. Токийским международным ботаническим конгрессом, разрешившим некоторые упрощения в цитировании авторов. Сокращения разрешены только в работах, не носящих строго таксономического характера и имеющих прикладное значение.

В монографических и таксономических публикациях после фамилии автора таксона (или ее сокращенного варианта), отделенной запятой, приведены сведения о месте публикации соответствующего наименования таксона, а также синонимы, под которыми данный таксон был известен. Синонимы перечисляют через разделительную черту или обозначают знаками ≡syn. (для номенклатурных синонимов) и =syn. (для таксономических синонимов). В качестве примера можно привести монографию А.С. Бондарчева «Трутовые грибы европейской части СССР и Северного Кавказа» (1953):

Собственно наименованием таксона является часть, выделенная жирным шрифтом. Фрагмент (L.: Fr.) Gill. является ссылкой на авторов таксона (в приведенном случае это Линней и Фрис). Подчеркнутая часть фразы представляет библиографическую ссылку, указывающую на источник, в котором находится первоописание новой номенклатурной комбинации, предложенной французским микологом Жилле (Gillet) в труде «Champignons français». Описание этого же таксона можно найти у П. Саккардо, о чем свидетельствует фрагмент, следующий после точки с запятой. Помещенные в круглые скобки L.: Fr. означают, что Линней впервые описал этот вид под наименованием Bolétus fomentárius, а Фрис перенес его в род Polýporus, сохранив видовой эпитет. После сокращения syn. следуют синонимы, под которыми был известен этот таксон. Подобные библиографические ссылки увеличивают номенклатурную точность таксона и позволяют проследить историю его номенклатурных изменений. Фамилии авторов и библиографические ссылки в научное наименование таксона не входят.

2. ОСНОВЫ БОТАНИЧЕСКОЙ ЛАТЫНИ

Биологическая латынь представляет собой язык научного общения биологов, и в первую очередь систематиков и таксономистов. Международный кодекс ботанической номенклатуры (МКБН) в качестве одного из основных условий действительного обнародования (опубликования) новых таксонов растений, грибов и лишайников требует обязательного диагноза (описания), составленного на латинском языке, что отражено в принципе V. Другая важная сторона знания правил латинского языка ботаниками отражена в эпиграфе к книге Карла Линнея «Philosophia botánica, 1751», который гласит: «Nómina si nécisc, pérét et cognitio rérum» (Если не знаешь названий, теряется и познание вещей).

Латинский язык, как и славянские, германские, балтийские, древне- и новогреческие языки, относится к indoевропейской языковой группе. Латинский язык в его народной (разговорной) разновидности, так называемая вульгарная латынь, послужил основой для новых национальных языков, объединяемых под названием романских. К ним относятся итальянский, французский, провансальский, испанский, румынский и молдавский.

Латынь вплоть до середины XVIII столетия сохраняла роль языка науки, и даже в 1934 г. чешский миколог Йозеф Веленовский опубликовал свой обширный труд «Monográpha Discomycétum Bohémiae» на латинском языке.

Карл Линней (1707—1778) дал всем растениям латинское наименования или придал им латинизированную форму независимо от происхождения использованных слов. Для Линнея без затруднений были понятны описания растений в «Rarioúm Plantárum História» Шарля Л’Экуля (Charles L’Eculue — Cárolus Clúsius, 1528—1609). У Линнея не было другого выбора. Использовав латынь при написании своих работ «Génera Plantárum» (1737), «Critica botánica» (1737), «Flora Lappónica» (1737), «Hortus Cliffortiánius» (1738), «Philosóphia botánica» (1751) и «Spécies Plantárum» (1753), Линней сразу же сделал общедоступными для ботаников всего мира разработанные им научные принципы и методы. Это было бы невозможно, если бы свои труды он писал только на шведском языке.

Латинский язык оказал громадное влияние на формирование живых, современных европейских языков. Научная и общественно-политическая лексика, используемая в русском и других европейских языках, изобилует заимствованиями из латинского языка. Достаточно привести широко распространенные в русском языке слова: лекция, студент, профессор, аспирант, аудитория, экзамен, аттестат, институт, факультет, лаборатория, объект, активный, пассивный. Даже, казалось бы, исключительно русское слово «редька» восходит к латинскому языку; оно происходит от латинского слова rádíx — корень, заимствованного немцами как Rettisch (редька) и затем перешедшего в русский язык. Знание основ латыни абсолютно необходимо любому грамотному и образованному человеку.

В последние годы (особенно в англоязычных странах, а теперь и в России) отмечается тенденция подчинения современного чтения латинских слов нормам произношения новых языков (главным образом английского), как, например, Fungi [fʌŋɡi], fungus [ˈfʌŋɡs], species [ˈspɛsɪz]. Однако если в этих словах общего значения такое фонетическое звучание не затрудняет восприятие смисла, то аналогичное произношение научных наименований организмов делает их непонятными или существенно затрудняет понимание содержания фраз при устном общении на международных научных конференциях, симпозиумах, конгрессах, а также при личном общении. В научной латыни это совершенно недопустимо и противоречит основному требованию Международного кодекса ботани-
ческой номенклатуры, а именно соблюдению однозначности и недвусмысленности научных наименований таксонов.

Правила кодекса должны соблюдаться не только в написании и использовании наименований таксонов, но и в их произношении.

Краткие основы фонетики латинского языка

Современный латинский алфавит, используемый в биологии, включает 25 букв и несколько отличается от алфавита классической эпохи. В то время буквы V и I означали и гласные (современные U, u; I, i), и согласные — V, v; J, j. Буква Y у использовалась только в греческих заимствованиях и звучала как [y = ɨ], т.е. как во французском и немецком языках. Произношение буквы u [y = i] возникло под влиянием русского языка, в котором нет переднего закрытого лабиализованного звука [ɨ]. Буква Z также использовалась только в словах, заимствованных из греческого языка, произносилась и сейчас произносится как звук [ɜ].

Рано исчезла буква K, и ее следы сохранились только в некоторых латинских словах.

Архаическая греческая буква Ω — konna, обозначавшая также число 90 и занимавшая в алфавите место между τ и ρ, превратилась у римлян в Q q и в этом виде перешла в современные европейские алфавиты.

Гласные, приведенные в латинском алфавите, называются монофоны (т.е. одногласными). Их шесть — a, e, i, o, u, y. В латинском языке гласные разделялись по долготе звучания, поэтому монофоны было 12, соответственно 6 долгих и 6 кратких. Монофоны произносятся так же, как и в русском языке.

Кроме монофонов в латинском языке существуют, как и во многих других языках, дирафони (т.е. двугласные или сочетания гласных, произносямых как один звук) — au, eu, ae, oe, ei.

Дирафон ei соответствует русскому [эй]: célistothécium — клеистотеций, cleístogánum — клеистогамный, закрытый (flos cleístogánum — цветок закрытый).

Двугласные ae и oe (возникли из более древних ai и oi) превратились в монофоны, изображаемые двумя буквами (так называемые дирафы), но произносятся как один звук.

В тех случаях, когда сочетание ae или oe требуется читать раздельно, то над e ставится знак разделения «ʾ» (две точки — диреза): aër (a-er) — воздух, tetraëdricus, tetraëdrus — четырехгранный, aëróbius — аэробный; Epichloë — эпилле.

Количество (долгота) гласного

Как и во многих индоевропейских языках, в латинском, что уже отмечалось выше, различались долгие и краткие гласные. Долгий гласный звук обозначался надстрочным знаком «ʾ», а краткий «ʾʾ». Долгий был вдвое протяжнее краткого. Количество гласного имело смыслоразличительный характер. В настоящее время количество гласных не обозначается и при чтении не воспроизводится.

Следует иметь в виду следующие правила определения количества (долготы) гласного, так как это оказывает влияние на определение ударного слога:

1. В словах, содержащих более одного слога, в закрытом конечном слоге любой долгий гласный сокращается перед любым конечным согласным, кроме s. Например, 2-е лицо единственного числа órnās — украшается, но 3-е лицо ед. ч. — órnāt — украшают. В некоторых словах возможно как долгий, так и краткий гласный перед s, как, например: audīs — слушаешь, capīs — береешь; в таких случаях их долгота обозначена в словарях или учебниках.

В односложных словах сокращение происходит только перед m и t, например: flēt — плает (инфинитив — flērē), но: sōl — солнце, vēr — весна.

2. Долгий гласный сокращается перед сочетаниями nt и nd. Обычно сочетания согласных nd и nt распределяются по смежным слогам, однако сочетание nt может быть заключительным элементом конечного слога. Например: ornāre — украшают, ór-nānt — они украшают, or-nān-tur — их украшают, ad or-nān-dum — для украшения.

3. Гласный, как правило, всегда краток в положении перед гласным или h. Например: mónēo — я убеждаю (инфинитив mónēre).

Произношение согласных букв

Чтение согласных b, d, k, m, n, p, r, v соответствует их произношению в русском языке. Произношение других согласных может изменяться в зависимости от положения и под влиянием соседних букв.

В современных языках принято двойное прочтение буквы с [ɔː]. В положении перед e, i, у и диграфами ae, oe буква с читается как звук [ɔ], соответствующий русскому [u]; в остальных случаях, т.е. перед a, o, u, перед согласной и в конце слова, произносится как звук [k]. Эта особенность произношения буквы сохранилась и в современных европейских языках.

Например: cáput [káput] (лат.) — голова, столица и capital (фр., англ.), Kapital (нем.) — капитальный; color [kɔlɔr] (лат.) — цвет и couleur (фр.), colo(u)r (англ.), Kolor (нем.); causa [kɔˈzuːa] (лат.) — причина и cause (фр. и англ.), kausal (нем.) — каузальный; credo — я верю — crois (фр.), credo, credo, Kredo (англ., фр., нем.) — кредо. Однако: centrum (лат.) — центр и centre (фр. и англ.), Zentrum (нем.); civis (лат.) — гражданин, гражданинский, штатский и civil (англ., фр.), Zivil (нем.); caelum (лат.) — небо и ciel, celestial (фр.) —
целестин (минерал); dem (лат.) — de se et dix, décimal (фр., англ.), dezimal (нем.) — десятичный.

Буква l произносится мягко, как во французском или немецком.

Буква h произносится как английское [h] в слове horse. В русском языке этот звук встречается в южных говорах и условно передается как приглушенное [з].

Буква j произносится как русский звук [й].

Буква x в положении перед согласной в начале и конце слова обычно произносится как [ks]: extrémus [эктремус] — крайний, extráctum [экстрактум], excipulum [экципилум] — экципул, explanátus [эксплинатус] — уложенный, simplex [сипплекс] — простой,

Букву z следует произносить как русский звук [з]: zygógámia [зиогамия], zygóspara [зиогспора], Zygomycétés [зигомицetes], zoología [зоология], Pezíza [пезиза]. Последнее наименование часто неправильно произносят как [петсиза], что, вероятно, произошло под влиянием немецкого языка.

Среди согласных звуков имеются так называемые немые (или смьные) и плавные. В древности смьчный звук обозначали термином múta (имелась в виду littera — буква), а плавный — líquida. Сочетание немого (смьчного) звука с плавным принято называть múta cum líquida (немая с плавной). К возможным сочетаниям немой с плавной относятся: bl, br, cl, cr, dl, dr, gl, gr, pl, pr, tl, tr. Сочетания этих букв не разделяются при делении слова на слоги, и соответственно в некоторых случаях они могут оказывать влияние на определение ударного слога.

В биологической латыни наименования таксонов достаточно часто (особенно видовые эпитеты) образуются от имен личных, в которых часто встречаются несвойственные латинскому языку буквосочетания.

Произношение таких слов всегда представляет определенные затруднения. Как их следует произносить — по правилам фонетики латинского языка или языка-оригинала, из которого заимствовано имя (фамилия)?

Некоторые сочетания букв в этих наименованиях в латинском языке просто непроизносимые, как, например, eschschóltziae. Кроме того, в латыни нет некоторых звуков, таких, как ж, ш, нет букв з, w, встречающихся в других современных языках.

Профессор A.K. Скворцов (1976) в подробнойшей рекензии на пособие к латинским наименованиям Г.Н. Горностаева и др. (1974) отмечает, что подобные названия следует произносить так же, как и остальные латинские слова, т.e. по правилам латинской фонетики. Мнение A.K. Скворцова основано на том, что в латинском алфавите нет букв с диакритическими знаками, характерными для многих современных европейских языков. В латинизированных словах, производных от слов из таких языков, согласно Кодексу ботанической номенклатуры диакритические знаки не используются и, следовательно, их следует произносить, как и остальные латинские слова.

Единственный возможный арбитр в решении этой проблемы — Международный кодекс ботанической номенклатуры. Этот документ требует использования латинского алфавита и правил латинской грамматики в написании латинских наименований, но не
Приложения

рекламирует правила произношения, а значит, их следовало бы читать с соблюдением правил латинской фонетики. Однако многие буквенные сочетания в латинском произношении очень трудны.

Слогораздел

Для определения ударного слога необходимо выделить слоги третий и второй от конца слова.

Количество слогов в словах латинского языка, как в любых других языках, соответствует количеству гласных. Дифтонг рассматривается как один звук.

Разделение на слоги проходит:

3) среднезвуковой (фрикативный звонкий) звук j (újota) между гласными при произношении, слогоразделе и написании удаваяется, распадаясь между двумя слогами: péjor (péj-jor) — худший, májor (máj-jor) — больший, május (máj-jus) — майский, majúsculus (máj-jús-cu-lus) — крупноватый, довольно крупный;

4) отделяются приставки: ab-breviátus — укороченный, ac-cersórius — придаточный, a-cotyledóneus — лишенный семядолей, ód-venus (ad-ventívus) — пришлый, иноземный, заносный (plántae adventívae — адвантивные, заносные, случайные растения), bi-foliátus — двулистный, con-strictus — перетянутый, переширенный.

Правила ударения

Латинский язык принадлежит к числу языков с фиксированным ударением. Место ударения определяется следующими правилами:

1. Ударение никогда не ставится на последнем слоге!

2. Ударение никогда не ставится далее третьего слога от конца слова!

4. В многосложных словах ударение ставится на предпоследнем слоге, если он долгий, и на третьем от конца слова, если он краткий.
Каким образом определить ударный слог в многосложных словах? Можно предложить несколько практических рекомендаций.

- Если же предпоследний слог заканчивается на дифтонг (например, ae), то ударение всегда сохраняется на предпоследнем слоге, даже если он открытый.

Этому правилу не подчиняется произношение некоторых наименований, главным образом греческого происхождения: Achilléa, Barbaréa, cacáo, Centauréa, Coníum, Dioscoréa, Elódéa, gigántéus, Heracléum, hyperboréus, Jacéa, Jurínéa, Onócélá, Pharmácéum, planitéi (средний род единственного числа от planitéi — равнина, плоскость), sardós, sclaréa, Thésium.

Приложения

Следует иметь в виду, если к слову присоединяются энклитические частицы -que — «и», -ne — «или», -ve — «или», то ударение переносится на предпоследний слог, т.е. переходит на последний слог слова, к которому они присоединяются: rósa — rosáque (roza — и roza), cáulibus — caulúbisque, аблатив множественного числа (co стеблями — и co стеблями), filius filiáque (сын и дочь).

Таким образом, для определения ударного слога необходимо знать количество (долготу) только предпоследнего слога.

Наименования таксонов грибов с указанием ударного слога приведены также в 5-томном труде М. Хеннинга (Hennig M. Handbuch für Pilzfreunde), опубликованном в период с 1958 по 1970 г.

Некоторые важнейшие фонетические законы

Регрессивная ассимиляция согласных

1. Переднеязычные d и t приставок в положении перед s, p, f полностью ассимилируются. Например, ad-sídens → assídens — сидящий; ad-símilans → assímilans — ассимилирующий; ad-súrgens → assúrgens — приподнимающийся, выпрямляющийся; ad-sum → ássum — присутствовать; ad-planátus → applanátus — уплощенный; ad-pressórium → appressórium — атрезссирий; ad-finitas → affinitas — родство; affixus — прикрепленный.

2. Звонкий заднеязычный g и звонкий губной b перед глухими s и t оглушаются (сочетание c-s на письме обозначается буквой x). Например, 1-е лицо перфекта глагола rego (правило): reg-sí → rec-sí → rexi; супин reg-túm → rectum. 1-е лицо перфекта от глагола scribo (я пишу): scrib-sí → scripsi; супин scrib-túm → scriptum.

3. Звонкий переднеязычный d перед c, g, p, f, t, r, l обычно полностью ассимилируется: ad-cédo → ac-cédo — подступаю; ad-grádió → ag-grádió — нападаю; ad-fíxio → af-fíxio — прикрепление; ad-planátus → ap-planátus — уплощенный, сплющенный; ad-tenuátus → at-tenuátus — оттянутый; ad-réctus → ar-réctus — прямоторачий; ad-látus → al-látus — принесенный.

4. Интервокальное s в результате озвончения переходит в r: глагол esse (быть) в имперфекте — es-a-m → eram, в будущем времени — eso → ero.

Латинские приставки, используемые в словообразовании, и их значение

a-, ab-, abs- (отделение, отклонение, превышение, отрицание): abióticus — абиотический, abortívus — недоразвитый, abscessus — отделенный.

aequi- (равно-): aequíáltus — равновысокий, aequícrássus — равный по толщине, aequídistans — равноудаленный, aequílobus — равнолопастный, aequílaterális — равнобокий, aequílóngus — равный по длине, aequímágnum — равный по величине, aequípétalous — равнолепестный.
ante- (впереди, пред-): antecedens — предшествующий, antepósitus — расположенный впереди.

bi- (би-, двойной, дву-): bicolor — двухцветный, bilabiátus — двугубый, bísporus — двуспоровый, binominális — биноминальный, bilaterális — билатеральный, biseriális — двурядный, bitunicátus — битуникатный.

circum- (вокруг, кругом, циркум-): circumcóncitus — окаймленный, circumfléxus — завитой, circumpoláris — циркумполарный.

contra- (противо-, напротив): contrappósitus — противолежащий, contrários — противоположный, contradictórius — противоречивый.

extra- (вне-): extraaxilláris — внепазухный, extracelluláris — внеклеточный, extra­matricális — экстратрациклинный, extraordináriús — внеочередной, extrapólturárius — внеочередной, extraradálicís — внекорневой, extraflóralis — внеклеточный.

inacquiz- (неравно-): inaquílalíris — неравностоящий, inaeqválens — неравноценный, inaequilínamátus — неравноначальный.

infra- (под-): infraaxílláris — подназухный, infraapícális — подверхушечный, infrafoliáceus — подлистный, infrárémeus — подветочный.

multi- (от multum, multa — много): multiflorus — многоцветковый, multisporus — многоспоровый, multíformis — многообразный, multiseríális — многорядный, multizonátus — с многочисленными концентрическими кругами.

ob- (противодействие, противостояние): obclávatús — обратнобулловидный, óblitus — обмазанный, óbsitus — обсаженный, óbtegens — покрывающий, obvolútus — окутанный, обвитой.

oc- (приставка ob- перед с): ocssúus — замкнутый, occúlants — скрывающий, occultátus — скрытый, occúrans — занимающий, поражающий.

op- (приставка ob- перед р): oppléteus — выполненный, заполненный, opposíflórus — супротивцветковый, opposítus — супротивный.

pauc-, pauci- (от páucus — малый, небольшой): paucíflórus — малоцветковый, paucísporus — малоспоровый, paucíradátus — немногочисленный.

Приложения

pluri- (много-): pluriloculáris — многогнездный, plurigranulátus — многозернистый, pluricelluláris — многоклеточный.

quadri- (четырех-): quadrifárius — четырехрядный, quadrilobátus — четырехлопастной, quadripétalus — четырехлепестный, quadríseriális — четырехрядный.

quin-, quinque- (пяти-): quináltus — пятерной, quinquanguláris — пятиугольный, quinqueflórus — пятицветковый, quinquévalvis — пятилистный.

re- (обратное действие, возобновление, повторность, противодействие): recessívus — рецессивный, reclínátus — отклоненный вниз или назад, recógnitus — признанный, recomposítus — удвоенно сложный, rédivíus — оживашающий, regérminans — вновь прорастающий.

semi- (полу-, пол-): semicírculáris — полукруглый, semidesértum — полупустыня, semiglobósus — полушаровидный, semiímmérsus — полупогруженный.

semper- (всегда, постоянно): semperflórens — постоянно цветущий, sempérvirens, sempervívus — вечнозеленый.

super-, supra- (превышение, излишек; на-, над, пере-, пре-, через-): súperans — превышающий, superficiális — поверхностный, supérflíus — излишний, superímposítus — налегающий, supérmatans — плавающий на поверхности.

supra- (сверху, на поверхности): supercopósítus — сверхсложный, suprafolíáceus — надлистный, supraterráneus — над(д)земный.

sus- (приставка sub- перед, р, l): suspéctus — подозрительный, suspénsor — подвесок, cucumpíor, suspénsus — подвешенный, susténtans — поддерживающий.

ubi- (где?): ubicúmque — повсюду, где бы то ни было, ubíque — повсюду, ubiquísta — убиквист.

uni- (от unus один): unicelluláris — одноклеточный, unicólor — одноцветный, unilateralis — односторонний, uniseriális — однорядный.
ОГЛАВЛЕНИЕ

Предисловие (В.А. Садовничий) ... 5
Предисловие авторов .. 6
Введение (Ю.Т. Дьяков) ... 8

ВОДОРОСЛИ

Общая характеристика (К.Л. Тарасов) .. 20
Систематика водорослей ... 40
Отдел синезеленые водоросли (Cyanophyta) (А.Н. Камнев) 40
Отдел красные водоросли (Rhodophyta) (Г.А. Белякова) 64
Отдел зеленые водоросли (Chlorophyta) (К.Л. Тарасов) 82
Подотдел Chlorophytina ... 87
Класс празинофициевые, или празинофиты (Prasinophyceae) 88
Класс собственно зеленые водоросли (Chlorophyceae) 89
Класс требуксиеевые (Tre bouxiophyceae) 114
Класс ульвовые (Ulvophyceae) ... 120
Подотдел Charophytina ... 133
Класс трепелополье (Trentepohliophyceae) 133
Класс клебсомидиеевые (Klebsormidiophyceae) 134
Класс конъюгаты, или сцеплянкы (Zygmatophyceae, Conjugatophyceae) 137
Класс харовые (Charophyceae) .. 147
Отдел охрофиты (Ochrophyta) (Г.А. Белякова) 152
Класс золотистые водоросли (Chrysophyceae) 153
Класс синуровые (Synurophycyeae) ... 158
Класс феотамниевые (Phaeothamniophyceae) 159
Класс диктюоховы, или силикофлагелляты (Dictyochophyceae, Silicoflagellata) 160
Класс диатомовые, или бациллярные, водоросли (Diatomophyceae, Bacillariophyceae) ... 162
Класс трибополые, или желтозеленые, водоросли (Tribophyceae, Xanthophyceae) ... 177
Класс бурные, или фуксовые, водоросли (Phaeophyceae, Fucophyceae) .. 185
Отдел гаптрофиты, или примнезофтиты (Haptophyta, Prymnesiophyta) (Г.А. Белякова) ... 205
Класс павловофациевые (Pavlovophyceae) 209
ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

Общая характеристика (Ю.Т. Дьяков) .. 259
Образ жизни и распространение грибов и грибоподобных организмов (Л.Л. Великанов) .. 278
Значение грибов в практической деятельности человека (Л.Л. Великанов) .. 291
Систематика грибов (Л.В. Гарипова) .. 296

Грибоподобные организмы (Stramenopila) (Л.В. Гарипова)

Отдел лабиринтуклесовые, или сетчатые слизевики (Labyrinthulomycota) 296
Класс лабиринтуклесовые (Labyrinthulomycetes) .. 297
Класс траутохитридиомицеты (Thraustochytridiomycetes) 298
Отдел гифохитридиомицеты (Hypochytridiomycota) ... 299
Отдел оомикота (Oomycota) .. 300

Настоящие грибы (Fungi, Mycota, Mycetalia) (Л.В. Гарипова)

Отдел хитридиомицета (Chytridiomycota) .. 314
Отдел зигомикота (Zygomycota) .. 323
Класс зигомицеты (Zygomycetes) .. 324
Класс трихомицеты (Trichomycetes) .. 332
Надотдел диариомицеты (Dikaryomycotera) (И.И. Сидорова) 335
Отдел аскомицеты, или сумчатые грибы (Ascomycota) 337
Подотдел тафриномицеты, или архисомицеты (Taphrinomycotina, или Archiascomycotina) .. 344
Класс тафриномицеты (Taphrinomycetes) .. 345
Подотдел сахаромицеты, или гемиаскомицеты (Saccharomycotina, Hemiascomycotina) .. 346
Подотдел эуаскомицеты, или пезизомицеты (Euascomycotina, Pezizomycotina) 352
Класс эвроциомицеты, или плектомицеты (Eurotiomycetes, Plectomycetes) 358
Класс сордариомицеты (Sordariomycetes) .. 362
Класс леоциомицеты (Leotiomycetes) .. 376
Класс пезизомицеты (Pezizomycetes) .. 380
Класс эрисфомицеты (Erysiphomycetes) .. 386
Класс локулоаскомицеты (Loculoascomycetes) .. 388
Класс лабуленомицеты (Laboulbeniomycetes) .. 393
Происхождение аскомицетов .. 394
Отдел базидиомицеты, или базидиальные грибы (Basidiomycota) 396
Класс урединомицеты, или уредиомицеты (Uredinomycetes, или Teliomycetes) ... 406
Класс устилагиномицеты (Ustilaginomycetes, или Ustomycetes в системе Г. Крайзеля) .. 419
Оглавление

Класс басидиомицеты (Basidiomycetes) ... 428
Подкласс гетеробасидиомицеты (Heterobasidiomycetidae) 429
Подкласс тремелломицеты (Tremellomycetidae) .. 432
Подкласс гомобасидиомицеты (Homobasidiomycetidae) 435
Отдел дейтеромицеты, или анаморфные грибы (Deuteromycota) 482
Класс гиофомицеты (Hyphomycetes) ... 490
Класс целомицеты (Coelomycetes) ... 492

Лищайники (лихенизированные грибы) (Т.Ю. Толпышева) 495
Общая характеристика лишайников .. 495
Значение лишайников .. 515
Систематика лишайников .. 517
Отдел Ascomycota. Лихенизированные аскомицеты 517
Подотдел Pezizomycotina ... 517
Класс Arthoniomycetes ... 517
Класс Lecanoromycetes ... 518
Отдел Basidiomycota. Лихенизированные басидиомицеты 527

Миксомицеты, или слизевики (Л.В. Гарибова) 529
Отдел миксомикота (Muxomycota) .. 530
Класс миксомицеты, или миксогастровые (Muxomycetes, Myxogasteromy-
cetes) .. 530
Отдел плазмодиофоровые (Plasmodiophoromycota) 532
Отдел диктиостелиевые (Dictyosteliomycota) ... 535
Отдел акрызвиевые (Acrasiomycota) ... 536

Приложения (В.П. Прохоров)

1. Научные наименования организмов и Международный кодекс ботанической
 номенклатуры ... 538
2. Основы ботанической латыни .. 545
Учебное издание

Ботаника

КУРС АЛЬГОЛОГИИ И МИКОЛОГИИ

Зав. редакцией Г.С. Савельева
Редактор Г.Г. Есакова
Художники В.А. Чернецов, Н.С. Шувалова
Художественный редактор Ю.М. Добрянская
Технический редактор З.С. Кондрашова
Корректоры А.Я. Марьясис, Н.И. Коновалова
Верстка Ю.В. Одинцовой

Художественное оформление выполнено
Издательством Московского университета
и издательством «Проспект»
по заказу Московского университета